|
|
|
ECML/PKDD 2009 Workshop on |
|
Learning from Multi-Label Data |
|
September 7, 2009 - Bled, Slovenia |
|
|
|
|
|
Accepted Papers
- Evaluation of Distance Measures for Hierarchical MultiLabel Classification in Functional Genomics
Darko Aleksovski, Dragi Kocev and Sašo Džeroski
- Combining Classifiers for Improved Multilabel Image Classification
Martin Antenreiter, Ronald Ortner and Peter Auer
- A Simple Instance-Based Approach to Multilabel Classification Using the Mallows Model
Weiwei Cheng and Eyke Hüllermeier
- Sequence Learning from Data with Multiple Labels
Mark Dredze, Partha P. Talukdar and Koby Crammer
- An Ensemble Method for Multilabel Classification using Transportation model
Ehud Itach, Lena Tenenboim and Lior Rokach
- Curve prediction with Kernel Regression
Damjan Kužnar, Martin Možina, and Ivan Bratko
- Generating Synthetic Multi-label Data Streams
Jesse Read, Bernhard Pfahringer, and Geoff Holmes
- Ignoring Co-Occurring Sources in Learning from Multi-Labeled Data Leads to Model Mismatch
Andreas P. Streich and Joachim M. Buhmann
- Multi-label Classification by Analyzing Labels Dependencies
Lena Tenenboim, Lior Rokach, and Bracha Shapira
- Correlation-Based Pruning of Stacked Binary Relevance Models for
Multi-Label Learning
Grigorios Tsoumakas, Anastasios Dimou, Eleftherios Spyromitros,
Vasileios Mezaris, Ioannis Kompatsiaris, and Ioannis Vlahavas
- Weighted True Path Rule: a multilabel hierarchical algorithm for gene
function prediction
Giorgio Valentini and Matteo Re
- Using Unsupervised Classifiers for Multilabel Classification in Open-Class-
Set Scenarios
Santiago D. Villalba and Pádraig Cunningham
Proceedings
Here is the complete volume of the proceedings.
Schedule
The workshop will take place in the afternoon of September 7, 2009.
A tentative schedule follows.
Monday 7 September 2009 |
11:45 - 11:50 |
Workshop opening |
11:50 - 13:05 |
Session 1 |
13:05 - 14:05 |
Lunch break |
14:05 - 15:20 |
Session 2 |
15:20 - 15:40 |
Coffee break |
15:40 - 16:25 |
Poster session |
16:25 - 17:00 |
Discussion & closing |
Session 1: Algorithms
- A Simple Instance-Based Approach to Multilabel Classification Using the Mallows Model
Weiwei Cheng and Eyke Hüllermeier
- Ignoring Co-Occurring Sources in Learning from Multi-Labeled Data Leads to Model Mismatch
Andreas P. Streich and Joachim M. Buhmann
- Curve prediction with Kernel Regression
Damjan Kužnar, Martin Možina, and Ivan Bratko
Session 2: Applications and Extensions
- Sequence Learning from Data with Multiple Labels
Mark Dredze, Partha P. Talukdar and Koby Crammer
- Weighted True Path Rule: a multilabel hierarchical algorithm for gene
function prediction
Giorgio Valentini and Matteo Re
- Using Unsupervised Classifiers for Multilabel Classification in Open-Class-
Set Scenarios
Santiago D. Villalba and Pádraig Cunningham
Poster Session
- Evaluation of Distance Measures for Hierarchical MultiLabel Classification in Functional Genomics
Darko Aleksovski, Dragi Kocev and Sašo Džeroski
- Combining Classifiers for Improved Multilabel Image Classification
Martin Antenreiter, Ronald Ortner and Peter Auer
- An Ensemble Method for Multilabel Classification using Transportation model
Ehud Itach, Lena Tenenboim and Lior Rokach
- Generating Synthetic Multi-label Data Streams
Jesse Read, Bernhard Pfahringer, and Geoff Holmes
- Multi-label Classification by Analyzing Labels Dependencies
Lena Tenenboim, Lior Rokach, and Bracha Shapira
- Correlation-Based Pruning of Stacked Binary Relevance Models for
Multi-Label Learning
Grigorios Tsoumakas, Anastasios Dimou, Eleftherios Spyromitros,
Vasileios Mezaris, Ioannis Kompatsiaris, and Ioannis Vlahavas
|