
Preface

This volume contains research papers accepted for presentation at the 1st International
Workshop on Learning from Multi-Label Data (MLD’09), which will be held in Bled,
Slovenia, at September 7, 2009 in conjunction with ECML/PKDD 2009 .

MLD’09 is devoted to multi-label learning, which is an emerging and promising
research topic of machine learning. In multi-label learning, each example is associated
with multiple labels simultaneously, which therefore encompasses traditional super-
vised learning (single-label) as its special case. Multi-label learning is related to various
machine learning paradigms, such as classification, ranking, semi-supervised learning,
active learning, multi-instance learning, dimensionality reduction, etc.

Initial attempts on multi-label learning date back to 1999 with works on multi-label
text categorization. In recent years, the task of learning from multi-label data has been
addressed by a number of methods adapted from various popular learning techniques,
such as neural networks, decision trees, k-nearest neighbors, kernel methods, ensemble
methods, etc. More impressively, multi-label learning has manifested its effectiveness in
a diversity of real-world applications, such as image/video annotation, bioinformatics,
web search and mining, music categorization, collaborative tagging, directed marketing,
etc.

The goal of MLD’09 is to provide an interactive forum for researchers and practi-
tioners interested in multi-label learning to share their minds. A total of 16 submissions
were received and each paper was rigorously reviewed by two PC members. Based
on the returned reviews, 12 papers were accepted for presentation. The papers discuss
state-of-the-art as well as new research directions of multi-label learning.

We greatly appreciate the many people who contributed to the successful organiza-
tion of MLD’09. First of all, we wish to sincerely thank all the authors who submitted
their work for consideration. We would also like to thank the Program Committee mem-
bers as well as external reviewers for their excellent efforts in keeping the review pro-
cess at high quality. Last, but not least, we would like to thank everybody who helped the
organization of MLD’09 and the production of this volume, especially ECML/PKDD
2009 General Chair, Dunja Mladenic, and Workshop Chair, Rayid Ghani.

August 2009 Grigorios Tsoumakas
Min-Ling Zhang

Zhi-Hua Zhou
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Evaluation of Distance Measures for Hierarchical
Multi-Label Classification in Functional Genomics

Darko Aleksovski, Dragi Kocev, and Sašo Džeroski

Department of Knowledge Technologies, Jozef Stefan Institute
Jamova cesta 39, 1000 Ljubljana, Slovenia

{Darko.Aleksovski, Dragi.Kocev, Saso.Dzeroski}@ijs.si

Abstract. Hierarchical multi-label classification (HMLC) is a variant of classifi-
cation where instances may belong to multiple classes that are organized in a hier-
archy. The approach we used is based on decision trees and is set in the predictive
clustering trees framework (PCTs), which is implemented in the CLUS system.
In this work, we are investigating how different distance measures for hierarchies
influence the predictive performance of the PCTs. The distance measures that we
consider include weghted Euclidean distance, Jaccard, SimGIC and ImageCLEF
distance. We use datasets from the area of functional genomics to evaluate the
performance of the PCTs with different distances. The datasets describe different
functions of the genes in the genomes of two well-studied organisms: S. Cere-
visiae and A. Thaliana. We use precision-recall curves as an evaluation metric
for the predictive performance. The results from the Friedman test for statistical
significance suggest that there is no statistical significance in the performance.

1 Introduction

Hierarchical multi-label classification (HMLC) is an extension of binary classification
where an instance can be labeled with multiple classes that are organized in a hierarchy.
Additionally, when an instance is assigned to some class it should also be assigned to
all its superclasses. The main applications of HMLC are in the areas of gene function
prediction [1, 2], text classification [3] and image classification [4].

There are two general approaches for solving the HMLC task: decomposing this
task to simpler single-target tasks and solving them with basic classification approaches
or using the hierarchical structure and trying to make predictions for the whole hierar-
chy. An example for the first approach is learning a binary classifier for each class and
an example for the second approach is to learn a single model which predicts all the
classes simultaneously. The second group of algorithms has some advantages over the
first group [5–7]. First, they exploit the dependencies between the components and as a
result have better predictive performance. Second, they are more efficient: it can easily
happen that the number of components in the output is very large (e.g., hierarchies in
functional genomics) in which case running a learning algorithm for each component
is not feasible. Third, they produce a single model valid for the structure as a whole,
as compared to the many models, each valid just for one given component: the single
model is usually much more concise.
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In this study, we focus on the latter approach: we learn a single Predictive Clustering
Tree [6] to make a prediction for the complete hierarchy. The PCTs were extended
to the HMLC task by Vens at al. [2], and they use weighted Euclidean distance as a
distance measure between two hierarchies. Here, we consider three additional distance
measures (Jaccard distance [13], SimGIC [8] and ImageCLEF [9]). We implemented
the distance measures in the CLUS system and we evaluated them on several datasets
from functional genomics.

The remainder of this paper is organized as follows: Section 2 describes the PCTs al-
gorithm and the proposed distance measures and Section 3 presents the datasets that we
used for evaluation. Section 4 gives the experimental design, while Section 5 presents
the obtained results. Finally, conclusions and points for further work are presented in
Section 6.

2 Methodology

2.1 Predictive Clustering Trees

The approach we use is based on decision trees and is set in the predictive cluster-
ing trees (PCTs) framework. This framework views a decision tree as a hierarchy of
clusters, where the top node correspond to a cluster containing all data, which are
recursively partitioned into smaller clusters while building the tree from top to bot-
tom. The PCT framework is implemented in the CLUS system (available at http:
//www.cs.kuleuven.be/˜dtai/clus).

PCTs can be constructed with a standard ”top-down induction of decision trees”
(TDIDT) algorithm. The heuristic that is used for selecting the tests is the reduction
in variance caused by partitioning the instances. Maximizing the variance reduction
maximizes cluster homogeneity and improves predictive performance. With appropriate
instantiation of the variance and prototype function the PCTs can handle different types
of data, e.g., multiple targets [11] or time series [12]. A detailed description of the PCT
framework can be found in [6].

In the remainder of this sub-section, we explain how PCTs were instantiated for the
HMLC task, namely we present the internal representation of the hierarchy, annotation
of the examples, making a prediction and we give an example of PCT for HMLC.
The hierarchy is represented as a 0/1 vector: if a given example is labeled with some
label, then for that label the value in the vector is set to 1, otherwise it is set to 0. The
annotation scheme is presented in Figure 1. The example is annotated with the following
labels: B, B.1, C, D, D.2 and D.3. If an example belongs to a node, then it belongs also
to all the node’s parents.

The reduction of variance is calculated using the following equation:

V ar(S) =
∑
i d(vi, v̄)2

|S|
(1)

where S denotes the set of examples over which the variance is calculated, v̄ is the
mean label, and vi is a label of the example. The sum goes over all possible labels. The
mean label is calculated as the mean of the vectors of the examples from S, in that node.
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Fig. 1. A hierarchy (left) with an example annotated to it (subset of the hierarchy shown bold);
the example’s vector representation (right).

Different distance measures can be used in equation 1. In the original implementa-
tion from [2], the Euclidean distance is used for PCT induction. In this work, we use
three other distances that can be used in the context of HMLC. We present and explain
the distances in the next sub-sections.

The PCTs at every leaf of the tree contain probabilities (a probability vector) of an
instance belonging to each class in the hierarchy. To obtain a prediction, a threshold
is applied to the probability vector. If a given label has a bigger probability than the
threshold, the example is annotated with that label and its parents. An example of a
PCT for HMLC is presented in Figure 2. It looks like an ordinary decision tree, but in
the leaves, instead of the majority class, it contains as prediction the annotation for the
examples from that node. Note that for some of the leaves have prediction: ”none”. This
is because no annotations could be assigned for the used threshold value (i.e., the prob-
abilities for example belonging to the classes are lower than the specified threshold).

Fig. 2. An example PCT for HMLC, obtained with a given threshold, for the ’church’ dataset with
FunCat annotation.
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2.2 Weighted Euclidean distance

The Euclidean distance is a well known distance measure. In order to include knowl-
edge about the hierarchy, Vens et al. [2] have introduced a weighting scheme that de-
pends on the depth of the node in the hierarchy. The weighted Euclidean distance can
be calculated using the following equation:

d(v1, v2) =
√∑

i

w(ci)(v1,i − v2,i)2 (2)

where vk,i is the i’th component of the class vector vk of an instance xk. The function
w(c) is denoted as the weighting scheme and the default instantiation here is to apply
a weight to each class label c according to the depth of this class in the hierarchy (e.g.,
w(c) = w

depth(c)
0 with 0 < w0 < 1). With this parameter, the user can control the

influence of the top classes on the distance.
Let us consider two examples: (x1, S1) and (x2, S2), which are annotated with the

hierarchy from Figure 1: S1 = {B, B.1, C, D, D.2, D.3} and S2 = {D, D.2, D.3}. Using
the vector representation presented above, the weighted Euclidean distance is:

d(S1, S2) =
√
w0 + w2

0 + w0 (3)

The weighting function described here is only one of the possible weighting schemes
that can be used. Others weighting schemes are described in [2] and it is recommended
to use weighting.

2.3 Jaccard distance

The Jaccard distance [13] (which can also be found in the literature as Union-intersection
distance/score) can be calculated using the following equation:

dJaccard(v1, v2) = 1−
∑
c∈labels(v1)∩labels(v2) w(c)∑
c∈labels(v1)∪labels(v2) w(c)

(4)

where v1 and v2 are class vectors, labels(v) presents the elements from v, c is a class
node from vk. This distance actually is taking into account the ratio between the sum of
the weights of the joint annotations and the sum of the weights of the annotations of both
examples. As in the case of weighted Euclidean distance, we use the same exponential
weighting scheme.

Let us consider the same example as for the weighted Euclidean distance. The Jac-
card distance for the two examples (x1, S1) and (x2, S2) will be:

d(S1, S2) = 1− w0
0 + w0 + w2

0 + w2
0

w0
0 + w0 + w2

0 + w0 + w0 + w2
0 + w2

0

= 1− 1 + w0 + 2w2
0

1 + w30 + 3w2
0

(5)
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2.4 SimGIC distance

The Similarity for Graph Information Content (SimGIC) distance [8] is similar to the
Jaccard distance, but instead of summing the weights of the labels, it sums up their
information content [2].

dSimGIC(v1, v2) = 1−
∑
c∈labels(v1)∩labels(v2) IC(c)∑
c∈labels(v1)∪labels(v2) IC(c)

(6)

The variables here are the same as for the Jaccard distance, and IC(c) is the Infor-
mation Content for a class node c, which is calculated as:

IC(c) = −logp(c) (7)

Here p(c) is the probability of usage of the label in the dataset, which is calcu-
lated as the frequency of the label in the dataset. Let us consider the example from the
weighted Euclidean and Jaccard distance sub-sections. The SimGIC distance for the
two examples (x1, S1) and (x2, S2) will be:

d(S1, S2) = 1− −log(P (all)P (D)P (D.2)P (D.3))
−log(P (all)P (B)P (B.1)P (C)P (D)P (D.2)P (D.3))

(8)

The ImageCLEF distance is derived from the evaluation score of the ImageCLEF
annotation task [9]. This distance can be calculated using the following formula:

dImageCLEF (v1, v2) = 1−
∑
c∈labels(v1)∩labels(v2)

1
siblings(c)+1

1
depth(c)∑

c∈labels(v1)∪labels(v2)
1

siblings(c)+1
1

depth(c)

(9)

where siblings(c) denotes the number of siblings of the class node c in the hierarchy
and depth(c) is the depth of the class node c (the root node is omitted in the calcula-
tions).

Let us consider the same example as for the weighted Euclidean distance. The Im-
ageCLEF distance for the two examples (x1, S1) and (x2, S2) will be:

d(S1, S2) = 1−
1
4

1
1 + 1

3
1
2 + 1

3
1
2

1
4

1
1 + 1

1
1
2 + 1

4
1
1 + 1

4
1
1 + 1

3
1
2 + 1

3
1
2

=
12
19

(10)

2.5 Adaptations of the distance measures for DAGs

The variance (equation 1) is computed using the distance between the class vectors,
where a class c’s weight w(c) depends on its depth in the class hierarchy (e.g., w(c) =
w
depth(c)
0 with 0 < w0 < 1). When the hierarchy structures the classes in the form

of a directed acyclic graph (DAG), the depth of a class is not unique since it can have
more than one path to a top-level class. An approach was chosen with rewriting the
equation w(c) = w

depth(c)
0 to its recurrent form w(c) = w0w(par(c)), where par(c) is
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the parent class of c. Using the equation in this form along with an aggregation function
(like sum, min, max, average) several alternatives are possible. In this work we chose
to use the average as aggregation function, as recommended in [2]. So, the weighting
scheme for DAGs can be defined as follows:

w(c) = w0avgjw(parj(c)) (11)

3 Data Description

In this section, we describe the datasets that we used to evaluate the distance measures.
We used sixteen datasets from the domain of functional genomics. The datasets repre-
sent different aspects of the genes in the genome of Saccharomyces Cerevisiae (12 of
the datasets) and Arabidopsis Thaliana (4 of the datasets).

We consider two annotation schemes: FunCat [14] which is a tree-structured class
hierarchy and the Gene Ontology (GO) [15], which forms a hierarchy using a directed
acyclic graph: each term can have multiple parents (to be more precise, GO’s ”is-a”
relationship between terms is used here).

The basic properties of the datasets are presented in Table 1. The number of exam-
ples in each dataset ranges from 1592 to 11763, the number of attributes from 27 to
19628, and the number of nodes in the hierarchy from 250 to 4125.

The datasets include different types of bioinformatic data. The ’pheno’ dataset con-
tains information about the phenotype; ’church’ and ’eisen’ contain data about the
expression levels as measured with microarray chips. The ’scop’ dataset contains the
predicted SCOP class, while ’struc’ has the predicted secondary structure. The protein
pattern annotations are available in the ’interpro’ datasets. Datasets ’spo’, ’cellcycle’,
’derisi’, ’gasch1’, ’gasch2’ contain microarray data - expression levels of genes of the
yeast genome. A more detailed description of the datasets can be found in [10, 2].

4 Experimental design

4.1 Evaluation measures

To measure the predictive performance of the algorithm with the different distance mea-
sures we will use Precision-Recall (PR) curves. These curves are obtained by plotting
the precision and recall using different thresholds for the obtained probability vectors
from the PCTs. Precision is the proportion of positive predictions that are correct, and
recall is the proportion of positive examples that are correctly predicted positive. That
is,

Prec =
TP

TP + FP
Prec =

TP

TP + FN
(12)

with TP the number of true positives (correctly predicted positive examples), FP the
number of false positives (positive predictions that are incorrect), and FN the number
of false negatives (positive examples that are incorrectly predicted negative). Note that
these measures ignore the number of correctly predicted negative examples.
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Table 1. Basic properties of the used datasets.

The reason why Precision-Recall based evaluation is chosen in this context instead
of the ROC analysis, which is more popular, was the following. In functional genomics
datasets similar to the ones described and used here, typically only a few genes have
been annotated to have a particular function (a particular class in the class hierarchy).
This implies that one has to deal with a strongly skewed class distribution were the
number of negative instances by far exceeds the number of positive ones [2]. There is
a strong interest for correctly predicting the positive instances (that an instance has a
given label), rather than the negative ones. ROC curves can present an overly optimistic
view of the algorithm’s performance (giving rise to a low false positive rate).

We use two approaches to calculate the AUPRC: area under the average PR curve
and average area under the PR curve. The first approach uses averages of the precision
and recall over all classes, thus obtaining a single curve (AU( ¯PRC)). The second ap-
proach constructs PR curve for each class, and returns the average area under the PR
curves for all classes ( ¯AUPRC). The two curves are able to catch different aspects of
the performance of the distance measures. The first curve measure uses the information
about the frequencies of the classes and the more frequent classes have bigger influence
to the final score. On the other hand, the second measure is averaging the performance
of each of the classes, i.e. each class has equal contribution to the final score.

4.2 Experimental methodology

The evaluation of the predictive performance was done using separate testing sets. The
threshold value ranged from 0.0 to 1.0 step 0.05. The weight of the depth (w0) was set
to 0.75, same as in [2]. Vens et al. in [2] conclude that the weighting parameter has no



12

strong effect on the performance (as compared to non-weighted it gives slightly better
results when using Euclidean distance).

To prevent over-fitting, we used two pre-pruning methods: minimal number of ex-
amples in a leaf and F-test pruning.The minimal number of examples in a leaf is used
as a stopping criterion in the PCT induction algorithm. In our experiments we set this
value to 5 examples. The F-test pruning uses the F-test for statistical significance. The
F-test is used by the algorithm to check whether the variance reduction is statistically
significant at a given significance level. The algorithm takes as input a vector of signifi-
cance levels and, by internal 10-fold cross-validation it selects one. In our experiments
the used vector of significance levels was [0.001, 0.005, 0.01, 0.05, 0.1, 0.125].

5 Results

The performance results of the four different distance measures on the sixteen datasets
are summarized in Table 2 and Table 3. As stated in the experimental design section,
to evaluate the predictive performance we use the following two measures: the area
under the average precision-recall curve and the average area under the PR curves. To
check whether the difference in the performance using each of the four distances is
statistically significant we used the corrected Friedman test (as recommended in [16]).
The corrected Friedman test didn’t detect any statistically significant differences in the
performance in both cases (p ¡ 0.073 for the are under the average PR curve, and p ¡
0.176 for the average area under the PR curves).

Table 2. Predictive performance of the algorithms estimated by the area under the average PR
curve.
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The ranking of the distances by the area under the average PR curve is as follows:
the SimGIC distance has the best average rank, followed by the weighted Euclidean dis-
tance and the ImageCLEF distance. The Jaccard distance has the worst average rank.
The situation is a bit different when average area under the PR curves is used for com-
parison: the weighted Euclidean distance has the best rank, followed by the SimGIC
distance. Next are the ImageCLEF and Jaccard distance with equal rank.

Table 3. Predictive performance of the algorithms estimated by the average area under the PR
curves.

In Figure 3, we present the average PR curves obtained using the four distances and
the ’pheno’ dataset with FunCat annotation (Saccharomyces Cerevisiae). We can see
that the PR curve for SimGIC is always above the PR-curves for the other distances. It
thus clearly performs better than the other distances on this dataset.

6 Conclusions

In this work, we have reviewed and evaluated several distance measures that can be
applied in the hierarchical multi-label classification task. In particular, we compared
the weighted Euclidean distance, Jaccard distance, SimGIC distance and ImageCLEF
distance. The distances were appropriate for hierarchies in the form of a tree, as well as
hierarchies in the form of a directed acyclic graph.

We used separate testing sets to evaluate the influence of each distance measure on
the learning process. The predictive performance was estimated with the area under the
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Fig. 3. An example PCT for HMLC, obtained with a given threshold, for the ’church’ dataset with
FunCat annotation.

average PR curve and the average area under the PR curves. The corrected Friedman test
for statistical significance testing didn’t detect difference in the performance. However,
the SimGIC distance has the best average rank for the area under the average PR curve,
while weighted Euclidean distance for the average area under the PR curves.

For future work, we plan to investigate the different weighting schemes. A dis-
tance can achieve better predictive performance if used with an appropriate weighting
scheme. Also, we will conduct series of experiments on additional datasets from func-
tional genomics and other domains, such as image annotation, text categorization etc.

Another line of further work is the use of ensembles form PCTs [17] to check
whether the ensembles can increase the predictive performance and which distance is
most suitable for ensemble learning.

Also we plan to investigate other evaluation measures of predictive performance
adapted for HMLC [18], such as the hierarchical F-measure, hierarchical Precision,
hierarchical Recall, average category similarity and other.
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Combining Classifiers for Improved
Multilabel Image Classification

Martin Antenreiter, Ronald Ortner, and Peter Auer
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Abstract. We propose a stacking-like method for multilabel image classifica-
tion. Our approach combines the output of binary base learners, which use differ-
ent features for image description, in a simple and straightforward way: The con-
fidence scores of the base learners are fed into a support vector machine (SVM) in
order to improve prediction accuracy. Experiments on the datasets of the Pascal
Visual Object Classes challenges (VOC) of 2006 and 2007 show that our method
significantly improves over the performance of the base learners. Our approach
also works better than more naive approaches for combining features or classi-
fiers.

1 Introduction

The idea of combining classifiers in order to get improved prediction accuracy has been
considered by many researchers (see e.g. [6, 17] for an overview and further references)
and has sparked the development of seminal methods such as boosting [11, 26]. Here
we consider multilabel learning problems where each instance may have several labels
(unlike in multiclass problems where each instance is assigned to a unique class, i.e.,
has a single label). We present a very simple method for multilabel learning based on
the combination of binary base classifiers. That is, we propose to train for each label
a binary base classifier. Then we feed the output (i.e., the confidence scores) of these
binary base learners into a support vector machine (SVM) in order to improve prediction
accuracy.

The basic concept underlying this simple approach resembles stacking [28] meth-
ods: In the stacking framework the output of several (distinct) base classifiers is com-
bined by a meta-level learner to give an improvement in (binary or multiclass) classifi-
cation. In the multiclass case usually multiclass classifiers are used as base learners and
as meta-level learners (cf. [8]). While the idea behind stacking is that the metalearner
shall be able to combine the base learners in a more sophisticated way than doing sim-
ple voting or cross-validation [28], in our method the meta-level learner shall grasp
interdependencies between the single classes that the base learners have not properly
captured.

There has been some discussion whether stacking really gives any improvement
over choosing the best base classifier [8] (see also [25] for a related discussion). In any
case, it is known that the success of stacking methods depends on the choice of the meta-
level learner as well as the kind of input this learner takes from the base learners [27].
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Recent suggestions (see [8] for an overview) usually use the probability distributions
predicted by the base learners (in some form) as input for the meta-level learner. Simi-
larly, we use the base learners’ confidence scores, which is usually simpler than working
with probability distributions, as obtaining the latter requires additional optimization
methods [23]. The choice for the meta-level learners in stacking approaches ranges
from nearest neighbor [20] to tree methods [8]. SVMs have been used as metalearners
as well [1, 7, 18].

We tested our algorithm on the popular image classification databases, provided for
the VOC challenges in 2006 and 2007 [10, 9]. Instead of combining essentially different
base learners, we kept the base learning algorithm fixed, while using different features
for describing the image data. Results show that the combined classifiers outperform
the base classifiers in every experiment, which indicates that the combined classifiers
are indeed able to extract interdependencies between the individual classes and also the
individual classifiers.

The rest of the paper is organized as follows. The following section describes our al-
gorithm in more detail and discusses some related work. Section 3 describes the datasets
and the experimental setup as well as the results. There, we also consider alternative
methods for combining features or classifiers to which we compare our approach. The
final section considers directions of future work.

2 Multilabel Classification

2.1 General Considerations

In multilabel classification problems there are usually interdependencies between classes.
For example, when labeling images it is rather unlikely that an image containing a sheep
also shows an aeroplane. On the other hand, images containing cars will usually also
contain roads. The art of multilabel classification lies in reliably detecting and exploit-
ing these interdependencies. A base classifier that is trained on enough examples will
also learn these interdependencies. However, in the common case where the training set
is not sufficiently large, a base learner for cars may not fully grasp the interdependency
between cars and roads. This defect can be corrected by having a base learner for roads
that will be able to learn roads from more training examples than just those where also
cars appear. That way, combining the road classifier with the car classifier in a suitable
way will also improve the performance for classification of cars.

Our algorithm uses binary base classifiers that are trained to recognize single classes.
In order to better capture interdependencies between the individual classes we propose
combining the confidence scores of the different base classifiers by simply feeding them
into a support vector machine (SVM).

2.2 The Basic Algorithm

We consider the following multilabel problem: Given is a set of training examples
{x1, . . . , xn} ⊂ X together with labels for N different classes {C1, . . . , CN} (where
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each Ck ⊆ X). That is, for each training instance xi and each class Ck the respective
label is

y
(k)
i :=

{
+1 if xi ∈ Ck
−1 otherwise.

As the problem is assumed to be multilabel but not necessarily multiclass, y(k)
i = 1 not

necessarily implies that y(`)
i = 0 for ` 6= k. Thus, the classes Ck in general will not

partition the instance space X .
We first train for each class Ck a corresponding (binary) base learner h(k) that shall

be able to predict the labels y(k)
i well. More generally, when usingM distinct classifica-

tion algorithms for each single class Ck, we have a total of N ·M base classifiers. Each
base classifier returns a confidence score s for each training example xi. In our case
this will be a real value (the distance to the separating hyperplane) that is positive if the
classifier predicts that xi is in the target class and negative otherwise. However, more
generally this score could also be a real number with a different interpretation (e.g. a
probability distribution as in recent stacking approaches). Let sjk(x) be the confidence
score returned by base classifier h(k)

j for class Ck on training instance x. The collected
confidence scores are then combined by N metalearners, one for each class Ck, where
the training set consists of the vectors

vi =
(
s1,1(xi), s1,2(xi), ..., s1,N (xi), s2,1(xi), ..., s2,N (xi), ..., sM,N (xi)

)
(1)

for all training instances xi. The label of each vi is simply the label y(k)
i of xi with

respect to class Ck.

2.3 Algorithm Specification for Image Classification

A state-of-the-art approach for image classification is the following: First, features are
extracted from the images. These features then are clustered to generate a visual code-
book. Based on that codebook a histogram of “visual words” for every image is built.
This approach was inspired by the text classification community where it is called “bag-
of-words”. In text classification the input features are words, while in image classifica-
tion descriptors take over this part. A powerful descriptor is the scale-invariant feature
transform (SIFT) [19], although there are other very good descriptors for certain im-
age classes. A common approach is to build for every descriptor type a histogram and
concatenate these histograms.

Our base classifiers work with different features (as specified in Section 3 below)
that are learned with a fixed learning algorithm (in our case either LPBoost or Fisher
kernels) to give the confidence scores. As metalearner SVMs [4] are deployed.

2.4 Some Related Work

There is a lot of work dealing with multilabel problems in far more complex ways
than our straightforward approach. Thus, in [18] SVMs are used for combining differ-
ent types of features for mapping of proteins to Gene Ontology. Their method trains
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N ·(N−1)
2 binary classifiers for a problem with N labels. A function for combining and

normalizing the output of the N ·(N−1)
2 binary classifiers is used and the normaliza-

tion parameters have to be estimated. Additional knowledge of the problem domain is
integrated by a directed acyclic graph to speed up the final classification.

Actually, it is quite common to model and use some additional context information
in order to process the output of the base learners. This work is subsumed under the
term of Context Based Concept Fusion (CBCF). For some references and an integrated
approach see e.g. [24].

A simpler approach that has more in common with our method has been suggested
in [13]. There it is proposed to use the base learners’ output labels as additional coordi-
nates in the training vectors. However, unlike our algorithm this does not consider the
confidence of the base learners.

As already mentioned in the introduction, there is also a lot of work using classi-
cal stacking approaches for classifier combination that resembles our method. See e.g.
the recent [1] which suggests stacking with SVMs in a multiclass image classification
problem.

Compared to these exemplary alternative approaches, we find that our method is
appealingly simple, and — as will be seen — works surprisingly well.

3 Experiments

3.1 Other Ways of Feature/Classifier Combination

In the experiments, we compared our approach with other ways to combine the base
classifiers.

Using All Features As a baseline on the first dataset (VOC 2006) we compare our ap-
proach to the more direct combination of the features by jointly using them for training
the base classifiers. More precisely, the base learner — the boosting algorithm LPBoost
— may choose in each boosting iteration the best single feature type for a decision
stump. We used the boosting approach with decision stumps, because it is very suitable
for combining different kinds of feature types.

Binary Stacking In order to show that our algorithm profits from the confidence in-
formation of the other classes, we also did a comparison to the following alternative
method where the metalearner uses for learning class Ck not the whole vectors vi as
given in (1) but only the confidence information for the class Ck at question. That is,
the training vectors in this case are

vi =
(
s1,k(xi), ..., sM,k(xi)

)
for each training instance xi with label y(k)

i . This corresponds to classical stacking
on a binary classification problem, and we call this method binary stacking in what
follows. Indeed, binary stacking with some minor modifications has been considered
and empirically evaluated (among other multilabel algorithms) in [7].
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The Best Binary Base Classifier Finally, we do a challenging comparison of our ap-
proach to the best binary base classifier. That is, we choose for the prediction of each
class Ck the base classifier hi that gives the best prediction accuracy on the test exam-
ples. Note that this classifier is usually unknown beforehand, so that choosing this best
binary base classifier has an advantage over our method. However, even in this setting
we show that our method gives better results.

3.2 Data Sets and Setup

We conducted experiments on the well-known image classification databases taken
from the Pascal Visual Object Classes Challenges 2006 (VOC 2006) [10] and 2007
(VOC 2007) [9]. The VOC 2006 dataset contains 10 classes in 5,304 images, on which
a total of 9,507 annotated objects can be found. The VOC 2007 dataset contains 20
classes in 9,963 images with 24,640 annotated objects. Both are multilabel datasets.
These datasets are split into a fixed training, validation, and test set. In the VOC 2006
database the training set contains 1,277 images. The validation set has 1,341 images
and the test set 2,686 images. The VOC2007 database has 2,501 training images, 2,510
validation images, and 4,952 test images.

The training of the base learners was done on the training dataset using the in-
dependent validation set for parameter selection. The selection of the kernel and the
parameters was done using 5-fold cross-validation on the validation data. After that, we
learned the combined classifiers using the validation data. All reported results are from
the evaluation on the test data. As evaluation criterion we use the average precision as
for the original VOC challenges.

3.3 Experiments on the VOC 2006 Dataset

In the experiments on the VOC 2006 dataset, we trained for each of the ten classes a
classifier using LPBoost [3, 5] together with an image descriptor taken from a set of nine
different feature types. The first feature type uses texture statistics of segment regions
from a segmentation algorithm [12]. All other feature types are calculated from regions
of interest obtained from a scale invariant Harris-Laplace detector [21]. On those re-
gions subsampled grayvalues, basic moments, moment invariants [14], SIFT [19], and
PCA-SIFT [16] descriptors are calculated. Further, we obtain three additional feature
types by intensity normalization of the subsampled grayvalue, of the basic moments,
and of the moment invariants descriptors. An overview over the used feature types is
given in Tab. 1.

For our algorithm we used each feature type together with LPBoost to obtain for
each class a total of nine binary classifiers as base learners. The output (the distance
to the separating hyperplane) of these base learners (for all classes) was then fed into
an SVM metalearner as described in Section 2.2, see (1). For completeness we tested
our approach with different kernels. However, results show that the choice of the SVM
kernel function is not critical.

We compared our approach to the best of the base classifiers. An overview of the
performance of each descriptor on the ten classes can be found in Tab. 2. It can be seen
from Tab. 3 that our combined classifier outperforms the individual classifiers, even if
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h1 . . . texture statistics of segments
h2 . . . subsampled grayvalues
h3 . . . subsampled grayvalues (intensity normalized)
h4 . . . basic moments
h5 . . . basic moments (intensity normalized)
h6 . . . moment invariants
h7 . . . moment invariants (intensity normalized)
h8 . . . SIFTs
h9 . . . PCA-SIFTs

Table 1. Feature types for the experiments on the VOC 2006 dataset.

we choose for each class that base classifier that gives the best performance on the test
set.

As already indicated before, another comparison was made to the algorithm where
the weak learner of LPBoost may choose in each boosting iteration one reference fea-
ture among the nine different feature types. Thus, in this setting the boosting algorithm
is not restricted to a single feature type and may choose the best feature with the op-
timal threshold. This approach (denoted ‘original classifier h1..9’ in Tab. 3 and 1) has
been used in the VOC 2006 Challenge and is used as a base line for our experiments.
For more details see [2]. While the results for this alternative algorithm sometimes im-
prove even over the best single classifier, it is still outperformed by our algorithm. The
collected results can be found in Tab. 3.

Fig. 1 shows a comparison of our method with the binary stacking approach. For
binary stacking we used the same nine base classifiers that are combined by an SVM.
We report only the results of binary stacking with an RBF-kernel SVM as metalearner,
which performed best. The resulting performance of binary stacking is on some classes
slightly better than our base line where all features are used from the beginning. How-

class h1 h2 h3 h4 h5 h6 h7 h8 h9

bicycle 17.45 40.94 40.56 41.75 39.40 37.94 31.17 56.84 54.73
bus 9.57 25.94 30.17 25.38 19.39 13.60 16.30 16.03 25.62
car 40.78 70.72 69.99 48.74 51.33 38.17 41.41 56.90 60.47
cat 16.23 29.60 28.69 15.49 15.30 14.53 14.89 15.68 15.13
cow 8.99 18.15 15.40 17.62 18.74 10.18 17.48 17.64 26.14
dog 14.08 20.06 20.22 18.12 14.36 15.92 15.43 22.86 15.69

horse 9.94 12.29 16.86 19.58 13.08 14.65 11.49 10.06 12.24
motorbike 13.22 27.10 29.11 32.96 39.90 28.35 26.19 10.54 12.26

person 29.66 39.92 36.94 38.34 43.47 36.01 42.55 31.51 31.97
sheep 8.99 24.99 25.34 21.85 19.47 11.06 15.92 29.42 36.37
avg 16.89 30.97 31.33 27.98 27.44 22.04 23.28 26.75 29.06

Table 2. Average precision of the individual classifiers on the VOC 2006 dataset in percent. Bold
values indicate the best classifier on a given class for the test set.
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class max(h1, . . . , h9) original h1..9 our (linear) our (polynomial) our (RBF)
bicycle 56.84 61.12 61.36 56.16 60.77

bus 30.17 27.32 51.66 50.00 51.54
car 70.72 70.92 74.03 76.30 74.83
cat 29.60 24.41 37.13 41.15 37.98
cow 26.14 18.92 23.41 24.20 25.56
dog 22.86 25.88 32.16 34.95 36.41

horse 19.58 12.12 22.44 27.44 20.86
motorbike 39.90 33.19 47.09 46.92 48.35

person 43.47 35.16 42.55 46.56 43.04
sheep 36.37 29.39 41.87 37.07 40.55
avg 37.57 33.84 43.37 44.07 43.99

Table 3. Comparison of the best individual classifier, the classifier using all descriptor types in
the beginning, and our approach on the VOC 2006 dataset. Results are in percentage using the
average precision measure. Bold values indicate the optimal method.

ever, on some other classes binary stacking suffers a performance decrease of up to
9.6%. The mean average precision of binary stacking is 30.52%, which compared to
our base line means a performance loss of 3.32%. These experiments may also confirm
doubts concerning the utility of stacking. However, as already mentioned before, usu-
ally class probabilities instead of confidence scores are used for stacking. The choice
of the latter may affect the results to the negative. Indeed, a similar stacking method [1]
in an image classification problem where class probabilities are the input for the met-
alearner has been more successful. That confidence scores work fine in our proposed
method can be interpreted the way that our metalearner SVMs do the normalization
that also has to be done when trying to obtain probability distributions from confidence
scores.

3.4 Experiments on the VOC 2007 Dataset

In the experiments on the VOC 2007 database we had only access to two base clas-
sifiers. The first classifier h1 is based on texture information using the SIFT descrip-
tor [19], while the second classifier h2 is based on Gaussian weighted local color in-
formation (h2). Both descriptors are extracted from a dense grid at five different scales.
Each classifier is learned with the Fisher kernels framework [22], which gives state-
of-the-art performance on the VOC 2007 database. Tab. 4 shows that the performance
of the classifier using the SIFT descriptor yields consistently better results than the de-
scriptor based on the local color information (with the only exception being the class
‘pottedplant’). In spite of this and the fact that the information of two classifiers is quite
limited, our method was able to improve the mean of the average precision across all
the 20 categories by up to 3.46% (for the RBF kernel). When using cross-validation
to choose the kernel, the RBF kernel is selected for all classes except one (cf. Tab. 4)
giving the same average precision as for the RBF kernel. The collected results can be
found in Tab. 4.



23

In Tab. 5 we compare our method with binary stacking. In this experiment a linear
kernel gave the best results for binary stacking, but it can be seen that our method gives

class h1..9 stacking our (RBF)
bicycle 61.12 56.77 60.77

bus 27.32 27.52 51.54
car 70.92 65.86 74.83
cat 24.41 14.75 37.98
cow 18.92 11.83 25.56
dog 25.88 17.55 36.41

horse 12.12 12.42 20.86
motorbike 33.19 30.21 48.35

person 35.16 34.25 43.04
sheep 29.39 34.00 40.55
avg 33.84 30.52 43.99
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Fig. 1. Comparison of the classifier using all descriptor types in the beginning, binary stacking,
and our approach on the VOC 2006 dataset. Results are in percentage using the average precision
measure. For binary stacking and our method we report the values obtained for the RBF kernel.
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Fig. 2. Comparison of the classifier using all descriptor types in the beginning and our approach
using different kernels on the VOC 2006 dataset. Results are in percentage using the average
precision measure. The choice of the SVM kernel function can be seen to be not critical.
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class h1 h2 our (linear) impr. our (poly.) impr. our (RBF) impr.
aeroplane 66.41 59.51 65.88 -0.53 65.47 -0.94 66.71∗ 0.30

bicycle 47.31 35.45 51.09 3.78 53.23 5.92 53.42∗ 6.11
bird 44.45 42.67 49.99 5.54 53.06 8.61 53.47∗ 9.02
boat 58.87 41.12 63.21 4.34 63.26 4.39 62.38∗ 3.51

bottle 24.18 15.16 25.97 1.79 27.53 3.35 23.93∗ -0.25
bus 52.42 34.24 51.65 -0.77 43.64 -8.78 45.75∗ -6.67
car 70.70 56.47 70.67 -0.03 73.32∗ 2.62 73.32 2.62
cat 45.30 39.49 44.87 -0.43 44.78 -0.52 46.30∗ 1.00

chair 47.11 37.78 50.68 3.57 49.82 2.71 50.72∗ 3.61
cow 31.25 15.03 29.00 -2.25 31.28 0.03 32.99∗ 1.74

diningtable 38.21 35.75 42.29 4.08 43.12 4.91 44.71∗ 6.50
dog 40.98 33.44 38.77 -2.21 40.42 -0.56 41.95∗ 0.97

horse 67.77 64.48 71.44 3.67 73.46 5.69 73.48∗ 5.71
motorbike 52.37 46.02 55.07 2.70 56.05 3.68 57.85∗ 5.48

person 80.17 78.33 82.43 2.26 83.01 2.84 83.22∗ 3.05
pottedplant 24.30 27.14 28.71 1.57 29.11 1.97 32.92∗ 5.78

sheep 27.32 25.48 36.47 9.15 28.76 1.44 38.79∗ 11.47
sofa 44.36 31.57 41.81 -2.55 40.67 -3.69 40.73∗ -3.63
train 65.21 54.42 66.88 1.67 69.52 4.31 69.87∗ 4.66

tvmonitor 41.34 34.26 44.54 3.20 48.27 6.93 46.66∗ 5.32
avg 48.50 40.39 50.57 2.07 50.89 2.39 51.96 3.46

Table 4. Average precision on the VOC 2007 dataset in percent for the two base classifiers as
well as for our method with linear, polynomial and RBF kernel. The best method for each class
is indicated by a bold entry. Starred values indicate which kernel is chosen by cross-validation.

better results for 14 classes. Our average improvement to the base classifiers is 3.46%,
whereas binary stacking only improves by 1.66%.

4 Conclusion

While our presented method of combining classifiers for multilabel classification is ap-
pealingly simple, it works quite well. Our main goal was to investigate the gain of our
approach with respect to the base learners and simpler methods for combining features
or classifiers. However, as higher complexity not necessarily results in improved per-
formance [15, 8], it would of course be interesting to compare our elementary method
to more complex algorithms for combination of classifiers. Another direction of future
work is to test our approach on similar problems with different features available, such
as in text classification.
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class h1 h2 stacking impr. our (RBF) impr.
aeroplane 66.41 59.51 68.16 1.75 66.71 0.30

bicycle 47.31 35.45 48.61 1.30 53.42 6.11
bird 44.45 42.67 49.37 4.92 53.47 9.02
boat 58.87 41.12 60.65 1.78 62.38 3.51

bottle 24.18 15.16 25.76 1.58 23.93 -0.25
bus 52.42 34.24 51.15 -1.27 45.75 -6.67
car 70.70 56.47 69.72 -0.98 73.32 2.62
cat 45.30 39.49 46.86 1.56 46.30 1.00

chair 47.11 37.78 45.18 -1.93 50.72 3.61
cow 31.25 15.03 30.96 -0.29 32.99 1.74

diningtable 38.21 35.75 38.51 0.30 44.71 6.50
dog 40.98 33.44 43.20 2.22 41.95 0.97

horse 67.77 64.48 70.61 2.84 73.48 5.71
motorbike 52.37 46.02 56.45 4.08 57.85 5.48

person 80.17 78.33 81.83 1.66 83.22 3.05
pottedplant 24.30 27.14 29.50 2.36 32.92 5.78

sheep 27.32 25.48 30.97 3.65 38.79 11.47
sofa 44.36 31.57 45.15 0.79 40.73 -3.63
train 65.21 54.42 67.76 2.55 69.87 4.66

tvmonitor 41.34 34.26 42.75 1.41 46.66 5.32
avg 48.50 40.39 50.16 1.66 51.96 3.46

Table 5. Average precision on the VOC 2007 dataset in percent for the two base classifiers as
well as for binary stacking and our method with RBF kernel.
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Abstract. Multilabel classification is an extension of conventional classification
in which a single instance can be associated with multiple labels. Recent research
has shown that, just like for standard classification, instance-based learning al-
gorithms relying on the nearest neighbor estimation principle can be used quite
successfully in this context. In this paper, we propose a new instance-based ap-
proach to multilabel classification, which is based on calibrated label ranking, a
recently proposed framework that unifies multilabel classification and label rank-
ing. Within this framework, instance-based prediction is realized is the form of
MAP estimation, assuming a statistical distribution called the Mallows model.

1 Introduction

In conventional classification, each instance is assumed to belong to exactly one among
a finite set of candidate classes. As opposed to this, the setting of multilabel classifi-
cation allows an instance to belong to several classes simultaneously or, say, to attach
more than one label to an instance. Multilabel classification has received increasing
attention in machine learning in recent years.

Even though quite a number of sophisticated methods for multilabel classification
has been proposed in the literature, the application of instance-based learning (IBL)
has not been studied very deeply in this context so far. This is a bit surprising, given
that IBL algorithms based on the nearest neighbor estimation principle have been ap-
plied quite successfully in classification and pattern recognition for a long time [1]. A
notable exception is the multilabel k-nearest neighbor (MLKNN) method that was re-
cently proposed in [2], where it was shown to be competitive to state-of-the-art machine
learning methods.

In this paper, we introduce a new instance-based approach to multilabel classifica-
tion, which is based on calibrated label ranking, a recently proposed framework that
unifies multilabel classification and label ranking (see Section 2). Within this frame-
work, instance-based prediction is realized in the form of MAP estimation, assuming a
statistical distribution called the Mallows model (see Section 3). Experimental results
(presented in Section 5, subsequent to an overview of related work in Section 4) provide
evidence for the strong performance of this approach in terms of predictive accuracy.
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2 Multilabel Classification as Calibrated Label Ranking

Let X denote an instance space and let L = {λ1, λ2 . . . λm} be a finite set of class
labels. Moreover, suppose that each instance x ∈ X can be associated with a subset of
labels L ∈ 2L; this subset is often called the set of relevant labels, while the comple-
ment L \ L is considered as irrelevant for x. Given training data in the form of a finite
set T of observations in the form of tuples (x, Lx) ∈ X × 2L, typically assumed to be
drawn independently from an (unknown) probability distribution on X×2L, the goal in
multilabel classification is to learn a classifier h : X→ 2L that generalizes well beyond
these observations in the sense of minimizing the expected prediction loss with respect
to a specific loss function.

Note that multilabel classification can be reduced to a conventional classification
problem in a straightforward way, namely by considering each label subset L ∈ 2L as a
distinct (meta-)class. This approach is referred to as label powerset in the literature. An
obvious drawback of this approach is the potentially large number of classes that one
has to deal with in the newly generated problem. Another way of reducing multilabel
to conventional classification is offered by the binary relevance (BR) approach. Here,
a single binary classifier hi is trained for each label λi ∈ L. For a query instance x,
this classifier is supposed to predict whether λi is relevant for x (hi(x) = 1) or not
(hi(x) = 0). A multilabel prediction for x is then given by h(x) = {λi ∈ L |hi(x) =
1}. Since binary relevance learning treats every label independently of all other labels,
an obvious disadvantage of this approach is that it ignores potential correlations and
interdependencies between labels.

Some of the more sophisticated approaches learn a multilabel classifier h in an in-
direct way via a scoring function f : X × L → R that assigns a real number to each
instance/label combination. Such a function does not only allow one to make multila-
bel predictions (via thresholding the scores), but also offers the possibility to produce
a ranking of the class labels, simply by ordering them according to their score. Some-
times, this ranking is even more desirable as a prediction, and indeed, there are several
evaluation metrics that compare a true label subset with a predicted ranking instead of
a predicted label subset.

In the following, we propose a formalization of multilabel classification within the
framework of label ranking. More specifically, as will be seen, this framework allows
one to combine the concepts of a ranking and a multilabel prediction (label subset) in a
convenient way.

2.1 Label Ranking

The problem of label ranking, which has recently been introduced in machine learning
[3, 4], can be seen as another extension of the conventional classification setting. Instead
of associating every instance x ∈ X with one among a finite set of class labels L =
{λ1, λ2 . . . λm}, we associate x with a total order of all class labels, that is, a complete,
transitive, and asymmetric relation�x on L, where λi �x λj indicates that λi precedes
λj . Since a ranking can be considered as a special type of preference relation, we shall
also say that λi �x λj indicates that λi is preferred to λj given the instance x.
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Formally, a total order�x can be identified with a permutation πx of the set {1 . . .m}.
It is convenient to define πx such that πx(i) = πx(λi) is the position of λi in the order.
This permutation encodes the (ground truth) order relation

λπ−1
x (1) �x λπ−1

x (2) �x . . . �x λπ−1
x (m) ,

where π−1
x (j) is the index of the label put at position j. The class of permutations of

{1 . . .m} (the symmetric group of order m) is denoted by Ω. By abuse of terminology,
though justified in light of the above one-to-one correspondence, we refer to elements
π ∈ Ω as both permutations and rankings.

In analogy with the classification setting, we do not assume the existence of a de-
terministic X → Ω mapping. Instead, every instance is associated with a probability
distribution over Ω. This means that, for each x ∈ X, there exists a probability distri-
bution P(· |x) such that, for every π ∈ Ω, P(π |x) is the probability that πx = π.

The goal in label ranking is to learn a “label ranker” in the form of an X → Ω
mapping. As training data, a label ranker uses a set of instancesxk, k = 1 . . . n, together
with information about one or more pairwise preferences of the form λi �xk λj . To
evaluate the predictive performance of a label ranker, a suitable loss function on Ω is
needed. In the statistical literature, several distance measures for rankings have been
proposed. One commonly used measure is the number of discordant label pairs,

D(π, σ) = #{(i, j) |π(i) > π(j) ∧ σ(i) < σ(j)} , (1)

which is closely related to Kendall’s tau coefficient. In fact, the latter is a normalization
of (1) to the interval [−1,+1]. We shall focus on Kendall’s tau as a natural, intuitive,
and easily interpretable measure [5] throughout the paper, even though other distance
measures could of course be used. A desirable property of any distance D(·) is its
invariance toward a renumbering of the elements (renaming of labels). This property
is equivalent to the right invariance of D(·), namely D(σν, πν) = D(σ, π) for all
σ, π, ν ∈ Ω, where σν = σ ◦ ν denotes the permutation i 7→ σ(ν(i)). The distance (1)
is right-invariant, and so are most other commonly used metrics on Ω.

2.2 Calibrated Label Ranking

A label ranking provides information about the relative preference for labels, but not
about the absolute preference or, say, relevance of a label. To combine the information
offered by a label ranking and a multilabel classification (label subset), the concept of
a calibrated label ranking has been proposed in [6]. A calibrated label ranking is a
ranking of the label set Ω extended by a neutral label λ0. The idea is that λ0 splits a
ranking into two parts, the positive (relevant) part consisting of those labels λi preceding
λ0 (i.e., λi �x λ0), and the negative (irrelevant) part given by those labels λj ranked
lower than λ0 (i.e., λ0 �x λj). In this way, a multilabel prediction can be derived from
a (predicted) calibrated label ranking.

The other way around, a multilabel set Lx translates into the set of pairwise prefer-
ences {λ �x λ′ |λ ∈ Lx, λ′ ∈ L \ Lxi}, and can hence be considered as incomplete
information about an underlying calibrated label ranking. More specifically, Lx is con-
sistent with the set of label rankings E(Lx) given by those permutations π ∈ Ω that
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rank all labels in Lx higher and all labels in L \ Lxi lower than the neutral label λ0.
In the following, when we speak about a ranking, we always mean a calibrated ranking
(i.e., Ω contains the neutral label λ0).

3 Instance-Based Multilabel Classification

So far, no assumptions about the conditional probability measure P(· |x) on Ω were
made, despite its existence. To become more concrete, we resort to a popular and com-
monly used distance-based probability model introduced by Mallows [5]. The standard
Mallows model is a two-parameter model that belongs to the exponential family:

P(σ | θ, π) =
exp(−θD(π, σ))

φ(θ, π)
(2)

The ranking π ∈ Ω is the location parameter (mode, center ranking) and θ ≥ 0 is a
spread parameter.

Obviously, the Mallows model assigns the maximum probability to the center rank-
ing π. The larger the distance D(σ, π), the smaller the probability of σ becomes. The
spread parameter θ determines how quickly the probability decreases, i.e., how peaked
the distribution is around π. For θ = 0, the uniform distribution is obtained, while for
θ →∞, the distribution converges to the one-point distribution that assigns probability
1 to π and 0 to all other rankings.

Coming back to the label ranking problem and the idea of instance-based learn-
ing, i.e., local prediction based on the nearest neighbor estimation principle, consider a
query instance x ∈ X and let x1 . . .xk denote the nearest neighbors of x (according
to an underlying distance measure on X) in the training set, where k ∈ N is a fixed
integer. Each neighbor xi is associated with a subset Lxi ⊆ L of labels. In analogy to
the conventional settings of classification and regression, in which the nearest neighbor
estimation principle has been applied for a long time, we assume that the probability
distribution P(· |x) on Ω is (at least approximately) locally constant around the query
x, so that the neighbors can be considered as a sample on the basis of which P(· |x)
can be estimated.

Thus, assuming an underlying (calibrated) label ranking, the probability to observe
Lxi is given by

P(E(Lxi)) =
∑

σ∈E(Lxi
)

P(σ | θ, π) ,

where E(Lxi) denotes the set of all label rankings consistent with Lxi . Making a sim-
plifying assumption of independence, the probability of the complete set of observations
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L = {Lx1 , Lx2 . . . Lxk} then becomes

P(L | θ, π) =
k∏
i=1

P(E(Lxi) | θ, π)

=
k∏
i=1

∑
σ∈E(Lxi

)

P(σ | θ, π) (3)

=

∏k
i=1

∑
σ∈E(Lxi

) exp (−θD(σ, π))(∏m
j=1

1−exp(−jθ)
1−exp(−θ)

)k .

Instance-based prediction of the (calibrated) label ranking Lx can now be posed as a
Maximum Likelihood problem, namely as finding the Maximum Likelihood estimation
(MLE) of π (and θ) in (3). This problem is extremely difficult in general. Fortunately,
in the context of multi-label classification, we are able to exploit the special structure of
the observations. More specifically, we can show the following theorem (proof omitted).

Theorem 1: For each label λi ∈ L, let f(λi) denote the frequency of occurrence of
this label in the neighborhood of x, i.e., f(λi) = #{j |λi ∈ Lxj}/k. Moreover, let
f(λ0) = 1/2 by definition. Then, a ranking π ∈ Ω is a MLE in (3) iff it guarantees that
f(λi) > f(λj) implies π(i) < π(j).

According to this result, an optimal ranking and, hence, an optimal multi-label pre-
diction can simply be found by sorting the labels according to their frequency of oc-
currence in the neighborhood. A disadvantage of this estimation is its ambiguity in the
presence of ties: If two labels have the same frequency, they can be ordered in either
way. Interestingly, we can remove this ambiguity by replacing the MLE by a Bayes
estimation.

Theorem 2: Let g(λi) denote the frequency of occurrence of the label λi in the com-
plete training set. There exists a prior distribution P on Ω such that, for large enough
k, a ranking π ∈ Ω is a maximum posterior probability (MAP) estimation iff it guar-
antees the following: If f(λi) > f(λj) or f(λi) = f(λj) and g(λi) > g(λj), then
π(i) < π(j).

This result suggests a very simple prediction procedure: Labels are sorted according
to their frequency in the neighborhood of the query, and ties are broken by resorting to
global information outside the neighborhood, namely the label frequency in the com-
plete training data (which serve as estimates of the unconditional probability of a label).

4 Related Work

Multilabel classification has received a great deal of attention in machine learning in
recent years, and a number of methods has been developed, often motivated by spe-
cific types of applications such as text categorization [7–10], computer vision[11], and
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bioinformatics [12, 13, 10]. Besides, several well-established methods for conventional
classification have been extended to the multi-label case, including support vector ma-
chines [14, 13, 11], neural networks [10], and decision trees [15].

Our interest in instance-based multilabel classification is largely motivated by the
multilabel k-nearest neighbor (MLKNN) method that has recently been proposed in [2].
In that paper, the authors show that MLKNN performs quite well in practice. In the con-
crete experiments presented, MLKNN even outperformed some state-of-the-art model-
based approaches to multilabel classification, including RankSVM and AdaBoost.MH
[13, 16].

MLKNN is a binary relevance learner, i.e., it learns a single classifier hi for each
label λi ∈ L. However, instead of using the standard k-nearest neighbor (KNN) clas-
sifier as a base learner, it implements the hi by means of a combination of KNN and
Bayesian inference: Given a query instance x with unknown multilabel classification
L ⊆ L, it finds the k nearest neighbors of x in the training data and counts the number
of occurrences of λi among these neighbors. Considering this number, y, as information
in the form of a realization of a random variable Y , the posterior probability of λi ∈ L
is given by

P(λi ∈ L |Y = y) =
P(Y = y |λi ∈ L) ·P(λi ∈ L)

P(Y = y)
, (4)

which leads to the decision rule

hi(x) =
{

1 if P(Y = y |λi ∈ L)P(λi ∈ L) ≥ P(Y = y |λi 6∈ L)P(λi 6∈ L)
0 otherwise

The prior probabilities P(λi ∈ L) and P(λi 6∈ L) as well as the conditional proba-
bilities P(Y = y |λi ∈ L) and P(Y = y |λi 6∈ L) are estimated from the training
data in terms of corresponding relative frequencies. While the estimation of the for-
mer probabilities is uncritical from a computational point of view, the estimation of
the conditional probabilities can become quite expensive. Essentially, it requires the
consideration of all k-neighborhoods of all training instances, and the counting of the
number of occurrences of each label within these neighborhoods. Implementing nearest
neighbor search in a naive way, namely by linear search, this would mean a complex-
ity of O(kn2), where n is the size of the training data. Of course, this complexity can
be reduced by using more efficient algorithms and data structures for nearest neigh-
bor search; for example, the all nearest neighbors problem, i.e., the problem to find the
(first) nearest neighbor for each element of a data set, can be solved in timeO(n log(n))
[17]. Nevertheless, the computational overhead produced by this kind of preprocess-
ing on the training data will remain a dominating factor for the overall runtime of the
method.

5 Experimental Results

This section is devoted to experimental studies that we conducted to get a concrete idea
of the performance of our method. Before presenting results, we give some information
about the learning algorithms and data sets included in the study, as well as the criteria
used for evaluation.
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Table 1. Statistics for the multilabel data sets used in the experiments. The symbol * indicates
that the data set contains binary features; cardinality is the average number of labels per instance.

DATA SET DOMAIN #INSTANCES #ATTRIBUTES #LABELS CARDINALITY

emotions music 593 72 6 1.87
image vision 2000 135 5 1.24
genbase biology 662 1186∗ 27 1.25
mediamill multimedia 5000 120 101 4.27
reuters text 7119 243 7 1.24
scene vision 2407 294 6 1.07
yeast biology 2417 103 14 4.24

5.1 Learning Algorithms

For the reasons mentioned previously, our main interest is focused on MLKNN, which
is arguably the state-of-the-art in instance-based multilabel ranking; we used its imple-
mentation in the MULAN package [18].1 MLKNN is parameterized by the size of the
neighborhood, for which we adopted the value k = 10. This value is recommended
in [2], where it was found to yield the best performance. For the sake of fairness, we
use the same neighborhood size for our method (Mallows). In both cases, the simple
Euclidean metric (on the complete attribute space) was used as a distance function. As
an additional baseline we used binary relevance learning (BR) with C4.5 (the WEKA
[19] implementation J48 in its default setting) as a base learner.

5.2 Data Sets

Benchmark data for multi-label classification is not as abundant as for conventional
classification, and indeed, experiments in this field are often restricted to a very few or
even only a single data set. For our experimental study, we have collected a compara-
tively large number of seven data sets from different domains; an overview is given in
Table 1.2

The emotions data was created from a selection of songs from 233 musical albums
[20]. From each song, a sequence of 30 seconds after the initial 30 seconds was ex-
tracted. The resulting sound clips were stored and converted into wave files of 22050
Hz sampling rate, 16-bit per sample and mono. From each wave file, 72 features have
been extracted, falling into two categories: rhythmic and timbre. Then, in the emotion
labeling process, 6 main emotional clusters are retained corresponding to the Tellegen-
Watson-Clark model of mood: amazed-surprised, happy-pleased, relaxing-clam, quiet-
still, sad-lonely and angry-aggressive.

Image and scene are semantic scene classification data sets proposed, respectively,
by [21] and [11], in which a picture can be categorized into one or more classes. In the
scene data, for example, pictures can have the following classes: beach, sunset, foliage,

1 http://mlkd.csd.auth.gr/multilabel.html
2 All data sets are public available at http://mlkd.csd.auth.gr/multilabel.html

and http://lamda.nju.edu.cn/data.htm.
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field, mountain, and urban. Features of this data set correspond to spatial color moments
in the LUV space. Color as well as spatial information have been shown to be fairly
effective in distinguishing between certain types of outdoor scenes: bright and warm
colors at the top of a picture may correspond to a sunset, while those at the bottom may
correspond to a desert rock. Features of the image data set are generated by the SBN
method [22] and essentially correspond to attributes in an RGB color space.

From the biological field, we have chosen the two data sets yeast and genbase.
The yeast data set is about predicting the functional classes of genes in the Yeast Sac-
charomyces cerevisiae. Each gene is described by the concatenation of micro-array
expression data and a phylogenetic profile, and is associated with a set of 14 func-
tional classes. The data set contains 2417 genes in total, and each gene is represented
by a 103-dimensional feature vector. In the genbase data, 27 important protein fami-
lies are considered, including, for example, PDOC00064 (a class of oxydoreductases)
and PDOC00154 (a class of isomerases). During the preprocessing, a training set was
exported, consisting of 662 proteins that belong to one or more of these 27 classes.

From the text processing field, we have chosen a subset of the widely studied
Reuters-21578 collection [23]. The seven most frequent categories are considered. Af-
ter removing documents whose label sets or main texts are empty, 8866 documents
are retained where only 3.37% of them are associated with more than one class label.
After randomly removing documents with only one label, a text categorization data
set containing 2,000 documents is obtained. Each document is represented as a bag
of instances using the standard sliding window techniques, where each instance corre-
sponds to a text segment enclosed in one sliding window of size 50 (overlapped with 25
words). “Function words” are removed from the vocabulary and the remaining words
are stemmed. Instances in the bags adopt the “bag-of-words” representation based on
term frequency. Without loss of effectiveness, dimensionality reduction is performed by
retaining the top 2% words with highest document frequency. Thereafter, each instance
is represented as a 243-dimensional feature vector.

The mediamill data set is from the field of multimedia indexing and originates from
the well-known TREC Video Retrieval Evaluation data (TRECVID 2005/2006) initi-
ated by American National Institute of Standards and Technology (NIST), which con-
tains 85 hours of international broadcast news data. The task in this data set is the
automated detection of a lexicon of 101 semantic concepts in videos. Every instance of
this data set has 120 numeric features including visual, textual, as well as fusion infor-
mation. The trained classifier should be able to categorize an unseen instance to some
of these 101 labels, e.g., face, car, male, soccer, and so on. More details about this data
set can be found at [24].

5.3 Evaluation Measures

To evaluate the performance of multilabel classification methods, a number of criteria
and metrics have been proposed in the literature. For a classifier h, let h(x) ⊆ L denote
its multilabel prediction for an instance x, and let Lx denote the true set of relevant la-
bels. The Hamming loss computes the percentage of labels whose relevance is predicted
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Table 2. Experimental results in terms of Hamming loss (left) and rank loss (right).

DATA SET MLKNN Mallows BR MLKNN Mallows BR
emotions 0.261 0.197 0.253 0.262 0.163 0.352
genbase 0.005 0.003 0.001 0.006 0.006 0.006
image 0.193 0.192 0.243 0.214 0.208 0.398
mediamill 0.027 0.027 0.032 0.037 0.036 0.189
reuters 0.073 0.085 0.057 0.068 0.087 0.089
scene 0.087 0.094 0.131 0.077 0.088 0.300
yeast 0.194 0.197 0.249 0.168 0.165 0.360

incorrectly:

HAMLOSS(h) =
1
|L|
∣∣h(x)∆Lx

∣∣, (5)

where ∆ is the symmetric difference between two sets.
To measure the ranking performance, we used the rank loss, which computes the

average fraction of label pairs that are not correctly ordered:

RANKLOSS(f) =
#{(λ, λ′) |πx(λ) ≤ πx(λ′), (λ, λ′) ∈ Lx × Lx}

|Lx||Lx|
, (6)

where πx(λ) denotes the position assigned to label λ for instance x, and Lx = L \ Lx
is the set of irrelevant labels.

5.4 Results

The results of a cross validation study (10-fold, 5 repeats) are summarized in Table 2.
As can be seen, both instance-based approaches perform quite strongly in comparison
to the baseline, which is apparently not competitive. The instance-based approaches
themselves are more or less en par, with a slight though statistically non-significant
advantage for our method.

As discussed in the previous section, MLKNN is expected to be less efficient from
a computational point of view, and this expectation was confirmed by our experiments.
Indeed, our approach scales much better than MLKNN. A typical example is shown
in Fig. 1, where the runtime (total time needed to conduct a 10-fold cross validation)
is plotted as a function of the size of the data; to obtain data sets of different size, we
sampled from the image data.

6 Summary and Conclusions

According to the literature, MLKNN can be considered as the state-of-the-art in instance-
based multilabel classification. In this paper, we have presented an alternative instance-
based multilabel classifier, which is (at least) competitive in terms of predictive accu-
racy, while being computationally more efficient. In fact, our approach comes down to
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Fig. 1. Runtime of the methods on the image data.

a very simple prediction procedure, in which labels are sorted according to their local
frequency in the neighborhood of the query, and ties are broken by global frequencies.
Despite its simplicity, this approach is well justified in terms of an underlying theoreti-
cal model.
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Abstract. We present novel algorithms for learning structured predictors from
instances with multiple labels in the presence of noise. The proposed algorithms
improve performance on two standard NLP tasks when we have a small amount
of training data (low quantity) and when the labels are noisy (low quality). In
these settings, the methods improve performance over using a single label, in
some cases exceeding performance using gold labels. Our methods could be used
in a semi-supervised setting, where a limited amount of labeled data could be
combined with a rule based automatic labeling of unlabeled data with multiple
possible labels.

1 Introduction

Supervised learning requires large amounts of labeled training data but in many real
world settings constraints imposed by cost and time for dataset construction lead to a
decrease in data quality and quantity. Often times determining a single best label for an
instance is difficult, especially in the case of sequence problems. One possible relax-
ation is to provide multiple possible training labels without choosing a single correct
label. For example, multiple annotators can provide contradictory labels or automated
systems can provide several good guesses for the correct label. The resulting adjudi-
cation of corpora is expensive; selecting the majority label is a good alternative, but
introduces label noise.

However, instead of enforcing artificial agreement on the labels – selecting a single
label a priori – all likely labels could be used by the learning algorithm. Alternatively,
for some tasks, where generating a potential list of likely labels can be done in an unsu-
pervised manner, a supervised learning algorithm could use all likely labels in learning
a model.

We develop learning algorithms that are capable of handling instances with multiple
possible labels along with an estimate as to the correct label. The resulting trained
model tags the test data with a single correct label. Consider the task of named entity
recognition where three annotators label a single sequence but two of them mislabel an
organization (Figure 1). Instead of training on the majority label (incorrect in this case),
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LOC (0.67)

Fig. 1. A named entity training instance with multiple labels and label priors in parenthesis.

we use both labels weighted by their priors. As the model trains on the entire corpus,
it can discover that the minority label is actually more probable. It then re-estimates
the probabilities of the given labels and trains a new model. Over time, the algorithm
shapes the data into a coherent annotation scheme from which it can learn.

In our setting of sequence learning with multiple labels, we are given a set of labels
and an indication as to the probability of the given labels being correct (a prior over
labels) for each training instance. Our algorithm works in an iterative fashion: first it
creates a sequence model trained on all given labels weighted by their priors. Next, it
updates the distribution over labels for each training example based on the likelihood
assigned by the learned sequence model. This technique discovers correct labels and
uses them for training. Previous work constructed an EM style algorithm for learning
classification problems with multiple labels [1] and developed a Conditional Random
Field model to handle missing data [2]. We extend this work and create a Multi-CRF
(Section 3) that models multiple labels per instance.

However, more information i.e. access to multiple labels, need not necessarily im-
prove learning. While our models can handle multiple labels, we ask when does such
information benefit learning and when does selecting the most likely label yield supe-
rior results? We begin by analyzing these models by changing the quality and quantity
of labelings in NLP data. We demonstrate that under the right conditions, our algorithm
for modeling multiple labelings improves over a standard CRF.

2 Learning with Multiple Labels

In supervised learning for classification, we are provided with pairs of training exam-
ples (x) and labels (y). In the multiple label setting, we are given a set of possible labels
instead of a single label for each instance. A learning algorithm for this setting is in-
troduced in [1]. Formally, we are given i.i.d. training data D = {x(i), S(i), π

(i)
y }Ni=1,

where x(i) is an instance, S(i) is a set of possible labels, and π(i)
y is a prior for each

label y ∈ S(i). This allows for a separate prior for each label for every instance. The
algorithm models all possible labels for each instance weighted by the probability that
each label is correct. Since there is only one correct label for each instance, we want the
model to favor a single label. At the same time we do not want the model to stray too
far from the provided priors. The following objective function captures this intuition:

`(θ) =
N∑
i=1

∑
y∈S(i)

P̂ (y|x(i)) log
P̂ (y|x(i))

π
(i)
y

−
N∑
i=1

∑
y∈S(i)

P̂ (y|x(i)) logP (y|x(i), θ) (1)
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where P̂ (y|x(i)) is the estimated label distribution for a given instance x(i) and θ are
the parameters of the model. Following our intuitions above, the first term corresponds
to the KL divergence between the estimated label distribution and the prior over labels.
This ensures that the model’s estimates remain close to the given estimates.1 The second
term is the entropy of the data, corresponding to a Maximum Entropy classifier. The
entropy term is modified so as to weigh each label by the estimated probability of the
label being correct; the classifier is rewarded for using more likely labels. This objective
is minimized iteratively using an EM algorithm: the E-step estimates label distributions,
P̂ (y|x(i)), by keeping model parameters fixed, while in the M-step a Maximum Entropy
model learns parameters θ that maximize the entropy of the data.The E-step estimates
the label distributions as

P̂ (y|x(i)) =
π

(i)
y P (y|x(i), θ)∑

y′∈S(i) π
(i)
y′ P (y′|x(i), θ)

(2)

for all y ∈ S(i) and 0 otherwise. Therefore, the Maximum Entropy model influences the
beliefs about the correct labels subject to the given prior over labels. When |S(i)| = 1
∀i, the model reduces to a standard Maximum Entropy model.

This EM algorithm can be viewed as clustering, where each instance has a prior
probability of belonging to a cluster. Instances with a single label (prior of 1) are fixed
to a cluster and the algorithm clusters the remaining labels into correct and incorrect
clusters. A cluster’s quality depends on the ability of the CRF model to learn the as-
sociated parameters. Additionally, we can view this as self-training, a process whereby
a classifier is trained iteratively on its own output. In this case, the E-step relabels the
data and ensures that the algorithm’s behavior is restricted since instances with a known
label cannot be modified.

3 Learning CRFs with Multiple Labels

This probabilistic framework can be extended to sequence models. We are given i.i.d.
training data D = {x(i), S(i), π

(i)
y }Ni=1, where x(i) is an instance, S(i) is a set of labels

(label sequences), and π(i)
y is a set of priors for labels y for the sequence. Our goal is to

learn a model that, given a sequence x, outputs the correct label sequence y. We use a
similar objective as before (1) but extend it to sequences:

`(θ) =
N∑
i=1

∑
y∈S(i)

P̂ (y|x(i)) log
P̂ (y|x(i))

π
(i)
y

−
N∑
i=1

∑
y∈S(i)

P̂ (y|x(i)) logP (y|x(i), θ)(3)

While classification (Section 2) used Maximum Entropy, we now use a Conditional
Random Field (CRF) [3]. A CRF is defined as

P (y|x(i)) =
1

Z(x)
exp(

∑
k

∑
t

θkfk(yt, yt−1,x)) (4)

1 It can be argued that the model should have the ability to deviate from the given priors with-
out restriction, but our empirical tests found that inclusion of the first term improved model
performance.
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where {fk(y, y′,x)Kk=1} are a set of real-valued feature functions. Inserting the CRF
model into (3) and applying the log yields our objective:

`(θ) =
N∑
i=1

∑
y∈S(i)

P̂ (y|x(i)) log
P̂ (y|x(i))

π
(i)
y

−

N∑
i=1

∑
y∈S(i)

P̂ (y|x(i))
∑
t

∑
k

θkfk(yt, yt−1,x(i))−
N∑
i=1

logZ(x(i)) (5)

As is typical with CRFs, we add a Gaussian prior to the objective for regularization
(not shown). We call the resulting model Multi-CRF. The second and third terms in
Equation 5 are identical to a standard CRF likelihood except that it contains a weighted
sum over all allowed labels of the sequence.2 Like before, we minimize the objective
with an EM algorithm. The E-step is a straight forward modification of the E-step in
Section 2, yielding:

P̂ (y|x(i)) =
π

(i)
y exp(

∑
k θkfk(y,x(i)))∑

y′∈S(i) π
′(i)
y exp(

∑
k θkfk(y′,x(i)))

, ∀y ∈ S(i), 0 otherwise. (6)

Since the normalization constant cancels out of the numerator and denominator the re-
sulting value is easy to compute using the trained CRF. The M-step minimizes the CRF
objective using standard optimization techniques (L-BFGS) [4]. The partial derivatives
of the model (5) are given by:

∂`

∂θk
=

N∑
i=1

∑
y∈S(i)

P̂ (y|x(i))
∑
t

fk(yt, yt−1,x(i))

−
N∑
i=1

∑
t

∑
y,y′

fk(y, y′,x(i))P (y, y′|x(i)) (7)

The variables y, y′ range over all states of the model. These derivatives are identical to
the standard CRF except there is a weighted summation over allowed label sequences.

4 Evaluation

To create an environment for evaluating effects of data properties on learning, we con-
structed data with multiple labels similar to Jin and Ghahramani [1] who add labels
predicted by a naı̈ve Bayes classifier to training instances to create a training set with
multiple labels. We produce a similar dataset for sequence learning using a Hidden
Markov model (HMM). The alternate labels contain systematic errors, ie. a consistent

2 We note that |S(i)| (the number of labels) can grow exponentially with the length of the se-
quence.
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labeling, and not random errors. If we randomly permuted labels they would be easy to
correct, as noted by the results of Jin and Ghahramani.

Using this approach we created datasets of varying sizes (n) and noise levels (α),
where α is defined as the probability that an incorrect label will be given a greater prior
than the correct label. n corresponds to the quantity of the data and α to its quality.
First, we train an HMM on all available training data and label each training instance
with the HMM’s prediction, retaining sentences for which the prediction differs from
the correct label. Next, we select the first n sentences from the training data to create
datasets of varying size. We then assign a prior to each label (π(i)

y ), where the correct
label receives a higher prior (1 − α) fraction of the time. We set the prior of the more
likely label (max) to be 1− α and the less likely label (min) to α. This ensures that the
likelihood that the max label is correct matches the noise level of the data.

We selected two common benchmark sequence labeling tasks in the NLP commu-
nity for evaluating our algorithms: the CoNLL 2003 English named entity dataset [5]
and the CLASSIFIEDS segmentation data [6]. For the CoNLL dataset, we used anno-
tations for people, locations, and organizations and created datasets of n = 200, 1k,
and 5k using the given 14,042 training sentences with noise levels (α) of 0.1, 0.3, and
0.45. Results were validated on the 3,251 development instances and tested on the 3,454
test instances. 3 For CLASSIFIEDS, where only 103 training instances are provided, we
created datasets of n = 10, 20, and 50 instances with noise levels (α) of 0.2 and 0.4.
Results were validated on the 101 development instances and tested on the 101 test
instances. We use standard orthographic features for these types of tasks [7]. For the
CoNLL dataset, 5000 training instances resulted in 160k features,while in the CLASSI-
FIEDS dataset 50 training instances resulted in 25k features.

4.1 Results

We evaluated our CRF learning algorithm against two baselines: a CRF trained on the
correct labels (GOLD) and a CRF trained on the most likely (maximum) label (MAX ).
The former indicates performance knowing the correct annotation and the latter is a
heuristic used to select from multiple labels, ie. take the best label only. We evalu-
ated several CRF multiple label algorithms on both tasks. First, we ran the Multi-CRF
once without the EM algorithm, meaning that it does not reestimate label distributions
(Multi ). Our second test ran the full EM algorithm with the Multi-CRF (MultiEM ).
We also included a version of the EM algorithm using MAX in the M-step (MAXEM ).
This can improve over the baseline since it re-estimates the label distributions and re-
learns. We include this for comparison with MultiEM .

For each experiment, we trained the CRF for 20 iterations, ran 7 EM iterations
for MAXEM , and for MultiEM , 50 EM iterations on CoNLL and 30 EM iterations
on CLASSIFIEDS. MAXEM converges faster since it does not reestimate label distri-
butions. We observed that the number of iterations mentioned above were enough for
convergence. We selected the highest performing model on development data. Results

3 Setting α as 0.5 would randomize the data; we instead use 0.45 since we assume that the data
contains some indication as to the correct annotation scheme.
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CoNLL CLASSIFIEDS

Fig. 2. Performance of the CRF learning methods on CoNLL (left)and CLASSIFIEDS (right) for
increasing data set sizes (n) (top to bottom) and noise levels (α) (left to right in each figure).
GOLD performance is indicated by a horizontal line.

for each dataset size (n) and each noise level (α) are shown in Figure 4.1 for CoNLL
and CLASSIFIEDS.

Learning using multiple labels (MultiEM ) improved over taking the maximum la-
bel (MAX ) most of the time, even improving over GOLD in some cases. While this last
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Fig. 3. The x-axis shows the agreement after each iteration between the estimated most likely
label and the true gold label in the training data. The y-axis is the resulting F1 score on develop-
ment data. Data points were taken after each iteration (150 points) for runs of the Multi-CRF on
CoNLL n = 200 (left) and n =1k (right). Identical label agreements do not necessarily indicate
identical clusterings of labels, so they can produce models with different F1 scores.

point seems strange, it could be that allowing the algorithm to influence the data can
modify the data so that it is easier to learn, removing difficult examples and improving
generalization performance on test data. In this way, our EM algorithm can be consid-
ered a clustering algorithm for the labels. In the case of two labels per instance, the
algorithm clusters labels into the majority and minority label groups. Figure 3 shows
the impact of these clusters on learning. When the labels assigned higher probability
by the model are correct (improved cluster accuracy) model performance improves.
Maximizing label accuracy tends to maximize F1.

5 When is Learning Successful?

While results show that multi-label learning can improve over learning with a single
label, it is helpful to consider when we can expect to see such improvements. Our re-
sults indicate that two parameters effect learning: the quantity (n) and quality (α) of
the training data. On one end of the spectrum, with small amounts of training data and
lots of noise, low quality and quantity, our algorithms give the largest improvements.
This makes sense since there is both the greatest potential for improvement (difference
between MAX and GOLD) and significant information can be gained from the addi-
tional labels. This is exactly when one would use our methods. On the other end of
the spectrum, with low noise and lots of data, both high quality and quantity, improve-
ments are minimal and our algorithms can even hurt performance. In these cases, there
is sufficient training data of high quality that multiple labels are unhelpful.

Between these two extremes, as either quality or quantity improve the baseline
(MAX ) approaches the performance of gold data. When a model has access to a large
number of examples, it can more easily find outliers (noise) by examining many sim-
ilar instances, allowing good performance with lots of low quality data. The one case
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Fig. 4. The performance of a CRF MultiEM on CoNLL with n = 200, with α of 0.55 (left)
and 0.7 (right). The x-axis contains varying β plotted against the resulting F1 scores. GOLD and
MAX are shown as horizontal lines and the vertical line indicates the fixed α value.

where MAX outperforms all CRF multiple label methods is where we have the highest
quantity (n = 5000) and quality (α = 0.1) of data.

Noise and reliability of data has been studied in several settings [8]. In a standard
theoretical result, Aslam and Decatur give a lower bound on the number of examples
needed for learning using a noise level parameter [9]. As noise increases, the number
of examples needed increases as well, meaning that an increased training set will off-
set learning errors from noise.4 Our empirical observations are consistent with these
theoretical results.

Another important point is that the efficacy of learning with multiple labels depends
on the accuracy of the noise level belief. Consider the case where the algorithm is
provided a majority and minority set of labels for each instance, but is told incorrectly
that the majority labels are always correct (α = 0). Obviously, the algorithm will ignore
the minority labels and not improve. Conversely, if all majority labels are correct and the
algorithm is told that α = .5, it will incorrectly model the minority labels. Therefore,
the algorithm should only consider alternate labels if the majority labels are incorrect,
ie. the importance the algorithm assigns to minority labels should be proportional to the
likelihood that they are correct.

In the experiments in Section 4.1, we assumed knowledge of the noise level and set
the priors of the labels appropriately. We now test the impact of the priors by varying the
max label’s prior β from the true noise level α. We evaluated a CRF MultiEM varying
β from α by 0.20 in increments of .05. Our results (Figure 4) show that different values
of β impact performance but in all cases the model still outperforms the MAX baseline.
It appears to be safer to be conservative, underestimating the noise level of the data. As
more minority labels are ignored, the model reverts to MAX .5

4 This result assumes that the noise in the data is random. While our alternative labels are not
random (they are generated by an HMM), we randomly decide if it should have a higher prior
than the correct label.

5 Our observations here about the importance of β apply to the results of Jin and Ghahramani as
well. While they do not consider these values, their data uses a β of 2/3 even though α is set to
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Our experiments have assumed that all majority labels shared a single prior but
our algorithmic formulation allows for a per-instance prior estimate. We tested a CRF
MultiEM on a per-instance prior dataset. We selected the CoNLL n = 200 dataset and
randomly generated an α for each instance between 0.5 and 1. We selected the correct
label to be the majority label with a probability of the α for that instance. The prior
of each majority label (β) was set to be α plus some random noise (up to 0.1). The
resulting dataset had a different prior β for each instance which is a noisy estimate of
the true noise level α for each instance. CRF MultiEM improved by approximately
1% over MAX on this data, showing that our algorithms can be competitive even in a
per-instance prior setting.

6 Related Work

Most previous work on multi-label classification has focussed on the setting where a
single instance can have multiple valid labels [10]. In contrast, the setting considered
in this paper involves instances with a single valid label, though during training the
instances can have multiple labels assigned to them, at most one of which is correct.
This is similar in spirit to that of [1] which deals with learning from multiple labels in
the classification setting, while the focus of this paper is to learn structured predictors.

A closely related area of research studies priors over parameters (instead of labels)
[11]. For example, an algorithm for transfer learning by specifying priors over parame-
ters is presented in [12]. Similarly, Raina et al. [11] compute priors over model param-
eters from multiple users in a transfer setting. These methods rely on the specification
of priors over the model parameters, a difficult task for a human annotator. In contrast,
we allow for priors over labels, which are easily specified and contain rich information
about relevant features.

Recent work on expectation regularization (XR) [13] for classification uses a prior
over labels in a corpus. This knowledge is combined with unlabeled data for effective
semi-supervised learning. While the idea of providing a prior over labels is similar to
our setting, there are several important differences. First, XR incorporates priors over
single labels (or features), without a clear way of extending the method to interactions
between multiple features. In contrast, a prior over a label in our setting can capture
multiple feature interactions. Additionally, XR uses a prior over a label type at the cor-
pus level, e.g. the user specifies that a particular label, B-PER, is likely to occur around
10% of the time in the whole corpus. On the contrary, our method defines a per-instance
(and also per-position) prior over labels, which adds further granularity to the descrip-
tion of the data. Finally, since XR adds an additional regularization term to the objective
function, we could add a similar term to our Multi-CRF for XR semi-supervised learn-
ing with multiple labels in training data. More recently, Generalized Expectation (GE)
[14, 15] has been proposed using which one can learn from labeled features instead of
labeled instances. Such expectation constraints are very useful when one can reliably
label features. As in XR, GE expectation constraints are specified across all instances
while the multi-label setting considered in this paper is instance specific.

0.7. While their methods appear to do well, they do not include a max label baseline. Without
duplicating their experiments, we cannot determine the impact of β on their setting.
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7 Conclusion

In this paper we have presented novel learning algorithms for learning structured pre-
dictors from multiple labels in the presence of noise. CRF based models improve per-
formance on two standard NLP tasks when we have smaller amount of training data
(low quantity) and when the majority labels are noisy (low quality). In these settings,
the methods improve performance over using a single max label, in some cases exceed-
ing performance using gold labels. An analysis of these results shows where multi-label
learning can be most effective: when data suffers from either low quality or low quan-
tity.
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Abstract. This paper proposes an ensemble method for multi-label classifica-
tion. Each member of the ensemble is first associated with a small, fixed and
predefined subset of labels and then a single label classifier that considers each
element in the powerset of the subset, is constructed. The proposed algorithm
chooses the minimum required subsets of labels at size k that covers all the pos-
sible subsets of labels at size r (r < k). The algorithm uses the transportation
model in order to make the selection. In fact, the all covering subsets are being
prepared in advance. The experimental results indicate an approximately high and
stable predictive performance compared to the random subset selection approach.

1 Introduction

Researchers from various fields are facing great challenges in mining knowledge from
available data due to sheer mass of information that is being generated. Supervised
learning methods can be used to discover relationships between the input attributes
(independent variables) and the target attribute (dependent variable). The relationship
discovered is represented in a structure referred to as a model. Usually models can be
used for predicting the value of the target attribute knowing the values of the input
attributes.

In a single label classification task, each classifier is a function that maps an instance
(data item) into one label taken from a set of disjoint labels for the purpose of prediction.
Ensuring that the classes are mutually exclusive is necessary in order to guarantee that
each training instance will not be associated with more than one label.

In multi-label classification tasks, the classes are not mutually exclusive. That is to
say, each training instance can be associated with any subset of labels taken from the
initial group of labels. Multi-label classification is needed for a wider range of applica-
tions such as text categorization [5, 10, 19] (e.g. books associated with multiple genres)
and medical diagnosis [1] (e.g. patients with multiple diseases) etc.

Tsoumakas and Katakis [16] categorized multi-label classification methods into two
main groups: 1. problem transformation methods. 2. algorithm adaptation methods. The
first group of methods transforms the multi-label classification problem into one or
more single-label classification problems. The second group adjusts known single-label
classifiers into multi-label data. The main criticism about the second group of methods
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is that it is mostly fitted to a specific classifier (e.g. SVM, decision tree), and thus
it lacks generalization. The first group, on the other hand, is suited in many cases to
various classifiers. In this paper we focus on the first group of classification methods.

Two known multi-label classification methods [3, 4, 16] that are relevant to the first
group of methods are: Binary Relevance (BR) [4] and Label Powerset (LP) [3].

The BR method builds independent binary classifiers for each label (λ) associated
with a set of disjoint labels (L). Each classifier maps the original dataset into a single
binary label with binary values λ,¬λ. A given instance is associated with the label if
the value is λ and not associated if the value is ¬λ. The LP method builds one classifier
that refers to each unique subset as single label.

The ensemble method is a way to gather several classifiers, each different in its
weakness from the other, and to integrate them into a single, strong composite model
for achieving better predictive performance [12, 9]. Tsoumakas and Vlahavas [17] pre-
sented a successful ensemble method (RAKEL) for solving multi-label classification
tasks. In RAKEL, each ensemble member constructs a LP classifier based on small ran-
dom subset of labels. The authors showed that RAKEL achieved high predictive perfor-
mance compared to BR and LP methods. The authors infer that the random selection of
subsets in RAKEL may negatively affect the ensemble’s performance.

The goal of this paper is to examine if the performance of RAKEL can be improved
by constructing an ensemble of LP classifiers based on meaningful subsets instead of
using random subsets. The meaningful subsets in our terms are subsets that promise
coverage of all possible labels i.e., the subsets are specified in such a way that inter-
actions among labels are identified. The subsets are selected in advance by solving a
transportation model problem [7]. The solution of the transportation problem results in
a compact ensemble that covers all possible pairs of labels. In the ensemble’s classifi-
cation phase, each ensemble member returns a zero-one decision about each label. An
average decision of each label classification is then compared with a threshold value for
the final decision about each label classification [2].

This paper presents an experiment study of two datasets. The predictive results of
the suggested ensemble method are compared with the RAKEL method using the same
input parameters.

The remainder of this paper is organized as follows: Section 2 describes the pro-
posed novel ensemble algorithm. In Section 3 we discuss about the equivalence of a
multi-label classification task to transportation model. In Section 4 our experimental
study is described. The results are presented and discussed in Section 5. Finally, we
conclude and point to future research in Section 6.

2 The Ensemble Algorithm

One of the challenges in constructing an efficient ensemble for multi-label classification
is in determining the label subsets for each ensemble member. The proposed algorithm
allows us to construct a compact ensemble based on a list of small, but meaningful,
subset of labels.
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This section starts with the matrix representation of the multi-label problem, fol-
lowed by a novel method for selecting the label subsets and concludes by presenting
the complete ensemble method.

2.1 Multi-label problem representation

The error-correcting output coding (ECOC) [11, 15] for solving multiclass problems
inspired our method for representing a multi-label problem. As in ECOC, we create
a binary matrix which includes one column for each class and each row represents a
classifier that must be built. However, since ECOC is used to solve multiclass problems
the matrix is also used differently.

In ECOC for each row in the matrix, a binary classifier is built such that all classes
with value ’0’ in any particular row belongs to the negative class and all classes with
value ’1’ belong to the positive class. With multi-label problems, on the other hand,
which is the focus of this paper, the created classifier or each row refers only to the
classes with value ’1’. The methods for creating ECOC matrices include rows with
many ’1’s and it is impractical to enumerate all classes in that row. Instead of building
a binary classifier as in ECOC, we build a multiclass classifier which enumerates all
possible combinations of the selected classes. The new method we developed creates
the matrix such that the amount of ’1’ in a certain row will not exceed a certain moderate
value.

To illustrate the unsuitable representation of the ECOC matrix for multi-label prob-
lems, we present an example of one form of ECOC matrix representation known as
Orthogonal array [6]. An orthogonal array OA(n, k, d, t) is a matrix of k rows and n
columns, with every element being one of the d values. The array has strength t if, in
every t by n submatrix, the dt possible distinct rows all appear the same number of
times.

Table 1 presents an example of an orthogonal array with d = 2 and t = 2. Notice
that any possible combination of any two columns of the matrix appears the exact same
number of times. On the other hand, the fact that all of the labels on the first row are
selected may lead to a high cost in performance when enumerating all possible labels
combinations. It should also be mentioned that constructing an orthogonal array is not
a simple task and in some cases even impossible.

2.2 Matrix Design for Multi-Label Classification Tasks

In this section, we suggest a new matrix design method that, on the one hand, considers
correlation among labels (as in orthogonal arrays) and on the other, limits the number
of selected labels in each row to a certain moderate value.

Let D be the classification domain and L be the set of labels in D (Note that l =
|L|).

The goal of our method is to construct a binary matrix, in the form of an orthogonal
array, that meets the following criteria:

1. The allowed number of selected labels in each row corresponds to the moderate
value k. We use the concept of k-labelset [17] to refer to a labelset at size k.
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Table 1. An example of an orthogonal array with d = 2 and t = 2.

 1 2 3 4 5 6 7 8 9 10 11 

1 1 1 1 1 1 1 1 1 1 1 1 

2 0 1 0 1 1 1 0 0 0 1 0 

3 0 0 1 0 1 1 1 0 0 0 1 

4 1 0 0 1 0 1 1 1 0 0 0 

5 0 1 0 0 1 0 1 1 1 0 0 

6 0 0 1 0 0 1 0 1 1 1 0 

7 0 0 0 1 0 0 1 0 1 1 1 

8 1 0 0 0 1 0 0 1 0 1 1 

9 1 1 0 0 0 1 0 0 1 0 1 

10 1 1 1 0 0 0 1 0 0 1 0 

11 0 1 1 1 0 0 0 1 0 0 1 

12 1 0 1 1 1 0 0 0 1 0 0 

2. We define the concept of matrix coverage size with the notation r. A matrix with
a coverage size r guarantees representation of any possible combination between
any r labels on the matrix i.e., if r = 2 then we cover all pairs of labels on the
matrix. If r = 3 then we cover all the triplets etc. Note that a labelset such as
‘011010’ is not represented by the matrix, if there is no row in the matrix having
the three selected labels. The main constraint is that a matrix should include only
the minimum required k-labelsets that guarantee a matrix coverage at size r.

In order to represent the problem, we use a matrix at size [mXn]. The matrix rows
represent all possible k-labelsets taken from l and the matrix columns represent all
possible r-labelsets taken from l under the assumption of r < k. The matrix cell value
at location [i, j] has a value ‘1’ in case labelset-i represents labelset-j in the solution or
else has a value ‘0’. Each cell on the matrix has a predefined cost. The cost of a cell at
location [i, j] is ‘1’ if labelset-i contains labelset-j or else it holds∞.

To simplify the preceding presentation, we present here an illustrative example.
Consider a problem with a four label dataset (l = 4) where the objective function goal
is to return a list of minimum labelsets at size 3 (k = 3) that cover each possible couple
of labels on the dataset (r = 2) at least once.

Table 2 presents the matrix that is relevant for the current problem. Each row or
column in the matrix is represented by a zero-one string where character ’1’ denotes a
label that has been taken into consideration.

Table 2. An example of a matrix representing a labelset selection problem.

            Destination 
Source 

(1) 
"1100"  

(2) 
"1010"  

(3) 
"1001"  

(4) 
"0110"  

(5) 
"0101"  

(6) 
"0011"  

Total 

(1)  "1110"  1  1  ∞  1  ∞  ∞  3 

(2)  "1101"  1  ∞  1  ∞  1  ∞  3 

(3)  "1011"  ∞  1  1  ∞  ∞  1  3 

(4)  "0111"  ∞  ∞  ∞  1  1  1  3 

Total 1 1 1 1 1 1         12 

6 

 

The next phase is to solve the problem by filling the right cells on the matrix.  

 
 

  ∞  ∞

 ∞  ∞  

   ∞ ∞  

 ∞ ∞    
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The rows in the matrix represent all the possible labelsets at size 3 (m =
(
4
3

)
= 4

options). The columns in the matrix represent all the possible labelsets at size 2 (n =(
4
2

)
= 6 options). The gray part in the cells represents the cost. For example, the cost of

a cell in location [1, 3] reaches infinity because labelset ‘1110’ doesn’t contain labelset
‘1001’. The row total is the total number of labelsets at size 2 that could be contained
in labelset at each row (fixed value

(
3
2

)
= 3). The column total is the number of times

the labelset column should be represented in the matrix (in our case it is 1).
The next phase is to solve the problem by filling the right cells on the matrix. The

following presents a heuristic solution to the problem:

1. Scan the matrix in a top-down, left-right order. Locate a cell with a cost of 1 for
which both of the totals (row and column) are greater than 0.

2. Increase the value of the cell by 1 and decrease both of the totals (row and column)
by 1.

This iterative process is repeated until the total of all columns is zero i.e. all the
destination labelsets are represented in the matrix. The solution is the list of labelsets
having at least one cell with a value greater than 1. Table 3 presents the matrix from
Table 2 after activating the algorithm described above. In the current example the result
labelsets are: {’1110’, ‘1101’, ‘1011’} instead of {‘1110’, ‘1101’, ‘1011’, ‘0111’}.

Table 3. The cell values of Table 2 after activating the labelset selection algorithm.

            Destination 
Source 

(1) 
"1100"  

(2) 
"1010"  

(3) 
"1001"  

(4) 
"0110"  

(5) 
"0101"  

(6) 
"0011"  

Total 

(1)  "1110"  1 1 1 1 ∞  1 1 ∞  ∞  3/2/1/0 

(2)  "1101"  1  ∞  1 1 ∞  1 1 ∞  3/2/1 

(3)  "1011"  ∞  1  1  ∞  ∞  1 1 3/2 

(4)  "0111"  ∞  ∞  ∞  1  1  1  3 

Total 1/0 1/0 1/0 1/0 1/0 1/0         12 
6 

 

In the next phase, we construct an ensemble of LP classifiers based on the labelsets
that have been selected. According to the example, the ensemble size is 3 and we train
a LP classifier for each labelset in the resulting set. Later in Section 3, we examine the
equivalence of the matrix design method to the well-known transportation model [7] for
the purpose of representing and solving the labelset selection problem.

2.3 The ensemble method

Figure 1 presents the required steps for creating the ensemble. At the beginning, we
choose the most appropriate design matrix considering the parameters- L, k, and r. For
each row in the matrix, we train a LP classifier based on the corresponding labelset.
As the iteration on the matrix rows ends, an ensemble of LP classifiers is constructed.
It is worthwhile noting that our selection method, contrary to other methods, makes it
possible to carry out the selection in the initial stages.
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Input: Size of labelset– k, Set of labels- L, Coverage size- r,  

            Training set- D,  Minimum k-labelset matrix(L, k, r) – M 

Output: An ensemble of LP classifiers hi 

1.    R ß M 

2.    for i ß 1 to the number of rows in M do 
3.         Yi ß a labelset selected from R; 

4.          train an LP classifier hi X à P(Yi) on D; 

5.          R ß R \ {Yi}; 
 

∈

Fig. 1. The ensemble generation phase.

Figure 2 presents the required steps for classifying a new instance x. The model
of each member on the ensemble returns a binary decision about the relevance of each
label in L. Based on the average decision result of each label, the new instance is as-
sociated with the corresponding label just in case the average result is greater than a
user-specified threshold t.

 

Input: new instance– x, An ensemble of LP classifiers- hi, Labelset size– k, 

            Set of labels- L, Minimum k-labelset matrix(L, k, r) - M 

Output: Multi-label classification vector Result 

1.    for j ß 1 to |L| do 

2.           Sumj ß 0; 

3.           Votesj ß 0; 
 

4.    for i ß 1 to the number of rows in M do 

5.           forall labels λj∈  Yi do 

6.                  Sumj ß Sumj + ),( ji xh λ ; 

7.                  Votesj ß Votesj + 1; 
 

8.    for j ß 1 to |L| do 

9.           Avgj ß Sumj / Votesj 

10.         if Avgj > t then 
11.                Resultj ß 1; 

12.         else Resultj ß 0;   
 

Fig. 2. The ensemble classification phase.

3 Equivalence to the Transportation Model

The transportation model [7] is a special type of network problem that is used for plan-
ning how to ship commodities from a source (factories) to a destination (warehouses)
at minimum cost. A unit transportation cost for units transported from source i to des-
tination j is assumed to be given.
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In this section, we draw an analogy between the labelset selection method and the
transportation model. We refer to sources as k-labelsets and destinations as r-labelsets.
The number of possible units to be shipped from source i to destination j is equivalent
to the number of appearances of a certain r-labelset in a certain k-labelset. The unit
transportation cost from source i to destination j is constant if the corresponding k-
labelset contains the corresponding r-labelset or else the cost is infinity.

Table 4 provides an example of a matrix representation for a transportation problem.
The gray part in the cells represents the unit transportation cost of the route represented
by the cell. While each source might supply a different number of units, in our problem,
each k-labelset may contain the same number of r-labelsets. In a similar way, each
destination may require a different amount of units whereas in our problem, we limit
the number of appearances of a certain r-labelset in any k-labelsets to one.

Table 4. An example of a matrix that represents a balanced transportation problem.

            Destination 
Source 

1 2 3 4 Supply 

1 2  8  9  11  30 
2 10  7  12  5  10 

3 3  4  6  10  20 

Demand 20 5 25 10 60 

 

The above matrix represents a balanced transportation problem. i.e., the total supply
equals the total demand. Five methods for solving balance transportation problem are
suggested in [7]. Since the methods differ in regard to the basic starting solution, the
”quality” of the results differs. According to [7], Vogel’s approximation method and
minimum cost method obtain the best basic starting solution. Since Vogel’s method
requires heavy computations, we focused on the minimum cost method.

The minimum cost method allocates units to be shipped from sources to destinations
in an iterative manner that includes two steps per iteration:

1. Locate the route (source i to destination j) with the cheapest unit transportation
cost among all possible routes, i.e., discard routes that were ”treated” in previous
iterations and routes that are not associated with supply nor demand.

2. Allocate as many units as possible to the located route. e.g. if the source of the route
want to supply five units and the destination demand is six units, then we allocate
five units (minimum{5,6}).

If we examine the equivalence of the minimum cost method to our selection method,
we notice that the same iterative process is performed. The only difference between the
two methods is in the scan order for a relevant cell. In the transportation model, the
method selects an arbitrary available cell that has a minimum cost in the matrix. In our
selection method, on the other hand, since all the available cells have the same cost,
it is necessary to impose a scan order to ensure a minimum number of labelsets in the
solution.

Table 5 presents the matrix from Table 4 after solving the transportation problem
using the minimum cost method. In the example, the first cell that is filled is located at
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position [1, 1] with the minimum cost value on the matrix equaling 2. The next cell with
minimum cost on the matrix is located at position [3, 1]. This cell is discarded because
destination number 1 fulfills its unit’s demand 20. In this way the algorithm continues
until the sources and destinations have no units to supply or that can demand.

Table 5. The cells value of Table 4 after activating the minimum cost method.

            Destination 
Source 

1 2 3 4 Supply 

1 2 20 8 - 9 10 11 - 30/10/0 
2 10 - 7 - 12 - 5 10 10/0 
3 3 - 4 5 6 15 10 - 20/15/0 

Demand 20/0 5/0 25/10/0 10/0 60 

4 Experimental study

We conducted some evaluation experiments to compare the results of the transportation
and RAKEL approaches. For the experiment, we developed a software package of c#
classes. We used the software for two purposes: 1. to generate variation files containing
all possible labelsets at size k out of n (n >= k). 2. to solve transportation problems
and generate a minimal number of labelset files.

For the classification tasks, we used Weka [18] and Mulan [17] (a software package
that is published in http://mlkd.csd.auth.gr/multi-label.html). The test was applied on
the Scene [3] and Emotions [8] datasets. Those datasets have six distinct labels and each
instance can be classified to one or more of these labels. We used the SMO classifier
provided by Weka as our underlying base classifier for single-label classification in all
ensemble models. The tests were performed using original train and test dataset splits.

For comparison purposes, we use micro-averaged F-measure and Hamming loss
measures [14, 17, 13]. In the follow section, we describe the experiments and analyze
the results.

4.1 Experimental parameters

The input parameters for the algorithm are:

1. l – Number of labels on the dataset under examination.
2. k – Source- subset labels. Our parameter k corresponds to the user-specified pa-

rameter k - size of the labelsets as defined in RAKEL algorithm.
3. m – Ensemble size is defined according to the output of the minimum cost method.

Them parameter corresponds to RAKEL’sm parameter. But, in contrast to RAKEL,
the number of models m in our ensemble is constant for each k since it is defined
by solution of the transportation problem.

4. r – Coverage power. In this paper we used a constant value 2, namely, the ensemble
covers all pairs of labels.
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5. c – Replications. In this paper we experimented with a constant value 1, namely,
each pair of labels is covered once.

6. Threshold – we experimented with constant value 0.5.

We compared our results to those achieved by RAKEL with the same k and m
settings. We experimented with all k values, for which the results of RAKEL and trans-
portation methods are different. In case of datasets with 6 labels, the only meaningful
values for comparison are k=3 and k=4. Note that the cases in which k=1 and k=6,
correspond to building a binary model and LP model accordantly. In case of k=2 the
transportation model results with all possible labelsets, so it obtains the same results as
RAKEL. We did not test higher values of k > 4 since the number of possible models is
too small.

The random nature of subset selection in the RAKEL causes different results at
each execution. The results obtained by the transportation approach do not change from
one implementation to another since the subsets chosen by minimal cost method are
constant for a given k. Due to the potential variance in RAKEL’s results between the
runs, we implemented the RAKEL algorithm 11 times for each k. The transportation
algorithm was executed once for each k.

5 Results and Discussion

This section presents the results of our experiments. Figures 3 and 4 present micro-
averaged F-measure and H-Loss results on the scene data set for k = 3 and k = 4. The
graphs show that the results of the RAKEL approach, as expected, vary between the
runs due to the random selection of subsets. The results of the transportation approach
are close to the highest values achieved by RAKEL. Only in few runs did RAKEL
provide better results than those achieved by the transportation method. In these cases,
the difference between their values is relatively very small. On the other hand, in many
runs RAKEL’s results are worse than those of the transportation approach. In these
cases, the differences between them are higher. It should also be noticed that RAKEL’s
average Hamming loss result for k = 3 and m = 10 is a little bit better than the one
achieved by the transportation approach. This result is marginal due to the robustness
of the transportation approach.
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H-Loss results on the scene data set for k=3 and m=10 
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Fig. 3. F-measure and Hamming-loss results on the scene data set for k=3 and m=10.
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H-Loss results on the scene data set for k=4 and m=6 
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Fig. 4. F-measure and Hamming-loss results on the scene data set for k=4 and m=6.

Figures 5 and 6 present the results for the emotions data set for k = 3 and k = 4.
Also, here the results of the RAKEL approach vary between runs. In the case of k = 3,
the results of the transportation approach are better than those achieved by RAKEL in
all 11 runs. The case of k = 4 is similar to that described in the scene data set results:
the results of the transportation approach are better than those achieved by most of the
RAKEL runs.
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H-Loss results on Emotions data set for k=3 and m=10 
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F-measure  results  on the emotions  data set for k=4 and m=6 
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Fig. 5. F-measure and Hamming-loss results on the emotions data set for k=3 and m=10.
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H-Loss results on Emotions data  set for k=4 and m=6 
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Fig. 6. F-measure and Hamming-loss results on the emotions data set for k=4 and m=6.
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6 Conclusions and Future Work

In this paper we presented a new ensemble method for multi-label classification based
on solution to the transportation problem. We showed that this method can determine
the labelsets for each ensemble member. Specifically, the method finds a minimal num-
ber of label sets of predefined size in relation to the chosen number of labels.

Results of the experimental study show that the method performs in a highly effi-
cient and stable manner, in many cases better than RAKEL. The proposed method re-
solves two main problems of the RAKEL algorithm: (1) random selection of labelsets
and a large variation in the result values; and (2) the need to define the number of models
in an ensemble.

In our future work, we plan to test our approach on additional datasets and include
other input parameters. Moreover, we will examine more powerful coverage schemes,
such as covering all triplets, and compare the results to other multi-label classification
methods.
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Abstract. In this paper, we present a method for learning from multiple continu-
ous target values. In contrast to most similar methods, we assume a strong corre-
lation between the target values, as these values together form a curve. At its core,
the method uses the Metric Learning for Kernel Regression (MLKR) algorithm
that was extended for prediction of multiple values. We also present an additional
extension in form of ridge regularization to achieve more robust optimization.
Evaluation on artificial datasets is provided, together with an application on Fiat
domain.

1 Introduction

Curve prediction is a specialization of multiple continuous target values prediction,
where curve can be any numeric sequence obtained from a continuous function. An
important implication of this is that neighboring target values exhibit strong correlation.

Since the we are dealing with multiple target values, most standard machine learn-
ing methods (e.g. regression tree), where the data is generalized into a model, are not
applicable. Exception are instance based methods, where prediction is usually made by
averaging the target value, that can easily be extended to predict multiple target values.
One such instance based method that was used in this research is kernel regression.
Methods like k-nearest neighbors are not appropriate since their loss function (error) is
not continuous (changing the learning parameters slightly does not necessarily result in
change of error), which is an important property that is exploited in this paper.

Recent progress in metric learning [1] inspired us to apply the approach to learn-
ing from multiple continuous target variables. Metric learning can be understood as
transformation of the input space in such a way to move together similar samples and
to further separate the dissimilar ones. In this paper we propose a novel algorithm for
learning from multiple continuous target variables using the improved kernel regression
method. Prediction is made by computing the weighted average of the train samples tar-
get values, with focus of this paper being on setting the optimal weights.

This paper is organized as follows: Section 2 defines the problem and establishes
the terminology used in the paper. In Section 3 a detailed description of the proposed
method is given. Section 4 reports evaluation results on artificial dataset. In Section 5
we describes the application of proposed method on Fiat domain and we conclude in
Section 6.
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2 Problem statement

Focus of this paper is a machine learning task with a goal of building a prediction
model that is capable of predicting multiple continuous target variables with high level
of correlation, more precisely, a curve. The learning problem can be defined as:

* Having a set of learning examples described with attributes X = {x1, ..., xk} and
class values Y = {y1, ..., yj}, where yi and yi+1 are close enough (a curve),

* find a function f that translates from X to Y :

f : X → Y

The desired property of f is to predict multi target values as a curve, namely the
predictions of two adjacent class values need to be close enough. A possible approach
assuring this property would be kernel regression, since it computes the prediction as a
weighted sum of classes in learning examples. The prediction of kernel regression on
examples where class is a curve will also be a curve.

Proof. Assuming we have two learning examples. Let (a1, b1) be two adjacent class
values of the first example with a small difference |a1 − b1| < ε and (a2, b2) the two
adjacent values of the second example |a2 − b2| < δ. Then, the maximal difference
between the weighted sum of these values |k1a1 + k2a2 − k1b1 − k2b2| is less than
(εk1 + δk2), which is still small providing that ε and δ are small. The proof can be
easily generalized to more than two examples.

3 Method

The proposed method is an extension of Metric Learning for Kernel Regression (MLKR)
algorithm as introduced in [1]. We begin by giving an overview of MLKR before intro-
ducing our extensions.

3.1 MLKR

MLKR builds on standard kernel regression algorithm that computes the target value
prediction ŷ of test instance x by calculating the weighted average of target variables
from training dataset [2].

ŷ =
∑
i yiki∑
i ki

, (1)

where ki = k(x,xi) ≥ 0 is a kernel function.
The weight of each training instance is computed using a kernel function, which

typically decays rapidly with distance between the test and training instance. Conse-
quently, the estimated test instance has the strongest dependence on the nearby training
instances. Commonly, kernel regression uses Euclidean distance for distance metric
and Gaussian kernel for computing the weights, that decay exponentially with squared
distance. The Gaussian kernel is usually defined as:

kij =
1

σ
√

2π
e

(−d(xi,xj )

σ2

)
, (2)
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where d is squared distance between two examples and is defined as:

d(xi,xj) = diff (xi,xj)T diff (xi,xj), (3)

where diff i is a custom attribute difference function.
There is an important drawback of the standard kernel regression method due to

the use of a priori distance metric (e.g. Euclidean distance metric) on the input space,
which may not be particularly relevant for the regression task at hand. For example,
if certain input features are completely irrelevant to the regression task (e.g. random
noise attributes), they ideally should not contribute at all to the distance metric, whereas
a Euclidean distance would ascribe to them as much weight as the most significant
features.

MLKR addresses this problem by using the Mahalanobis distance metric [3], that
is a generalization of Euclidean distance, and the squared distance between two vectors
xi and xj is defined as:

d(xi,xj) = diff (xi,xj)TMdiff (xi,xj), (4)

where M can be any symmetric positive semidefinite real matrix. Using identity matrix
as M gives the standard Euclidean metric. However, determining the optimal M is a
non-trivial task. Weinberg proposes a novel approach for determining the optimal M
matrix by directly minimizing the loss function

L =
∑
i

(ŷi − yi)2. (5)

First, the positive semidefinite constraint of matrix M needs to be removed, since it
poses optimization problems. This is done by performing a matrix decomposition

M = ATA, (6)

where A is an unconstrained matrix. Mahalanobis metric (4) can now be rewritten as

d(xi,xj) =‖ Adiff (xi,xj) ‖ (7)

which allows us to calculate gradient using the equation

∂L

∂A
= 4A

∑
i

(ŷi − yi))
∑
j 6=i(ŷi − yj)kijxijxTij∑

j 6=i kij
, (8)

where xij = diff (xi,xj).
Gradient can now be used in any gradient based method such as gradient descent,

conjugate gradient, stochastic gradient or BFGS. For this paper, gradient descent method
was chosen.

3.2 Curve prediction with MLKR

We now present the extension of MLKR for curve prediction (C-MLKR). As stated
before, we wish to predict the entire curve instead of a single value. Therefore, target
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value is now a vector yi ∈ IRm. To accommodate this change, we need to rewrite the
loss function (5) as

L2 =
∑
i

(ŷi − yi)T (ŷi − yi). (9)

This results in a new equation for gradient calculation

∂L2

∂A
= 4A

∑
i

(ŷi − yi))



∑
j 6=i (ŷi1 − yj1)Wij

...∑
j 6=i(ŷim − yjm)Wij

 1∑
j 6=i kij

 , (10)

where Wij = kijxijx
T
ij .

This two modifications now allow us to predict the entire curve.

3.3 Ridge C-MLKR

During the conducted empirical tests, we noticed that in some domains gradient op-
timization leads to very large absolute values of matrix A. After multiplying the dif-
ference diff(xi, xj) with such an A, we get large distances which, after applying the
Gaussian kernel, result in weights equal or very close to zero. The method selects such
high values of A, since they fit the learning data well. However, a great increase of pa-
rameters in A can sometimes bring a relatively small improvement in terms of accuracy
on learn data, what suggests a possible over-fitting.

To overcome this problem, we propose an extension in form of ridge regularization
approach [5]. In general, ridge regression is a method for penalizing the complexity of
the model by introducing penalty for setting the parameters of the model too high. In
our setting, we penalize such solutions of matrix A, that have large absolute values.
Taking this into consideration, we now rewrite the loss (9) function as

L3 =
∑
i

(ŷi − yi)T (ŷi − yi) + α(a2
11 + a2

12 + . . .+ a2
kk), (11)

where aij is a value from i-th row and j-th column of matrix A and α is a user tunable
ridge regression coefficient, where greater α results in bigger complexity penalties. New
loss function requires a slight modification of gradient equation

∂L3

∂A
=
∂L2

∂A
+ 2Aα. (12)

The ridge parameter α is usually automatically optimized with the internal cross-
validation technique. However, due to time-consuming optimization process, this would
take too long to make it practically usable, therefore we contemplated what would be
a sensible α value. The idea was to simulate statistical testing with ridge regression,
where a certain change in the A matrix would require a certain improvement of the loss
function. In this paper, we shall always set the α value as:

α = 3.96
Leuc
n

, (13)
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where Leuc is the prediction error of kernel regression with Euclidean distance and n
is the number of learning examples. This value for α assures that, if a certain value
in matrix A changes from 0 to 1, then the decrease of the prediction error should be
significantly lower than Leuc with significance 0.05, if measured with the F-test.

4 Evaluation on artificial data sets

Given the complexity of the multi-label regression task and the lack of suitable publicly
available datasets, we provide an evaluation on an artificial dataset. The artificial dataset
contains three attributes a1, a2 and a3 that are randomly drawn from interval [0, 5] with
uniform distribution. The response curve (the class attribute) is then computed given
the following function

f(t) = sin(a1t) + cos(a2t)a3, (14)

where tε[0, 2]. The resulting class value is a vector (f(t1), ..., f(tn)), where n is the
number of time series samples - greater n value corresponds to a greater sampling rate.
In our case n = 60, since that mimics the characteristics of the Fiat wind noise domain
dataset. We constructed three additional dataset by introducing three types of noise to
the previous artificial dataset. First two are constructed using the following equations

fnoise1(t) = f(t) + ε (15)
fnoise2(t) = sin((a1 + ε)t) + cos((a2 + ε)t)(a3 + ε), (16)

where ε is a random value drawn from uniform distribution on interval [-1,1]. The third
dataset is the same as noise free dataset with additional 10 noise attributes drawn from
interval [0, 5] with uniform distribution.

We compare the C-MLKR to the standard kernel regression (using Euclidean dis-
tance metric) and k-nearest neighbor method using the 3-fold cross validation evalua-
tion method [4]. Reported values are computed using root mean square error (RMSE)
which is defined as:

RMSE =

√∑n
i=1 Ed(ŷi,yi)

n
, (17)

where Ed is Euclidean distance.
Table 1 shows the results of evaluation.

Table 1. Evaluation results on artificial dataset

f fnoise1 fnoise2 fnoise3
KNN (k=1) 14.25 14.89 48.57 81.14
KNN (k=5) 11.36 11.04 22.92 32.70
Kernel regression 44.14 40.86 43.41 44.14
C-MLKR 4.76 8.57 24.97 8.96
Ridge C-MLKR 5.12 5.92 23.12 5.37
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We can see that in the noiseless domain the C-MLKR method performs best. How-
ever, with the introduction of noise (any type), the C-MLKR with ridge regularization
achieves better results, which supports our intuition that basic C-MLKR can overfit to
the learning examples. Interestingly, Ridge C-MLKR’s error did not increase by adding
random attributes, probably, as ridge regression forced the weights given to these at-
tributes down to 0. Both kernel methods with metric learning, C-MLKR and Ridge
C-MLKR, perform better than other methods. We can clearly see the improvement over
standard kernel regression and nearest neighbor method. Figure 1 graphically shows
the performance of different methods and gives a visual confirmation of C-MLKR im-
provement over standard methods.

0 10 20 30 40 50 60
�3�2
�101
2

3

4

Fig. 1. Classification for datasets fnoise3 , where dotted line is the actual curve, solid line is the
Ridge C-MLKR prediction, dashed line is the C-MLKR prediction and dash-dot line is the kNN
(k=5) prediction.

5 Application on Fiat wind noise domain

Fiat non-public wind noise domain was the main motivation for development of C-
MLKR algorithm. It contains data obtained from performing various aerodynamic tests
on a vehicle in a wind tunnel stationed at the Fiat Research Center (Centro Ricerche
Fiat). Usually a wind noise response of a single vehicle components is recorded in form
of an audio frequency spectrum. By examining the spectrum, experts can then determine
whether a certain component is critical for the overall reduction of the wind noise. For
overall reduction of wind noise all the critical components need to be improved.

Since setting up the wind tunnel tests is time and cost expensive the task is to pre-
dict the components responses without performing the actual test. More precisely, the
goal is to predict the complete audio spectrum of wind noise (vector of 6 sound pres-
sure values averaged from 60 values) for a given vehicle component (e.g. door sealing,



67

windshield wipers, ...). The entire vehicle setup is described with following attributes:
component description, microphone description, vehicle segment, original vehicle and
vehicle shape noise spectrum.

Component description is a textual description of setup, stating which component
(one of approximately 30 different components) is being tested and is very important
for determining which component was tested. Microphone description is also a textual
description of microphone position (8 possible positions). It is important to note that
these two attributes are textual. This makes them difficult to use. To overcome the prob-
lem complexity, we have chosen to build a text classifier that classifies description by
the components being used in the setup. This is easily integrated into the C-MLKR
framework, since the diff function allows us to specify custom difference function for
every attribute.

Vehicle shape spectrum is a frequency spectrum recorded using a vehicle where all
components noise is removed (e.g. by removing antenna) components do not generate
noise and only noise from vehicle body shape is present. Shape vehicle can be consid-
ered as an vehicle setting, where all the components are ideal. On the other hand, the
original vehicle spectrum is recorder using the original vehicle, where all components
contribute to the wind noise. We handle the spectrum as a single attribute and define the
custom diff spectrum : IRn → IR function as:

diff spectrum(xi,xj) = Ed(xi,xj), (18)

where Ed is Euclidean distance.
Vehicle segment is a nominal attribute classifying vehicle into different vehicle seg-

ments. For example, A is for small vehicles or LCV for light commercial vehicles.
We evaluated C-MLKR and Ridge C-MLKR using the leave-one-vehicle-out tech-

nique that is similar to leave-one-out, with difference being that we put all examples
for a given vehicle in the test dataset. We compare the results to the standard kernel
regression (Table 2).

Table 2. Evaluation results on Fiat domain

Fiat domain
Kernel regression 2.92
C-MLKR 2.84
Ridge C-MLKR 2.82

As we can see, improvement over standard kernel regression are not satisfactory.
This is due to complexity of the Fiat domain, where empirical study has shown that
some attributes (classification of component and microphone description) contain noise.
This means that target values are associated with wrong component name, thus leading
to similar problems as with artificial dataset fnoise2 , where Ridge C-MLKR improve-
ment is diminished. Moreover, it is necessary to note that all types of noise (fnoise1 ,
fnoise2 and fnoise3 ) are present in Fiat domain, making it a very difficult domain. How-
ever, this is an ongoing research and we expect better results in the future.
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6 Conclusions

We presented a novel method C-MLKR for prediction of multiple continuous target
variables with strong correlation. The main novelty of this paper is the extension of
MLKR (metric learning for kernel regression) to the multiple continuous target learning
problem. According to our experiments on artificial data sets, the method performs
better than KNN methods and kernel regression with Euclidean distance for weight
estimation. Furthermore, we extended the algorithm with ridge regularization, which
turned out to be useful in domains containing noise.

As future work, we are considering the option of dataset clustering to improve the
speed performance. Samples can be clustered and only one representative sample is
then used for testing if cluster contains similar samples. In case of dissimilarity the
cluster would be ignored, since the sample weight would most probably equal zero (or
very close to zero). However, in case of similarity, the entire cluster is used to compute
the weighted average.

With respect to Fiat domain, we plan to improve the diff function between different
types of components and microphones. At the moment there are approximately 30 dif-
ferent components, where difference is 0 if the are equal and 1 otherwise. However, by
visually inspecting spectra, we noticed that some components have a similar effect on
noise and their difference should therefore be less that 1.
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Abstract. There are many available methods for generating synthetic data streams.
Such methods have been justified by the need to study the efficacy of algorithms
on a theoretically infinite stream, and also a lack of real-world data of sufficient
size. Although multi-label classification has attracted considerable interest in re-
cent years, most of this work has been carried out in the context of a batch learn-
ing environment rather than a data stream. This paper makes an in-depth analysis
of multi-label data, and presents a general framework for generating synthetic
multi-label data streams.

1 Introduction

A multi-label data stream is a data stream with the same properties as multi-label data.
Multi-label learning problems, where an instance is assigned multiple labels from a fi-
nite set of labels, have received considerable attention in the machine learning literature,
but prior work focusses almost exclusively on a batch learning environment with train-
test or cross-validation scenarios. The problem of multi-label data streams has received
much less attention.

Many real world practical problems involve data which can be considered as a
multi-label data stream. For example news articles, e-mails, RSS-feeds, newsgroups,
bookmarking, and medical text classification.

Labels can be considered as subject categories, tags, author names, or even diag-
noses (in the case of the medical domain), as long as the set of labels is finite and known
at the time of classification. Instances will always arrive in time order. Classification in
such an environment involves an emphasis on efficiency and adaptivity:

– Incremental learning: examples processed one at a time; must be able to predict
as new instances become available

– Efficiency: limited amount of time and memory; able to handle large volumes of
new instances

– Adaptivity: must be able to handle to concept drift

Despite the ubiquitous presence of multi-label data streams in the real world, they
can rarely be easily assimilated on a large scale with both labels and timestamps intact
and there may issues with sensitive data – for example with e-mail, personal book-
marking, and medical text corpora. In many cases, in-depth domain knowledge may be
necessary to determine and pinpoint changes to the concepts represented by the data.

Hence the reasons to generate synthetic multi-label data streams are to:
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– increase the pool of multi-label stream data and thereby also increase the depth
of analysis and conclusions which can be drawn in respect to the performance of
various algorithms;

– allow a theoretically infinite data stream; and
– help conduct specific analysis of incremental multi-label algorithms.

This paper involves an in depth study of multi-label data, and presents a framework
for generating synthetic multi-label data streams in order to facilitate the study and
evaluation of multi-label algorithms in this area.

2 Prior Work

The notation to define a multi-label data stream is as follows.

– Let X = Rd denote the input space
– Let X ∈ X be an instance
– Let L = {l1, l2, · · · , lN} denote the finite label set
– Let li ∈ L be a single label
– Let S = (l1, l2, · · · , lN ) ∈ {0, 1}N be a label subset representing S ⊆ L where:

S[i] =
{

1 if li ∈ S
0 if li /∈ S

– Let d = (X,S) be a multi-label example consisting of an instance and relevant
labels

– Let D = d0, d1, · · · be a theoretically infinite stream of multi-label examples

2.1 Synthetic Multi-label Data

Generating synthetic data streams has been investigated in the past for single-label data.
The work in [4] provides the MOA framework which contains a variety of methods for
the generation and classification of single-label data streams. This is expanded by [1]
which additionally considers concept drift, as opposed to simply an incremental context.
There are also numerous examples of purpose-specific multi-label data being generated.

The authors of [10] generate a multi-label synthetic dataset with three labels and two
features. The examples pertaining to certain labels are associated with certain Gaussian
distributions. Cai [2] uses a tree structure with random weight vectors generated for
each node. Park and Fürnkranz [5] generate data using a number of labels using a set of
pairwise constraints. Random permutations are generated which satisfy this set, which
are in turn decomposed into binary pairwise preferences.

Kirchenko’s [3] synthetic data involves a special hierarchical case where inner nodes
represent labels. Synthetic data is generated by building a balanced tree hierarchy and
allocating three binary attributes, with 10 training and 5 test instances generated for
each label.

Overall, prior work for generating synthetic multi-label serves only to highlight
certain characteristics of the algorithms that the authors present. The data usually con-
tains as few as two or three features and labels, relatively few examples, and was never
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intended for large scale multi-label evaluation. More importantly, none of these data
generation techniques are for creating data stream contexts, which is a main focus of
this paper.

Not yet mentioned in the literature is the idea of using clustering to create multi-
label data where cluster centers represent labels. This would presume the use of a clus-
tering algorithm which can supply probabilities that an instance belongs to each cluster
so that a threshold could be used to influence different degrees of multi-labelling. Any
data source could be used if the original time order can be maintained. A related pos-
sibility would be to use a time-ordered single-label dataset and to reclassify using this
same ranking-and-threshold method.

The advantage of these techniques is to have data with underlying real-world con-
cepts. However, the stream cannot be theoretically infinite unless the source of real
world data is, and in such a case the clustering process would then also have to be
incremental. Moreover, access to such an extensive and reliable source of real-world
data streams is still necessary and domain knowledge is still necessary to analyse con-
cept drift. Finally — this problem would be much more suited to a multi-label ranking
problem, as opposed to classification. Hence we do not consider this idea further.

The task of generating synthetic multi-label data streams has not yet been thor-
oughly investigated, and has been mainly specific to certain algorithms or scenarios.
In following sections, this paper presents a general framework for multi-label synthetic
data generation designed to produce a wide variety of multi-label data in the form of a
data stream.

3 Generating Multi-label Data Streams

The main novelty of the framework presented in this paper stems from the use of prob-
lem transformation, also known as data transformation, well known in the multi-label
literature [8, 6, 9]. It has shown that it is possible to decompose multi-label data into
single-label data. The reverse transformation is also possible: single-label data can be
transformed into multi-label data. This allows for a generalised framework which can
generate multi-label synthetic data independently of the actual data-generation process.

Just as problem transformation classification methods use existing single-label clas-
sifiers independently of the transformation method, synthetic multi-label generation can
be carried out independently of the data generation method. The MOA framework1 [4]
provides state-of-the-art functionality for generating single-label synthetic data streams
under a variety of schemes, all of which could be used for creating a multi-label stream.
The task of composing a realistic multi-label data stream from single-label data is dis-
cussed in depth in this section and later the synthetic data generated is evaluated in
comparison to real world data.

Figure 1 outlines the overall process to generate a multi-label example. An initial
single-label instance is generated according to label skew, and further single-label ex-
amples are generated and are added according to the probabilities that they should occur
together. Both the feature spaces and label spaces are combined to form a multi-label

1 http://www.cs.waikato.ac.nz/˜abifet/MOA/
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example (X,S). All processes, including the combination of feature spaces (X ⊕X ′)
will be described in this section.

GENERATEML()

1 � Generate and filter a single-label example according to skew
2 (X, l)← filter(Pr(l), SL.GENERATESL())
3 � Formation of a multi-label example
4 (X,S ← {l})
5 � Adding multiple labels l′ where l′ /∈ S
6 while |S| < β
7 do
8 � Generate and filter a single-label example
9 (X ′, l′)← filter(Pr(l′|S), SL.GENERATESL())

10 � Combine the feature set, and add the label
11 (X,S) = (X ⊕X ′, S = S ∪ l′)
12 � Hence new multi-label example: (X,S)
13 return (X,S)

Fig. 1. Generating a multi-label example. SL.generateSL() represents any single-label data
stream generator from (for example the MOA framework). filter(γ,D) filters instances from a
single-label stream D according to γ, and β is a constant to help approximate a certain label
cardinality.

3.1 Label Skew

The phenomenon of label skew, where a label or subset of labels are particularly dom-
inant or subordinate in the data, is not unique to multi-label data, but does tend to be
particularly prevalent and exaggerated. This is due to the nature of multi-label data:
each example can be associated with multiple labels and it is therefore inherently pos-
sible for more than one label to dominate the majority of examples (unlike single-label
data). Skew in multi-label data is often intuitive, especially to text classification. A
label such as Economy is likely to be relevant to many examples in a news articles
corpus. It is also likely to be found in combination with other labels, for example
{Economy,Politics}, or {Economy,New Zealand}. Therefore Economy is
likely to be very frequent in the data, while other labels, such as New Zealand, only
refer to specific subset of news articles therefore occur much more infrequently.

Although label skew is naturally exaggerated in multi-label data by the process of
adding multiple labels to single-label data, for the purpose of introducing and control-
ling concept drift (addressed below), finer grained control over this skew is necessary.
Exponential or asymptotic distributions can be used to determine frequencies over a
random ordering of the class labels. For example, f(j) = α

j , where f(j) represents the
frequency of the jth label for some constant α.
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New single-label examples can be filtered according to this distribution and the la-
bel skew of a data stream D can easily be manipulated by changing α or f(j). When
a dataset’s label skew is ordered and plotted, a visual representation is obtained. Fig-
ure 2 displays the label skews of some real multi-label datasets and functions which
approximate them.
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Fig. 2. Label skew for various datasets (a) and some function approximations (b). Labels (x axis)
sorted by frequency (y axis).

3.2 Label Distribution

The most fundamental difference between multi-label data and single-label data is that
instances may be associated with multiple labels, as opposed to a single class label. A
multi-label dataset has an average number of labels assigned per example. The average
number of labels per example is the label cardinality:

LC(D) =
1
|D|

|D|∑
i=1

|Si|

Label distribution refers to the overall composition of the label cardinality: the
frequency of label set sizes in the dataset. This can also be represented as a function
g(i) = n where n percent of instances have i labels assigned to them.

A general distinction can be made between two types of label distribution:

Type A : Most examples contain a single label. This is typical of many text and me-
dia classification scenarios where most examples fit naturally under a single label
scheme, but multi-labelling has been introduced to resolve classification ambigui-
ties. This is the most common type of multi-label data.

Type B : Most examples contain more than one label. The label set is usually very
domain-dependent and chosen specifically to represent a multi-label scheme.

Examples of Type A include news articles, and media such as images and video.
Most images, for example, may fit naturally into a single-label scheme and may have
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labels such as Mountains, Forest, or Sea. Multiple labels are used to resolve oc-
casional ambiguities such as when Mountains and Forest are both relevant to one
particular image. A good real-world example of this is the Scene dataset2.

Examples of Type B include biological datasets where genes are expected to have
multiple functions and text datasets like the Enron dataset. Enron originates from an
e-mail corpus3 and this version4 of the dataset contains categories which almost take
the form of a checklist and were obviously conceived with consideration for multi-label
representation. A small subset of Enron’s label set is shown in Figure 3 to illustrate a
Type B labelling scheme.

Label Note
Attachment(s) The e-mail contains attachment
Forwarded The e-mail was forwarded
Legal Advice The e-mail contains legal advice
Humor Written with a tone of humour
Admiration Written with a tone of admiration
. . . . . .

Fig. 3. An example (from Enron) of Type B label distribution

The label distribution of both types approximates a Poisson distribution (Equation
1). Values of k and λ depend on the data type. Type A’s distribution can be approximated
0, POISS(k = {0, 1, · · · , |L|}, λ ≈ 0.25). Type B’s distribution can be approximated
by 0, POISS(k = {1, · · · , |L|}, λ = LC(D)) (in the latter case k = 1 initially, and
LC(D) is as defined above).

POISS(k, λ) =
λke−λ

k!
(1)

Figure 4 shows the label cardinality distributions of real multi-label datasets along-
side the Poisson functions which approximate them.

In practice, label cardinality (LC) is never greater than about 5.0. If LC(D)� 5.0,
the problem is usually better treated as a hierarchical problem, or keyword problem
where keywords are not assigned based on a predetermined categorical structure in-
tended to facilitate browsing, but rather searching, linking or lookup structures; likewise
where |L| � 100.

Earlier, in Figure 1, a constant β is used to control the assignment of labels so as
to adhere to one of the two distributions. This constant is closely linked to the desired
label cardinality: i.e. LC ≈ β.

2 Scene can be obtained from http://mlkd.csd.auth.gr/multilabel.html#
Datasets

3 http://www-2.cs.cmu/˜enron/
4 Using the labelling scheme http://bailando.sims.berkeley.edu/enron_
email.html, obtainable from http://www.cs.waikato.ac.nz/˜jmr30/
#datasets
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Fig. 4. Label distributions of real-world datasets (a) and approximations (b). The number of labels
per example (x axis) against frequency (y axis).

3.3 Label Relationships

There is wide consensus in the literature about the existence of label interdependencies
in multi-label data [6, 9, 7, 10]. The underlying relationships between labels in the data
is reflective of the problem domain. The degree of label dependency varies, but any real
world data in which labels are completely independent of each other is not an interesting
multi-label problem, but rather |L| separate binary filtering problems. This implies that
labels cannot be selected independently or randomly to create a synthetically generated
multi-label example.

Multi-label relationships usually emerge from a problem domain. These relation-
ships can be viewed as a |L| × |L| probability matrix m where m[k][j] = Pr(lk|lj).
Figure 5 shows matrix representations for the Scene (a) and Yeast (b) datasets which
represent Type A and Type B data, respectively. The label frequencies are displayed in
the matrix diagonal, i.e. m[k][k] = Pr(lk).
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(a) Scene dataset (Type A data).
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(b) Yeast dataset (Type B data).

Fig. 5. Label relationship matrices displayed as heatmaps. The matrix diagonal represents P (li)
for each li ∈ L.
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The correlations are related to label skew (covered in Section 3.1). That is to say
Pr(lj |lk) is high if Pr(lj) is high, and correspondingly low when Pr(lj) is low. This
is most noticeable in Yeast for labels l11 and l12 where these labels are associated with
high frequency and many correlations. Label l8 and l13 show the converse. Other shade
differences represent domain dependent factors which can be represented in synthetic
data by randomisation. In this particular Type A dataset (Scene), there is only weak skew
and the domain-dependent label correlations stand out clearer.

To generate an artificial matrix m to simulate domain-dependent label correlations,
ε% of rows under column m[j] are filled with normally-distributed random numbers
where µ = Pr(lj) and σ = 1.0 (other cells are left as ≈ 0.0). ε is related to label
cardinality and should be set low for Type A data (low label cardinality), and high for
Type B data (higher label cardinality).

3.4 The Feature Space

A complete framework must be able to transform generated single-label examples into
multi-label examples, and to do so must consider the feature space, and more impor-
tantly, the relationship between feature attributes and labels. Text data is both intuitive
to examine, and also representative of the majority of multi-label data streams. Tables
1 and 2 show the most frequent words for labels occurring exclusively of each other,
together in combination, and also the global most frequent words, for comparison. Fig-
ures 6(a) and 6(b) show the Gaussian distributions for specific examples taken from
the tables. Slashdot5 contains summaries of news articles and 20 Newsgroups6 contains
newsgroup posts.

Referring to these tables and figures, two feature-label effects can be seen which
contain information that can benefit a multi-label algorithm:

A feature-label effect is where a feature identifies a certain label. An intuitive exam-
ple is in the Slashdot dataset where ‘linux’ pertains strongly to the label Linux, while
‘mobile’ pertains to Mobile, and both words are relevant where these labels are found
in combination.

A feature-combination effect is where a feature identifies a combination of labels.
Often some words may occur frequently only when two labels are found in combination.
This is the case in the 20 Newsgroup dataset for the word ‘arms’. This feature is relevant
to politics.guns but tends to occur even more frequently when the newsgroup post
is also posted to misc.religion.

There are also various random effects. Words like ‘anonymous’ are generic and
do not provide information regarding the presence of labels or combinations of labels.
They may occur less frequently in a label combination simply because with an average
paragraph length of n words, over several labels, there are fewer words between labels
and words which are more strongly relevant (i.e. resulting from the feature-label effect
and feature-combination effect) take preference.

A surprisingly uncommon and irrelevant effect is the average occurrence of two fea-
tures in a combination: P (x|{A,B}) ≈ (P (x|A)+P (x|B))/2 for feature x and labels

5 http://slashdot.com
6 http://people.csail.mit.edu/jrennie/20Newsgroups/
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A,B. This effect can also be considered random because it does not tend to indicate the
presence of either a specific label or combinations of labels.

Table 1. Slashdot. Most frequent words for labels Linux and Mobile

Global Linux Mobile {Linux,Mobile}
anonymous linux mobile linux
reader ubuntu iphone open
game source anonymous windows
story open reader phone
reports released phone netbook
world anonymous android source
years kernel apple mobile
released software phones free

Table 2. 20 Newsgroups. Most frequent words for labels politics.guns and
religion.misc

Global politics.guns religion.misc {politics.guns,religion.misc}
don people don jews
1 don people arms
2 gun christian bear
people time god don
time government years koresh
good fbi good fbi
make guns time people
3 waco make news

In implementation, parameters can be used to influence the proportions of the two
effects and a mapping is used to carry this out where each feature attribute is mapped
to either a single label or a label pair or neither while the remaining proportion im-
plies random effects. Each attribute either implies the presence of a particular label (the
feature-label effect), implies the presence or absence of a particular combination the
(feature-combination effect), or does not imply anything (a random effect). The process
is outlined in Figure 7.

3.5 Concept Drift

It is known that real-world data streams inevitably begin to show changes to the con-
cepts they represent [1]. This known as concept drift. If the concept drift is particularly
abrupt, it may be called concept shift.

In addition to concept drift in the feature space, as found in single-label data streams,
multi-label data also involves concept drift to label cardinality, label skew, label distri-
bution, label-label relationships and feature attribute-label relationships. All of these
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Fig. 6. Word frequencies for certain labels individually and in combination.

have been discussed above. Some multi-label concept drift may also involve a change
to the label set (L) itself. Figures 8(a) and 8(b) show the effect under two measures of
shift: “label set coverage” refers to the percentage of instances where label sets over-
lap the label sets of the initial instances. Label combinations are recorded for the first
100 examples d0, · · · , d99 and then the percentage of reused combinations is plotted for
each of the following blocks of 100 examples: d100, · · · , d199, d200, · · · , d299, · · · . This
is a form of measuring concept drift in the label space. “Accuracy” refers to classifica-
tion performance under Naive Bayes with a threshold to create multi-label sets (refer
to the ranking and threshold method in Section 4.1). This is a way to measure concept
drift in both the instance space, and feature space. Yeast is a randomised batch dataset,
as opposed to a stream, and is displayed for purposes of comparison. In both cases,
there is indication of concept drift when the plot is unstable. 20 Newsgroups shows a
very abrupt change in the label space, while Enron shows pronounced drift early on.
Slashdot varies only slightly more than the batch dataset Yeast.

Recent work by [1] on single-label data streams models concept drift with a sigmoid
function. The sigmoid function in Equation 2 represents concept drift for instances
d0 · · · d. This function is also suitable for creating concept drift in multi-label data,
where sigmoid functions are applied to all aspects of multi-label data: the label skew,
distribution, and relationship matrix.

sig(d) =
1

(∆x+ e−s(d−d0))
(2)

A value x may represent any value of the original concept, and x′ the same value
in the new concept. To generate a new concept, x′ is chosen randomly from a Gaussian
distribution where µ = x and σ = v where if x′ < 0||x′ > 1 then x′ = −x′, and
where v is supplied as a global parameter to control the extent of concept drift. Hence
the change for a value x is ∆x = (x′ − x).

The variable s controls the abruptness of the drift. Large values of s create rapid
concept drift while smaller values create a more gradual concept drift. The value of s is
directly related to the length of change (d0 − d) via a constant e.g. (d0 − d) = s

8 .
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CREATEML()

1 � Begin with ML example of an empty instance X and relevant labels S
2 (X = (x1, x2, · · · , xN ) ∈ 0N , S)
3 � Generate SL examples to use, one for each label in S
4 (W1, l1), (W2, l2), · · · , (W|S|, l|S|) : li ∈ S
5 � Generate two binary examples; one positive, one negative
6 (V1, 0), (V2, 1)
7 � A mapping of feature attributes to labels or label pairs
8 ζ
9 � For each feature attribute in the feature space X

10 for a← 1 . . . |X|
11 do
12 � if the attribute maps to a single label
13 if |ζ[a]| ≤ 1
14 then
15 � and if that label is relevant to this example
16 if ζ[a] = li : li ∈ S
17 then
18 � Use value from relevant SL example (Wi, li)
19 X[a] = Wi[a]
20 else
21 � Use average from all SL examples (random effect)
22 X[a]← AVG(W1[a],W2[a], · · · ,W|S|[a])
23 � otherwise, if the attribute maps to a label pair
24 else if |ζ[a]| = 2
25 then
26 � and if that label pair is relevant to this example
27 if ζ[a] ⊆ S
28 then
29 � Use value from positive binary example
30 X[a] = V2[a]
31 else � Use value from negative binary example
32 X[a] = V1[a]
33 � A ML example with completed feature space and label set
34 (X,S)

Fig. 7. Creating a multi-label example from several single-label and binary examples into a multi-
label example. The process can be governed by the mapping ζ to either influence more of either
effect and the empty set ∅ can be used to create a random effect.
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Fig. 8. Label set coverage and accuracy measured over time on real-world data sets.
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Figure 9 displays sigmoid functions given different values of s and v. Note that in
practice, the functions would be centered around x′ − ((x′ − x)/2) and not 0.5.
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Fig. 9. Sigmoid functions for different changes under different values of s and ∆x (v).

4 Results and Discussion

Table 3 shows the range of parameters for generating multi-label data streams under the
MOA-based framework. An approximation of label cardinality (−z) and a mapping of
feature-label relationships (−a,−b) is sufficient to influence all multi-label dimensions
of a dataset.

Table 3. Possible parameters for synthetic data generation.

parameter type description symbol
−g class single-label generator SL
−i int number of instances |D|
−c int number of labels |L|
−u int number of attributes |X|
−r int random seed option
−z float desired label cardinality β, ε
−a float proportion Label-Effect mappings ζ
−b float proportion Combination-Effect mappings ζ

−v int average extent of change ∆
−x int length/range of change d− d0

−p int beginning point of change d0

4.1 Resulting Datasets

In Table 4, statistics are displayed of three real-world multi-label datasets and two
synthetic multi-label datasets generated using the framework introduced in this paper.
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Synth6 has been designed to approximate Scene and Synth8 is intended to represent a
new Type B dataset.

Table 4. Statistics relating to real-world and synthetic datasets.

Method Scene Synth6 Yeast Enron Synth8
|L| 6 6 14 53 23
|X| 300 300 100 1000 500
Type A A B B B
Attributes num. num. num sparse num.
Label Cardinality 1.07 1.06 4.24 3.38 2.73
Percent Unique 0.006 0.012 0.082 0.442 0.313

Table 5 displays the performance of various standard multi-label base methods on
the same datasets as in Table 4. The majority combination simply selects the most pop-
ular label combination for each test example. The other methods are well known prob-
lem transformation methods, all reviewed in [8]. The label powerset method treats each
multi-label set as a single label, the binary relevance method treats each label as a sepa-
rate binary problem, and the ranking and threshold method ranks the relevance of labels
to each test example and selects a subset of the highest ranked labels using a threshold
to be the multi-label classification set.

Problem transformation methods require a base single-label classifier to carry out
classifications. We use Naive Bayes as the base classifier, which allows incremental
classification, even for the label powerset method which requires labels to be added dy-
namically. The table compares the accuracy of these methods. Accuracy is determined
as in [8], but in this case the accuracy is measured for each new example in the stream
in a test then train scenario.

The variety in the results is to be expected due to the different dimensions of each
dataset and each method but, importantly, accuracy is higher than the default method.
This means that the method for combining label and feature spaces is creating multi-
label relevant information simulative of real-world data.

Table 5. The average accuracy of various methods on real and synthetic datasets.

Method Scene Synth6 Yeast Enron Synth8
Majority Combination 18.31 18.50 39.05 17.11 20.17
Label Powerset 60.60 34.50 46.63 42.47 37.25
Binary Relevance 46.22 27.50 42.28 18.73 31.42
Ranking and Threshold 65.60 30.25 34.71 23.31 26.37

Finally synthetic concept drift is considered. Figure 10 plots the label set coverage
10(a) and average accuracy 10(b) over time. Label set coverage varies over the range
of the drift, before stabilising afterwards. In terms of shift, the coverage drops sharply
and stabilises. Accuracy decreases suddenly at the beginning of the shift, but is able to
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gradually recover, whereas it declines more slowly over the longer period of the drift
and is more negatively effected in the long run. This is comparable to the analysis of
real-world data earlier in Figure 8.
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Fig. 10. Label set coverage and accuracy measured over time on a synthetic data set.

5 Conclusions and Future Work

This paper conducted an in-depth analysis of multi-label data and how the concepts
relating to such data change over time in a data stream context. This lead to a frame-
work for generating synthetic multi-label data streams. This framework is based on the
concept of problem transformation – it creates a multi-label data stream from a single-
label data generator independently of the actual data generation process. It is possible
to generate a wide variety of multi-label data by configuring a number of parameters.
These parameters allow the manipulation of the multi-label aspects of the data as well
as the introduction of concept drift.

Analysis indicates that the data is closely representative of real-world data and
therefore able to serve for the analysis and evaluation of incremental multi-label al-
gorithms.
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Future work will involve conducting large-scale evaluations of multi-label algo-
rithms using the synthetic multi-label data streams which the framework is capable of
generating. This will aid investigations into the multi-label data stream context.
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Universitat Politècnica de Catalunya, 2009.

2. Lijuan Cai. Multilabel Classification over Category Taxonomies. PhD thesis, Department of
Computer Science, Brown University, May 2008.

3. Svetlana Kiritchenko. Hierarchical Text Categorization and its Application to Bioinformat-
ics. PhD thesis, Queen’s University, Kingston, Canada, 2005.

4. Richard Kirkby. Improving Hoeffding Trees. PhD thesis, Department of Computer Science,
University of Waikato, 2007.

5. Sang-Hyeun Park and Johannes Fürnkranz. Multi-label classification with label constraints.
Technical report, Knowledge Engineering Group, TU Darmstadt, 2008.

6. Jesse Read, Bernhard Pfahringer, and Geoff Holmes. Multi-label classification using ensem-
bles of pruned sets. ICDM ’08: IEEE International Conference on Data Mining, 0:995–1000,
2008.

7. Liang Sun, Shuiwang Ji, and Jieping Ye. Hypergraph spectral learning for multi-label classi-
fication. In KDD ’08: 14th ACM SIGKDD International Conference on Knowledge Discov-
ery and Data mining, pages 668–676, New York, NY, USA, 2008. ACM.

8. Grigorios Tsoumakas and Ioannis Katakis. Multi label classification: An overview. Interna-
tional Journal of Data Warehousing and Mining, 3(3), 2007.

9. Grigorios Tsoumakas and Ioannis P. Vlahavas. Random k-labelsets: An ensemble method for
multilabel classification. In ECML ’07: 18th European Conference on Machine Learning,
2007.

10. Rong Yan, Jelena Tesic, and John R. Smith. Model-shared subspace boosting for multi-label
classification. In KDD ’07: 13th ACM SIGKDD International Conference on Knowledge
Discovery and Data mining, pages 834–843, New York, NY, USA, 2007. ACM.



Ignoring Co-Occurring Sources
in Learning from Multi-Labeled Data

Leads to Model Mismatch

Andreas P. Streich and Joachim M. Buhmann

Department of Computer Science, ETH Zurich
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Abstract. The task of multi-label classification is of growing interest in many
applications of machine learning. Most currently employed techniques reduce
the problem to a series of independent single-label classification problems, thus
ignoring the information a data item contains about the other classes it belongs
to. Taking a generative viewpoint, we interpret a multi-labeled data item as a
combination of independent emissions of all sources it belongs to. We show that
if the combination function is a bijection in a single source emission, training an
independent generative classifier by maximum likelihood for every class implies
a model mismatch.

1 Introduction

Classification is the task of assigning a data point to a set of categories or classes. While
it is probably the best studied problem in machine learning, it remains challenging in
many cases. A binary classification or dichotomy distinguishes between two classes,
while multi-class classification denotes the case of several class choices. Multi-label
classification characterizes problems where each data point might belong to more than
one class. Instead of a single label, a label set is assigned to each data item and indicates
all classes this data item belongs to. Typical application areas for multi-labeled classifi-
cation are acoustic (for example the so-called Cocktail Party Effect [1]) and visual scene
classification [2], text categorization [7], and bio-informatics [3, 8].

Due to the increasing significance for a large and still rising number of applications,
multi-label classification has recently received growing attention. The approaches we
are aware of can be grouped into methods that reduce the problem to a (series of) single-
label problems, ranking-based methods, algorithm adaptations, and generative models.
Current techniques for multi-label classification are reviewed in Section 2.

The previous approaches span a wide variety of algorithms for the multi-label clas-
sification problem. Most of them result in a tractable optimization problem and perform
reasonably well in some application areas. However, they do not have a clear theoretical
background with explicit statements about the underlying assumptions of the algorithm.
More concretely, we criticize two main points: Firstly, there is often no clear statement
about the meaning of multiple labels. What is the semantics if a data item belongs to
more than one class? Secondly, frequent co-occurrence of labels is often equated with
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similar source statistics. This assumption is often at most vaguely justifiable and smears
out the boundaries between different classes.

We provide a theoretical analysis of inference schemes for multi-labeled data. To
do so, we take a generative viewpoint and assume that the label set denotes all sources
that have contributed to the generation of the data item at hand. If the label set con-
tains a single element, the data item is a direct observation of the respective source. In
contrast, if the label set contains more than one element, the data item is understood as
a combination of an emissions of each source in the label set. The formal description
of the generative model is given in Section 3. In Section 4.1, we define the type of in-
ference schemes which independently estimate parameters for each class based on all
data belonging to the class. We show in Section 4 that such inference procedures yield
biased estimators and discuss implications of this result in Section 5.

2 Algorithms for Multi-Label Classification

Multi-label classification has attracted a increasing research interest from several ap-
plication domains within the last two decades. Probably the most basic approach to
handle a multi-label classification task is to reduce it to a single-label classification.
This can be achieved by considering each unique set of labels found in the training data
as one of the classes of a new single-label classification task, as it is done by the model
Mnew. Alternatively,Mignore ignores training-data with multiple labels. While these
techniques, both described in [2], are conceptually very simple, they suffer from sparse
training data in most of the practical applications.

Several adaptations of instance-based classifiers for multi-label classification were
proposed in the literature. A modified entropy formula was employed in [3] to adapt
the C4.5 algorithm for knowledge discovery in multi-label phenotype data. We refer
to this method asM4.5. Given the modified entropy formula, frequently co-occurring
classes are distinguished only on the bottom of the decision tree. The k-nearest neighbor
algorithm was adapted to multi-label data (MkNN ) in [16]. Based on the k nearest
neighbors, a decision on the class membership of a new data item is taken independently
for each class.

Boosting was applied to multi-label text classification e.g. in [12]. Weak learners
were trained to either minimize the Hamming loss (AdaBoost.MH) or the ranking loss
(AdaBoost.MR). [4] introduced kernel methods for dichotomy learning and ranking in
order to solve the multi-label problem.

A technique which is used very often is the so-called cross-training or One-Against-
All, which we betoken withMcross. In a setting where each data item might belong to
any subset of K classes, the multi-label problem is replaced by a set of K independent
dichotomies: For each class, a classifier determines whether the data at hand belongs to
this class. The outputs of the K classifiers are then combined to the final label set. This
technique was successfully applied to scene classification [2] and to classify emotions
in music [9].

Note that in the usual cross-training, the total weight of a data item is proportional
to the number of classes it belongs to. A variation of cross-training is proposed in [11]
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for improved functional prediction of proteins. The total weight of all data items are
equal, the individual weights of labels are either given along with the label set, or, in the
absence of such information, are computed by uniformly distributing the total weight
over all labels in the label set. We refer to this method as probabilistic cross-training
Mprob.

The technique of label ranking by pairwise comparison [6] can be seen as an exten-
sion of cross-training: For any pair of labels (λ1, λ2), a classifier is trained to decide
which of the two labels are more relevant for a given data item. TheK ·(K−1)/2 pref-
erences are combined to a relevance ranking over all labels. The label set of the data
item contains the top-ranked labels, where a ”neutral” calibration label is introduced to
separate relevant from non-relevant labels [5]. We denote this method byMCLRPC .

All aforementioned techniques assume — be it implicitly or explicitly — that all
labels in a label set are mutually independent, also given the training data. We claim
that this assumption is often not or only vaguely justified. The principle of maximum
entropy is applied in [17] to estimate the dependencies between classes. However, only
dependencies in the co-occurrence statistics of labels are considered, while the like-
lihood of a single label given the data item is still computed independently for each
label.

The techniques mentioned so far yield an efficiently solvable optimization problem
and perform reasonably well in many practical applications. Yet none of these methods
provide a semantics for multi-labeled data. This lack is not only a theoretical inele-
gance, but gives away domain knowledge which might support the classifier. For the
application of text classification, a mixture model (Mmix) for the word distribution
was presented in [10]. While several sources (representing different topics treated in
the document) contribute to the text, each word comes from a single topic source. In
the field of acoustics, the parallel emissions of several sources are superposed to the
received signal. A deconvolutive approach (Mdeconv) to handle this situation was pre-
sented in [13].

A more detailed review of multi-label classification can be found in [14].

3 Generative Model for Multi-Labeled Data

We take a generative viewpoint and assume that all data is generated by a set S of K
sources. For convenience, we assume S = {1, . . . , S}. Single label data is an observa-
tion of one source, whereas multi-labeled data is the combination of several independent
source emissions.

More technically, for a data item x, the label set L = {s1, . . . , sd} ⊆ S denotes the
set of sources involved in the generation of x. Each single element si, 1 ≤ i ≤ d, of L
is called a label of x. d is the cardinality of the label set of x. If d = 1, x is termed a
single label data item, whereas we call x a multi-label data item if d ≥ 2. The special
case of d = 2 is called binary label. The set of all possible label sets is denoted by L.

We assume a generative model where each label s corresponds to a source with
distribution Ps. All sources are assumed to have the same sample spaceΩ (If the sample
spaces would differ, it might be possible to rule out a certain set of sources for a given
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Fig. 1. The generative model for multi-labeled data. An independent sample ξs is drawn from
each source s. The label set L is sampled from the label set distribution P (L). These samples are
then combined to observation x by the combination function kκ(ξ,L). Note that the observation
x does only depend on emissions from sources contained in the label set L.

item without further consideration of any model). The generative process for a data item
x with label set L = {s1, . . . , sd} of degree d is illustrated in Figure 1. It consists of
three steps:

1. Draw a label set L from the distribution P (L). Set d := |L|.
2. For each s ∈ S, draw an independent sample ξs from source s.
3. Combine the source samples (ξ1, . . . , ξS) =: ξ to obtain the observation x. The

combination is described by the d-ary combination function k:

kκ : ΩS × L→ Ω ,

where κ is a set of parameters the combination function might depend on. Note that
the combination function kκ(·,L) only depends on vector components ξs which are
in the label set L and is independent of vector components that are not contained in
the label set.

We assume the combination function to be fixed for all data items. Single-label data
items are understood as direct observations of a sample from the respective source, i.e.
kκ(ξ, {s}) = ξs. We assume parametric distributions Ps, where θs = (θ(1)s , . . . , θ

(Qs)
s )

is the tuple of parameters for source s.Qs is the number of parameters of the distribution
Ps. Θ = (θ1, . . . , θS) denotes the tuple of all parameters of all sources. We assume that
these parameters are identifiable, i.e. that there is a one-to-one correspondence between
the parameters and the distribution.

With these definitions, the likelihood of the parameters Θ given the data item D =
(x,L) is given by

L(Θ;D) = P (L) ·
∫ ∏

s∈S
ps(ξs|θs) · δkκ(ξ,L)=x dξ . (1)

For convenience, we define the log-likelihood as `(Θ;D) := logL(Θ;D).

We assume samples to be i.i.d. given their source. The probability of a data set
D = (D1, . . . , DN ) is thus the product of the probabilities of the data items given their



89

label set. The likelihood of the parameters Θ given the data set D, L(Θ; D), and the
corresponding log-likelihood, `(Θ; D), are given by

L(Θ; D) =
N∏
n=1

L(Θ;Dn) `(Θ; D) =
N∑
n=1

`(Θ;Dn) . (2)

We propose maximum likelihood estimation, where the parameters are determined
such that the probability of the data given the source(s) is maximized:

Definition 1. (Maximum-Likelihood estimator) The estimator Θ̂ for parameter Θ is a
maximum likelihood estimator if it is determined by

Θ̂ = arg max
Θ

L(Θ; D) (3)

where L(Θ; D) is defined by Equation 2.

While the direct maximization of the likelihood is often difficult, the parameters can
equivalently be estimated by maximizing the log-likelihood.

4 Model Mismatch by Ignoring Co-Occurrence

In this section, we present our main contribution. In order to simplify notation, we
restrict the main proof to single-label and binary-label data. We first define the type
of co-occurrence ignoring inference procedures in Section 4.1. After a few auxiliary
lemmata in Section 4.3, we are then ready to give the main theorem for binary labels in
Section 4.4. The extension to label sets of any degree is discussed in Section 4.5.

4.1 Co-Occurrence-Ignoring Inference Procedures

In this section, we define co-occurrence-ignoring inference procedures. This class of
inference procedures will afterwards be proved to lead to model mismatch.

First, we define when two sources are co-occurring and the notion of partial inde-
pendence and partial conditional independence:

Definition 2. (Co-Occurring Sources) Two sources s1, s2, s1 6= s2, are called co-
occurring in the data set D if there exists at least one label set in D containing both s1
and s2.

Definition 3. (Partially (Conditionally) Uncorrelated) Two vectors of random vari-
ables X = (X1, . . . , XQX ) and Y = (Y1, . . . , YQY ) are called partially uncorre-
lated, denoted by X ⊥⊥∂ Y , if there exist at least one pair of vector components Xq1 ,
Yq2 , 1 ≤ q1 ≤ QX and 1 ≤ q2 ≤ QY , which are uncorrelated, i.e. P (Xq1 , Yq2) =
P (Yq2) · P (Xq1).
If there exists at least one pair of vector components Xq1 , Yq2 , 1 ≤ q1 ≤ QX and
1 ≤ q2 ≤ QY , which are uncorrelated conditioned on D (i.e. P (Xq1 , Yq2 |D) =
P (Yq2 |D) · P (Xq1 |D)), then X , Y are called partially conditionally uncorrelated, de-
noted by X ⊥⊥∂ Y |D.
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In the remainder of this paper, we will focus on the training or inference phase of
the classifier. Using a particular inference scheme, parameter estimates are computed
based on a data set with corresponding labels. The parameters inferred by the inference
scheme I based on data set D will be denoted by Θ̂ = I(D).

Definition 4. (Co-Occurrence Ignoring Inference Procedures) An inference proce-
dure I based on maximum-likelihood is called co-occurrence ignoring on a training
data set D if it fulfills the three following conditions:

1. I handles multi-labeled data.
2. The likelihood of the parameters θs of source s depends only on data items which

contain s in their label sets.
3. The parameters θs1 , θs2 of two co-occurring sources s1, s2 are assumed to be

partially uncorrelated given the training data D:

θs1 ⊥⊥∂ θs2 |D ∀ s1, s2 ∈ S.

4.2 Model Mismatch

Generative models — be it implicitly or explicitly — model the distribution of both
data items and its label sets. Since the training set has only finite size, inference pro-
cedures typically suffer from an estimation error, which decreases as more examples
are obtained. If the estimated distribution deviates from the true distribution even in
the asymptotic case of infinite training data, the inference methods is said to lead yield
biased parameter estimators.

There are (at least) two possible causes for biased parameter estimators: First, the
inference method itself may be biased. For example, the sample variance is a biased
estimator of the variance of a Gaussian distribution. Secondly, a bias in the parameter
estimators can be the result of a mismatch between the model assumed by the inference
procedure and the true model that generated the data.

Since maximum likelihood estimators are unbiased [15], the first possible cause
can be ruled out. We will show that co-occurrence ignoring inference schemes imply a
model mismatch and thus cause biased parameter estimators. Note that for identifiable
probability distributions, a difference between the estimated and the true parameters
implies a difference between the estimated and the true probability distribution.

In later sections, we will rely on representations of the density and the combination
function as infinite Taylor series. Functions which can be represented as (infinite) Taylor
series are called analytic:

Definition 5. (Analytic Function) An analytic function is an infinitely differentiable
function f on Ω such that the Taylor series at any point x0 ∈ Ω, T (f, x0, x) =∑∞
n=0

f(n)(x0)
n! (x− x0)n, converges to f(x) for x in a neighborhood of x0.

Polynomials and the exponential function are analytic. Sums, products and composi-
tions of analytic functions are again analytic. Furthermore, the reciprocal of an analytic
function that is nowhere zero is analytic.
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4.3 Auxiliary Lemmata

In this section, we present four auxiliary lemmata, which we will refer to in the proof
of the main theorem. All proofs are given in the appendix.

First, we need to define some notation: Denote by s1 and s2, s1 6= s2, two sources,
parameterized by θ1 and θ2, which are assumed to be partially conditionally indepen-
dent. We denote by (θ1,c1 , θ2,c2) a pair of components of θ1 and θ2 which are assumed to
be conditionally independent given the training data D. Denote by kκ,(s1,s2)(ξ1, ξ2) :=
kκ(ξ, {s1, s2}) the combination function for the label set {s1, s2}. Let cκ(ξ1, xn) :=
k−1
κ,(s1,s2)

(ξ1, ·) be the inverse of the combination function kκ,(s1,s2)(ξ1, ξ2) with respect
to the second argument, and set cn(ξ) := cκ(ξ1, xn). We will assume that kκ,(s1,s2)(ξ1, ξ2)
is a bijection in ξ2. All computations are analogous if kκ,(s1,s2)(ξ1, ξ2) is a bijection in
ξ1.

Derivatives of probability densities with respect to parameters are denoted with an
upper dot on the density (we assume the parameter with respect to which the derivative
is taken is clear from the context). Derivatives with respect to the random variable are
denoted by the degree of the derivation in upper brackets:

ṗi(ξ) :=
∂pi(ξ)
∂θi,ci

∣∣∣∣
θi,ci=θ̂

ML
i,ci

p
(m)
i (ξi) :=

∂mpi(ξ)
∂ξmi

for i = 1, 2 .

Lemma 1. Assume independent probability density functions pi(ξi) parameterized by
θi, for i = 1, 2. Then, the derivative of the joint distribution p12(·) with respect to both
parameters evaluated at the value of the maximum likelihood estimator θ̂ML

i of the
parameter is zero.
Formally: ξ1 ⊥⊥ ξ2 =⇒ ∂2p12(ξ1,ξ2|θ1,θ2)

∂θ1∂θ2

∣∣∣
θ1=θ̂ML1 ,θ2=θ̂ML2

= 0 .

The following lemma allows us to rewrite the independence of two parameters given
the data as an equality of two sums:

Lemma 2. Given a training data set D generated according to the generative process
described in Section 3 with a combination function kκ being a bijection in the emission
of at least one source in the label set. If θ1 and θ2, the parameter of sources s1 and
s2, are learned by maximum likelihood, partial conditional independence of θ1 and θ2
given D implies

∑
n

∫
ṗ1(ξ)ṗ2(cn(ξ)) dξ ·

∫
p1(ξ)p2(cn(ξ)) dξ

p(xn)2

=
∑
n

∫
p1(ξ)ṗ2(cn(ξ)) dξ ·

∫
ṗ1(ξ)p2(cn(ξ)) dξ

p(xn)2
,

(4)

where p(xn) :=
∫
p1(ξ) · p2(cn(ξ)) dξ. Note that only n with Ln = {s1, s2} might

have a non-zero contribution to the sum. For n with Ln 6= {s1, s2}, the contributions
on either side are 0.
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Informally speaking, the independence assumption between two parameter components
implies that the partial derivatives of the data likelihood with respect to the respective
parameter components can be distributed without changing the value of the expression:
On the left hand side, the partial derivative of p1 and p2 stand under the same integral,
while they are under different integrals on the right hand side.

The following lemma allows us to write the equality condition implied by the inde-
pendence assumption as an equality of two Taylor series:

Lemma 3. Assume c(·) is an analytic function and the density functions pi(·) are con-
tinuously differentiable with respect to their parameters θi and analytic functions with
respect to the random variables ξi, for i = 1, 2. Then, Equation 4 can be rewritten as
an infinite Taylor series

∞∑
k=0

Cklhs · ξk =
∞∑
k=0

Ckrhs · ξk (5)

with coefficients Cklhs and Ckrhs given by

Ckα =
∑
n

1
p(xn)2

k∑
l=0

Clα,1(xn)
l!

·
Ck−lα,2 (xn)
(k − l)!

, (6)

where α = lhs, rhs and

Cllhs,1(xn) =
l−1∑
m=0

(
l − 1
m

)
ṗ
(l−1−m)
1 (0) · Sm(ṗ2, n) (7)

Cllhs,2(xn) =
l−1∑
m=0

(
l − 1
m

)
p
(l−1−m)
1 (0) · Sm(p2, n) (8)

Clrhs,1(xn) =
l−1∑
m=0

(
l − 1
m

)
p
(l−1−m)
1 (0) · Sm(ṗ2, n) (9)

Clrhs,2(xn) =
l−1∑
m=0

(
l − 1
m

)
ṗ
(l−1−m)
1 (0) · Sm(p2, n) (10)

for l ≥ 1. C0
α,i(xn) denote integration constants. Furthermore,

Sm(f, n) =
∑
t∈Tm

bm(t, f, n) (11)

bm(t, f, n) =
m! · f (

∑m
i=1 ti)(cn(0))∏m
i=1 ti!

·
m∏
i=1

(
c
(i)
n (0)
i!

)ti
(12)

Tm =

{
(t1, . . . , tm) ∈ Nm0 |

m∑
i=1

i · ti = m

}
. (13)
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The next lemma shows that the equality condition for the two Taylor series (Eq. 5)
implies that all derivatives of cn(·) evaluated at 0 must be equal to zero, i.e. that cn(·)
is a constant in the neighborhood of 0.

Lemma 4. Given coefficients Cklhs, C
k
rhs as defined in Equations 6 to 13, Equation 5

implies that all derivatives of cn(ξ) with respect to ξ evaluated at ξ = 0 must be zero,
i.e. c(i)n (0) = 0∀i ∈ N.

4.4 Main Theorem for Binary Labels

Theorem 1. Given a training data set D with single-label and binary-label data gener-
ated according to the generative process described in Section 3. All source distributions
are assumed to be continuously differentiable w.r.t. the parameters, and analytic func-
tions w.r.t. the random variables. The binary combination function is a bijection in the
emission of at least one source in the label set, and its inverse with respect to any single
argument is an analytic function. Then, any co-occurrence ignoring inference scheme
I trained by maximum likelihood on D suffers from model mismatch.

The proof is done by contradiction. We assume that I finds asymptotically the true
parameters and then show that this assumption yields a contradiction.

Proof. Assume the model adopted by I to explain the data set D matches the true model
of the generative process. As the inference scheme I is co-occurrence ignoring, there
is at least one pair of parameters θ1, θ2 which do not parameterize the same source and
which I assumes to be conditionally independent given the training data D. We denote
the source distributions parameterized by θi by pi (i = 1, 2). By Lemma 2, conditional
independence of parameters θ1, θ2 implies that the optimality condition of maximum
likelihood (Eq. 3) yields the condition given in Eq. 4.

Since cn(·) is an analytic function, we can use Lemma 3 to rewrite Equation 4
as an infinite Taylor series as given in Equation 5. By Lemma 4, this implies that all
derivatives c(i)n (0) for i ≥ 1 are zero. Since cn(·) is assumed to be analytic, it must be a
constant in the neighborhood of 0. This is a contradiction to the assumption that cn(·)
is a bijection. Therefore, the assumption that I adopts the true model has to be rejected.
�

4.5 Extension to Labels of Higher Degree

In order to avoid too much clutter in the notation, we have given the proof only for train-
ing data containing single- and binary-labeled data. The following corollary generalized
Theorem 1 to combination functions of any arity.

Corollary 1. Given a training data set D with single-label and multi-label data of any
order generated according to the generative process described in Section 3. All source
distributions are assumed to be continuously differentiable w.r.t. the parameters, and
analytic functions w.r.t. the random variables. The combination function is a bijection
in the emission of at least one source in the label set, and its inverse with respect to any
single argument is an analytic function. Then, any co-occurrence ignoring inference
scheme trained by maximum likelihood on D suffers from model mismatch.
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The proof is very similar to the proof given for the case of binary labels. For lack of
space, we only give a sketch of the proof in the appendix.

5 Implications for Multi-Label Classification

In the generative model described in Section 3 and depicted in Figure 1, the single label
sources are independent, and the observations with multiple labels are combinations
of the emissions of these sources. Since the binary combination function is assumed
to be a bijection in one argument if the other argument is clamped to a fixed value,
this introduces a one-to-one functional dependency between the observation and one of
the source samples. It is therefore not surprising that co-occurrence ignoring classifiers
incur a model mismatch. In the following, we discuss the implications of the theorem
for the performance of different multi-label classifiers.

First of all, instance-based classification schemes like MkNN and M4.5 do not
estimate any distribution parameters. The theorem is therefore not applicable to these
classifiers and does not allow to draw any conclusions on their performance.

The definition of co-occurrence ignoring inference schemes (Section 4.1) requires
that the inference scheme handles data with multiple labels. Out of the techniques pre-
sented in Section 2,Mignore andMnew do not match this requirement.

The classification methods Mcross and Mprob do handle multi-labeled data and
are co-occurrence ignoring as they are described in the mentioned publications. Both
methods independently learn source parameters for each class and use also data with
multiple labels for this. In doing so, they are disregarding the contributions of classes
in the label set other than the currently trained one. This leads to a systematic deviation
of the parameter estimators from the true parameter values.

In the pairwise ranking methodMCLRPC , a different set of source parameters is
learned for each pair of labels. This allows a different parametrization of the same
source for different ”partner” labels. This model assumption does not agree with the
generative model in Eq. 1 and thus allows a model mismatch.

BothMmix andMdeconv take into account co-occurring labels. The presented the-
orem does therefore not imply a mismatch of these two methods with the true source
— provided the combination function assumed in the models matches the true combi-
nation function, and the true source distributions can be described with the parametric
distributions assumed by the model.

With regard to the distributions, the theorem assumes density functions which are
continuously differentiable with respect to the parameters and analytic functions with
respect to the random variables. Most continuous probability distributions fulfill these
requirements. Exceptions are e.g. the Dirac delta function and the Cantor distribution.

The combination function is assumed to be a bijection in one of the arguments.
Most elementary mathematical operations like (weighted) sum and difference, product
and exponentials as well as combinations thereof are bijections. Softmax is also a bijec-
tion in any of the arguments. However, other combination functions like maximum and
minimum are not bijections, and the theorem does not allow to draw any conclusion on
inference procedures in this case.
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Keeping this in mind, we recommend to use generative classifiers like Mmix or
Mdeconv for multi-label classification whenever the generative process is sufficiently
well known and the resulting optimization problem is stable and solvable within rea-
sonable time. If a generative model can not be employed, one might either still use
a classifier based on independent pairwise classifications, being aware that a model
mismatch is inevitable and might lead to suboptimal classification performance. Alter-
natively, the problem might be addressed by an instance-based classification technique
likeMkNN andM4.5, or using a generative inference procedure which do not rely on
any source independence, such asMignore orMnew. The latter option, however, is not
recommended if only if only a small number (compared to the number of label sets) of
training data is available, as is the case in most real-world applications.

6 Conclusion and Outlook

Multi-label classification problems are often addressed by reduction to a independent
single-label multi-class problems. While this approach is conceptually simple and re-
sults in tractable optimization problems, we have shown that such a classifier is incon-
sistent with a large group of generative models for data generation. It will therefore
suffer from model mismatch.

The presented statement is valid for generative classifiers on data generated with a
combination function which is a bijection in any of its arguments and which inverse with
respect to one argument is an analytic function. The source distributions are assumed
to be analytic functions. We conjecture that a similar statement as the one presented in
this paper can be made for a larger class of combination functions, and further types of
classifiers.

Furthermore, an important task is the quantification of the mismatch. This will allow
to compare the error incurred due to model mismatch with other sources of error (e.g.
due to unprecise estimators obtained from a small sample set) and thus to choose the
most reliable estimation procedure for a given task.

Appendix

Proof of Lemma 1: The independence implies p12(ξ1, ξ2|θ1, θ2) = p1(ξ1|θ1)·p2(ξ2|θ2),
thus

∂2p12(ξ1, ξ2|θ1, θ2)
∂θ1∂θ2

=
∂ṗ1(ξ1|θ1)

∂θ2
p2(ξ2|θ2) + ṗ1(ξ1|θ1)ṗ2(ξ2|θ2) . (14)

Since p1(·) is independent of θ2, the first summand is zero. If θ1 has the maximum
likelihood value, ṗ1(ξ1|θ1) = 0, and the sum is equal to zero. �

Proof of Lemma 2: Using the notation of Section 4.3, the log-likelihood of a data item
Dn = (xn,Ln) with binary label set Ln = {s1, s2} can be written as

`(Θ;Dn) = logP (Ln) + log
(∫

p1(ξ)p2(cκ(ξ, xn)) dξ
)
. (15)
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Recall that the likelihood of the parameter vector θ1 is assumed to depend only on data
items which contain s1 in their label set, and that sources are assumed to emit i.i.d.
samples. Thus, the derivative of the log-likelihood of the data set D with respect to
θ1,c1 can be written as

∂`(Θ; D)
∂θ1,c1

=
N∑
n=1

Ln={s1}

∂`(Θ,Dn)
∂θ1, c1

+
N∑
n=1

Ln={s1,νn}

∂`(Θ,Dn)
∂θ1,c1

. (16)

The first summand on the right hand side of Equation 16 accounts for single label data.
By the definition of the inference procedure I, the parameter vector θ2 and the sum
are independent. The second term describes the influence of data items with two labels.
Again due to the assumption of I, its derivative with respect to θ2,c2 vanishes for all n
with νn 6= s2. For the remaining n with Ln = {s1, s2}, we have, using Lemma 1:

N∑
i=1

Ln={s1,s2}

∂

∂θ2,c2

{
∂`(Θ; D)
∂θ1,c1

}
= 0 .

Deriving `(Θ;Dn) as defined in Eq. 15 with respect to θ1,c1 and interchanging the
derivation and the integration yields

N∑
n=1

Ln={s1,s2}

∂

∂θ2,c2


∫ ( ∂p1(ξ)

∂θ1,c1

∣∣∣
θ1,c1=θ̂1,c1

· p2(cκ(ξ, x))
)

dξ∫
p1(ξ)p2(cκ(ξ, x)) dξ

 = 0 .

Applying the derivation with respect to θ2,c2 and using the introduced notation, one gets
Eq. 4. �

Proof of Lemma 3: The proof mainly consists of computing the Taylor series of all inte-
grands around ξ = 0. The resulting polynomials are then integrated and the coefficients
reordered.

The Taylor series of a function f(x) around x0 is defined as

T (f, x0, x) =
∞∑
k=0

f (k)(x0)
k!

(x− x0)k ,

where f (k)(x0) is the kth derivative of f evaluated at x0. The kth derivative of a product
f(x) = f1(x) · f2(x) is given by the Leibnitz’s law as

f (k)(x) =
k∑
j=0

(
k

j

)
f

(j)
1 (x) · f (k−j)

2 (x) .

The generalization of the chain rule for derivatives of higher order is given by Faà
di Bruno’s formula:

∂m

∂xm
{f(cn(0))} = Sm(f, n) ,
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with Sm(f, n) defined in Eq. 11. The Taylor series of the four integrands are thus:

ṗ1(ξ) · ṗ2(cn(ξ)) =
∞∑
l=0

ξl

l!

l∑
m=0

{(
l

m

)
ṗ
(l−m)
1 (0) · Sm(ṗ2, n)

}

p1(ξ) · p2(cn(ξ)) =
∞∑
l=0

ξl

l!

l∑
m=0

{(
l

m

)
p
(l−m)
1 (0) · Sm(p2, n)

}

p1(ξ) · ṗ2(cn(ξ)) =
∞∑
l=0

ξl

l!

l∑
m=0

{(
l

m

)
p
(l−m)
1 (0) · Sm(ṗ2, n)

}

ṗ1(ξ) · p2(cn(ξ)) =
∞∑
l=0

ξl

l!

l∑
m=0

{(
l

m

)
ṗ
(l−m)
1 (0) · Sm(p2, n)

}
.

(17)

After integrating the two polynomials separately, multiplying and re-arranging terms,
we get the expressions presented in the Lemma. �

Proof of Lemma 4: The proof is done by induction over the order of the derivative.
Base case: Equations 6 and 17 show that setting C0

lhs = C0
rhs and C1

lhs = C1
rhs im-

plies that all integration constants are equal to zero (unless we are willing to accept
constraints on the probability densities and their derivatives). With this, the non-zero
terms of Cklhs and Ckrhs for k = 2, 3 are identical and thus do not allow to draw any
conclusions on the value of the derivatives of the inverse combination function cn(·).
C4
lhs − C4

rhs is the first non-vanishing difference between the coefficients that contains
a derivative of cn(·):

C4
lhs − C4

rhs =
1
12
· c(1)(0) ·

(
ṗ1(0) · p(1)

1 (0)− p1(0) · ṗ(1)
1 (0)

)
·
∑
n

ṗ2(cn(0)) · p(1)
2 (cn(0))− ṗ(1)

2 (cn(0)) · p2(cn(0))
p(xn)2

.
(18)

Requiring the left-hand side to be zero implies that at least one factor on the right-hand
side has to be zero. Requiring one of the two factors containing probability densities
to be zero might be impossible or at least a very hard constraint on the family of dis-
tributions and its parameters1. The only factor in Equation 18 which is independent of
probability densities is c(1)(0). Therefore C4

lhs = C4
rhs implies c(1)(0) = 0.

Inductive Step: Assume that, for some integer z ≥ 1, we have used the conditions
Ck+3
lhs = Ck+3

rhs for k = 1, . . . , z to derive c(1)(0) = . . . = c(z)(0) = 0. Using this
inductive claim, we show that c(z+1)(0) = 0 follows from the condition Cz+3+1

lhs =
Cz+3+1
rhs .

The expression for Cz+4
lhs can be derived from Eq. 6 with α = lhs and k = z + 4.

Consider Cllhs,1 as defined in Eq. 7: Since c(i)(0) = 0 for i ≤ z by the induction claim,

1 Consider e.g. the univariate Gaussian distributions p1(z) = N (µ1, σ
2
1). With ṗ1(z) = p1(z) ·

z−µ1
σ2
1

, p(1)
1 (z) = −p1(z) · z−µ1

σ2
1

and ṗ(1)
1 (z) = p1(z) · (z−µ1)2−σ2

σ4
1

, we get ṗ1(0) · p(1)
1 (0)−

p1(0) · ṗ(1)
1 (0) = − [p1(z)]

2 1
σ2
1

. This expression is different from 0 for all parameters and z.
A similar reasoning is applicable for the sum over n.
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bm(t, ṗ2, n) is zero whenever there is a i ≤ z with ni > 0. Nonzero contributions to
Sm(ṗ2, n) are therefore only possible if either m = 0 or m > z. If m = 0, we have
b0(t, ṗ2, n) = ṗ2(cn(0)). In the second case, z < m ≤ l − 1 and l ≤ z + 3 limit the
possible values of m to m = z+ 1, m = z+ 2 and m = z+ 3. Hence, the only t ∈ Tm
leading to a nonzero contributions are tm = 1 and ti = 0 for all i 6= m. Therefore,

Sm(p2, n) =
{
ṗ
(1)
2 (cn(0)) · c(m)(0) if z < m ≤ z + 3

0 otherwise.

Now consider Cllhs,2, defined in Eq. 8: With the same argumentation as above, we
see that all terms with 0 < m < z + 1 will become zero. Similar reasonings allow
to filter out non-zero contributions to Cz+4

rhs . Thus, elementary but lengthy calculations
and separating different derivatives of cn(·) lead to:

Cz+4
lhs =σz+4

lhs +
∑
n

1
p(xn)2

(
ṗ1(0) · ṗ2(cn(0)) · p(1)

1 (0) · p(1)
2 (cn(0))

+p1(0) · p2(cn(0)) · ṗ(1)
1 (0) · ṗ(1)

2 (cn(0))
)
· z + 2

(z + 3)!
· c(z+1)
n (0)

+
∑
n

1
p(xn)2

(
ṗ1(0) · ṗ2(cn(0)) · p1(0) · p(1)

2 (cn(0))

+p1(0) · p2(cn(0)) · ṗ1(0) · ṗ(1)
2 (cn(0))

)
· 1

(z + 3)!
· c(z+2)
n (0)

Cz+4
rhs =σz+4

rhs +
∑
n

1
p(xn)2

(
p1(0) · ṗ2(cn(0)) · ṗ(1)

1 (0) · p(1)
2 (cn(0))

+ṗ1(0) · p2(cn(0)) · p(1)
1 (0) · ṗ(1)

2 (cn(0))
)
· z + 2

(z + 3)!
· c(z+1)
n (0)

+
∑
n

1
p(xn)2

(
p1(0) · ṗ2(cn(0))ṗ1(0) · p(1)

2 (cn(0))

+ṗ1(0) · p2(cn(0)) · p1(0) · ṗ(1)
2 (cn(0))

)
· 1

(z + 3)!
· c(z+2)
n (0) .

σz+4
lhs and σz+4

rhs are sums over terms not containing any derivatives of cn(·). Re-arranging
terms and changing summation orders, we get σz+4

lhs = σz+4
rhs .

Finally, the difference Cz+4
lhs − C

z+4
rhs is:

z + 1
2 · (z + 3)!

· c(z+1)(0)

·
∑
n

1
p(xn)2

((
p
(1)
1 (0) · ṗ1(0)− p1(0) · ṗ(1)

1 (0)
)
· p(1)

2 (cn(0)) · ṗ2(cn(0))

+
(
p1(0) · ṗ(1)

1 (0)− p(1)
1 (0) · ṗ1(0)

)
· p2(cn(0)) · ṗ(1)

2 (cn(0))
)
.

As we do not want do put constraints on the source distributions, c(z+1)(0) = 0 follows
from Cz+4

lhs = Cz+4
rhs . This proves the induction step and concludes the proof of the

Lemma. �
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Proof of Corollary 1: The log-likelihood of the parameters Θ given Dn is

l(Θ;Dn) = logP (L) + log

(∫ dn∏
i=1

p
s
(i)
n

(ξi|θs(i)n ) · δkκ(ξ)=xn dξ

)
,

and the derivative of the parameter likelihood given the training set D is

∂`(Θ; D)
∂θ1,c1

=
K∑
d=1

∑
n:dn=d
s1∈Ln

∂`(Θ;Dn)
∂θ1,c1

.

Proceeding like in the proof of Lemma 2, we get

K∑
d=1

∑
n:dn=d
s1∈Ln

∫
p(ξ(−1,2)

n )ṗs1(ξ(1)n )ṗs2(ξ(2)n ) dξn
p(xn)2

=
K∑
d=1

∑
n:dn=d
s1∈Ln

∫
p(ξ(−1)

n )ṗs1(ξ(1)n ) dξnp(xn) ·
∫
p(ξ(−2)

n )ṗs2(ξ(2)n ) dξn
p(xn)2

,

(19)

with the following definitions for a more compact notation:

p(ξ(−1)
n ) :=

∏
s∈Ln\{s1}

ps(ξ(s)n ) p(ξ(−2)
n ) :=

∏
s∈Ln\{s2}

ps(ξ(s)n ) p(ξ(−1,2)
n ) :=

∏
s∈Ln\{s1,s2}

ps(ξ(s)n ) .

The factors p(ξ(−1)
n ), p(ξ(−2)

n ), and p(ξ(−1,2)
n ) are independent of ξ1 and ξ2 and carry

through the integration (with respect to ξ1 and ξ2) and the Taylor series. The equal-
ity of the coefficients of the Taylor series implies again that the combination function
is constant with respect to one argument, thus contradicting the assumption that the
combination function is a bijection. �
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Abstract. Binary relevance (BR) learns a single binary model for each different
label of multi-label data. It has linear complexity with respect to the number of
labels, but does not take into account label correlations and may fail to accurately
predict label combinations and rank labels according to relevance with a new in-
stance. Stacking the models of BR in order to learn a model that associates their
output to the true value of each label is a way to alleviate this problem. In this
paper we propose the pruning of the models participating in the stacking process,
by explicitly measuring the degree of label correlation using the phi coefficient.
Exploratory analysis of phi shows that the correlations detected are meaningful
and useful. Empirical evaluation of the pruning approach shows that it leads to
substantial reduction of the computational cost of stacking and occasional im-
provements in predictive performance.

1 Introduction

Supervised learning has traditionally focused on the analysis of single-label data, where
training examples are associated with a single label λ, from a set of disjoint labels L.
However, training examples in several application domains are often associated with
a set of labels Y ⊆ L. Such data are characterized as multi-label. Though methods
for learning from multi-label textual data have been proposed since 1999 [14, 19], the
years that followed witnessed an increasing number and diversity of applications, such
as bioinformatics (e.g. functional genomics) [5, 8, 2, 4, 1, 34], semantic annotation of
images [3, 32, 35] and video [17, 20], directed marketing [36], music categorization into
genres and emotions [13, 24, 15] and automated tag suggestion in collaborative tagging
systems [10, 21].

Binary relevance (BR), one of the most popular multi-label learning methods in
the literature, learns a single binary model for each different label of multi-label data
independently of the rest of the labels. It has linear complexity with respect to the
number of labels and can learn highly optimized (independent parameter optimization
process) and potentially specialized (different learning algorithm) binary classifiers for
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each label using state-of-the-art learning algorithms. In addition, BR can predict arbi-
trary combinations of labels, without being restricted to those existing in the training
set, as is the case for the label powerset algorithm for example [18]. On the other hand,
it does not take into account label correlations and may fail to accurately predict label
combinations or rank labels according to relevance with a new instance.

One approach that has been proposed in the past in order to deal with the aforemen-
tioned problem of BR, works generally as follows: It learns a second (or meta) level
of binary models (one for each label) that consider as input the output of all first (or
base) level binary models. It will be called 2BR, as it uses the BR method twice, in two
consecutive levels. 2BR follows the paradigm of stacked generalization [31], a method
for the fusion of heterogeneous classifiers, widely known as stacking.

Variations of 2BR have been successfully used (i.e. achieved improved accuracy
compared to BR) by several communities. To the best of our knowledge, it was firstly
used by the machine learning and knowledge discovery community in [9], as part of
their SVM-HF method, which was based on a support vector machine (SVM) algorithm
for training the binary models of both levels. The abstraction of SVM-HF irrespectively
of SVMs and its relation to stacking was pointed out in [26, 25]. A very interesting
account of the use of 2BR by the image and video processing community is given in
Section 1.2 of [17], where it is called context based conceptual fusion. Some of the
references therein, precede [9] in date. Finally, 2BR was very recently applied to the
analysis of musical titles [15].

As 2BR is based on binary classification models, it retains the aforementioned ad-
vantages of BR, apart from the linear time complexity with respect to the number of
labels. The number of labels affects both the number of models trained at the meta-
level and the dimensionality of their input vector. Another disadvantage of 2BR raises
from the fact that some labels can be completely uncorrelated with others. A label that
is irrelevant with the one being modeled is not only lacking additional, valuable infor-
mation for the classification system, but it also introduces extra inherent noise from the
base level.

In this paper we propose pruning the base-level models that are considered as input
to the meta-level models based on the correlation of labels. The φ coefficient is used
to calculate the correlation of each label pair based on an initial single pass over the
training set. Labels with correlation below a threshold with the label being learned at the
meta-level are pruned and the dimensionality of the meta-level feature space is reduced.
This approach improves the system efficiency substantially, without significant loss in
predictive performance. In some datasets there are even gains in performance due to the
reduced noise being introduced to the system.

The rest of this paper is structured as follows. The next section presents the base-
line 2BR algorithm, along with the proposed pruning approach. Section 3 describes an
exploratory analysis of the distribution and semantics of the φ correlation coefficient
based on a variety of multi-label data sets. Section 4 describes the setup and results
of the empirical evaluation of the proposed approach. Finally, Section 5 concludes and
points to interesting extensions of this work for the future.



103

2 Pruning the 2BR method

This section first gives a formal description of the baseline 2BR method that we adopted
in this work. It then motivates the pruning of base-level predictions at the meta-level and
presents our approach to achieving it.

2.1 Baseline 2BR

We first provide some notation for the formal description of the algorithm. Let L =
{λj : j = 1 . . .M} denote the finite set of labels in a multi-label learning task and
D = {(xi, Yi), i = 1 . . . N} denote a set of multi-label training examples, where xi is
the feature vector and Yi ⊆ L the set of labels of the i-th example.

2BR accepts as parameters a number of folds F , a base-level binary classification
algorithm and a meta-level binary classification algorithm.

The first step of 2BR concerns training the base-level models and gathering their
predictions on a set of training examples in order to construct the meta-level training
data. One approach here is to use the full training set for both base-level training and
prediction gathering [9]. This however can lead to biased meta-level training data. An
alternative approach is to hold part of the training set for gathering the predictions. This
can lead to a reduced meta-level training set if the original training set is small. This
fact was actually one of the two arguments posed against 2BR in [17]. An approach in-
between these two was used in [15]: for each label the training was based on a sample of
the majority class (typically corresponding to the absence of a label) in order to balance
the class distribution.

We follow a different approach here, which makes use of the complete training set
for both training and prediction gathering but avoids the biasing problem. Initially, the
algorithm splits the training data randomly into F disjoint parts, Dk, k = 1 . . . F , of
approximately equal size. This process is done separately for each label and indepen-
dently of the rest of the labels, so that the distribution of each label in each part is
similar to its distribution in the complete training set, as in stratified cross-validation.
Subsequently, the base-level algorithm is employed k = 1 . . . F times for each label
using the set D \ Dk for training and the set Dk for evaluation. This process leads to
a meta-level training set D′ = {(yi, Yi), i = 1 . . . N}, where yi is a vector containing
the predictions of the base-level algorithm for each λj given xi. Value yij denotes the
confidence of the algorithm in the annotation of xi with label λj .

The last two steps of 2BR involve: a) training one base-level binary classification
model Bj for each label using the base-level algorithm on the complete training set,
and b) training one meta-level classification model Mj using the meta-level algorithm
on the meta-level training set.

For the classification and/or ranking of a new instance x′, first the decision y′j of
each model Bj is obtained. Then the vector of all decisions y′ forms a meta-instance,
which is given as input to each of the meta-models Mj . Based on the binary output of
these models we can obtain a bipartition of the labels (multi-label classification), while
if the output is numeric (confidence, probability estimate, etc), then a ranking can also
be obtained.
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The complexity of 2BR depends on the complexity of the base-level and meta-
level algorithms used. If these are given by f(A,N) and g(A,N) respectively for a
training set with N examples and A attributes, then the time complexity of 2BR is
O(M [Ff(A,N) + g(M,N)]). The complexity of 2BR with respect to M depends
on that of the meta-level learning algorithm with respect to the number of features. For
example, if g(A,N) is linear with respect toA, then the complexity of 2BR is quadratic
with respect to M .

2.2 Correlation-Based Pruning

In this paper we argue that each meta-level model should not be trained using the pre-
dictions of all base-level models. Base-level models corresponding to labels that are
not correlated with the label of the given meta-level model should instead be pruned.
The motivation is that the higher dimensionality of the input space will only lead to
higher cost of training the meta-models, while it might also hurt the generalization of
the meta-models.

To achieve our goal, we utilize the φ correlation coefficient, a specialized version
of the Pearson product moment correlation coefficient for categorical variables with
two values, also called dichotomous variables [6]. Given two labels, λi and λj , and the
frequency counts of the combinations of their values given in Table 1, the coefficient is
defined as follows:

φ =
AD −BC√

(A+B)(C +D)(A+ C)(B +D)
(1)

λj ¬λj
λi A B
¬λi C D

Table 1. Contingency table for labels λi and λj .

The pruned version of 2BR accepts a threshold of φ correlation as a parameter,
denoted t, where 0 ≤ t ≤ 1. When constructing the meta-level training examples for
a label λ it only takes into account the predictions of the base-level models for those
labels λ′ ∈ L whose absolute value of the φ correlation with λ is greater or equal to t:
|φ(λ′, λ)| ≥ t. Obviously, the predictions of the base-level model for λ will always be
taken into account, as φ(λ, λ) = 1.

If M ′ is the largest number of base-level models whose predictions are taken into
account at the meta-level, then the complexity of the pruned version of 2BR becomes
O(M [Ff(A,N) + g(M ′, N)]). With appropriate selection of the threshold φ, M ′ can
be a much smaller number compared to M , reducing the complexity of 2BR to lin-
ear with respect to the number of labels. Alternatively, by explicitly selecting a small
number M ′ of most correlated labels, the linear complexity can be guaranteed.
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An approach based on a similar idea, but applied to multiple numerical target vari-
ables using decision tree learners, is the Empirical Asymmetric Selective Transfer (EAST)
[16]. For each label, EAST performs a greedy forward selection hill climbing search in
the space of label subsets, guided by the accuracy of the model. This search process has
quadratic complexity with respect to the number of labels. If we also consider the need
to train the model at each step, then in the best case this raises the complexity to cubic
with respect to the number of labels. Finally, since this process has to be done for all
labels, the overall complexity of EAST is quartic with respect to the number of labels.
Therefore, EAST is highly inefficient and unsuitable for domains with large numbers
of labels. EAST has a clearly different focus (accuracy) compared to our approach (ef-
ficiency).

3 Exploratory Analysis of the φ Coefficient

This section explores the distribution of the φ coefficient in several multi-label data sets
in order to derive conclusions on a meaningful range of values for setting the threshold
parameter t of the pruned 2BR during the experiments that follow. We also attempt to
gain some insight on the semantics underlying the numerical values of the φ coefficient
by examining the names of the labels in two of these data sets.

3.1 Data sets

We explore the φ coefficient on 7 multi-label data sets3. Table 2 includes several statis-
tics for each of these data sets [25], including the average number of labels per exam-
ple (label cardinality) and the number of distinct label combinations distinct labelsets.
Short descriptions of these data sets are given in the following paragraphs.

Table 2. Multi-label data sets and their statistics.

attributes label label distinct
name examples nominal numeric labels cardinality density labelsets
bibtex 7395 1836 0 159 2.402 0.015 2856
enron 1702 1001 0 53 3.378 0.064 753
mediamill 43907 0 120 101 4.376 0.043 6555
medical 978 1449 0 45 1.245 0.028 94
reuters 6000 0 47236 101 2.880 0.029 1028
tmc2007 28596 49060 0 22 2.158 0.098 1341
yeast 2417 0 103 14 4.237 0.303 198

The yeast data set [8] contains micro-array expressions and phylogenetic profiles
for 2417 yeast genes. Each gene is annotated with a subset of 14 functional categories
(e.g. metabolism, energy, etc) from the top level of the functional catalogue (FunCat).

3 Available at http://mlkd.csd.auth.gr/multilabel.html
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The tmc2007 data set is based on the data of the competition organized by the text
mining workshop of the 7th SIAM international conference on data mining4. The orig-
inal data contained 28596 aviation safety reports in free text form, annotated with one
or more out of 22 problem types that appear during flights [22]. Text representation
follows the boolean bag-of-words model.

The medical data set is based on the data made available during the computational
medicine center’s 2007 medical natural language processing challenge5. It consists of
978 clinical free text reports labeled with one or more out of 45 disease codes.

The enron data set is based on a collection of email messages exchanged between
the Enron Corporation employees, which was made available during a legal investiga-
tion. It contains 1702 email messages that were categorized into 53 topic categories,
such as company strategy, humor and legal advice, by the UC Berkeley Enron Email
Analysis Project6.

The mediamill data set was part of the Mediamill challenge for automated detec-
tion of semantic concepts in 2006 [20]. It contains 43907 video frames annotated with
101 concepts (e.g. military, desert, basketball, etc). The specific dataset we used cor-
responds to experiment 1 (visual feature extraction) as described in [20]. Each video
frame is characterized by a set of 120 visual features.

The bibtex data set [10] is based on the data of the ECML/PKDD 2008 discovery
challenge. It contains 7395 bibtex entries from the BibSonomy social bookmark and
publication sharing system, annotated with a subset of the tags assigned by BibSonomy
users (e.g. statistics, quantum, datamining). The title and abstract of bibtex entries were
used to construct features using the boolean bag-of-words model.

The reuters (rcv1) data set is a well known benchmark for text classification meth-
ods. We have used a subset (rcv1subset1) that contains 6000 news articles assigned into
one or more out of 101 topics. An extensive description of the rcv1 dataset can be found
in [12].

3.2 Mean Label Correlation

Figure 1 depicts a plot of the number of label pairs that exhibit φ correlation greater or
equal to the corresponding value of the x axis, divided by the total number of labels. We
call this number mean label correlation as it corresponds to the mean number of corre-
lations of each label that surpass a given threshold of positive or negative φ correlation.
The plot shows the mean label correlation for the 7 multi-label datasets with respect to
a threshold ranging from 0 to 0.3 with a step of 0.01.

Constructing such a plot prior to the execution of 2BR is fast, as it requires a single
pass over the data. Based on the calculated correlations of all label pairs, we can choose
the threshold parameter t of 2BR, in a way such that a small number of base-level
classifiers remains on average for each label, depending on the boost in efficiency that
we would like to achieve. The plot shows that after a threshold of 0.3, each label is on
average correlated with less than one label (apart from itself) for all datasets.

4 http://www.cs.utk.edu/tmw07/
5 http://www.computationalmedicine.org/challenge/
6 http://bailando.sims.berkeley.edu/enron email.html
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Fig. 1. Mean label correlation with respect to increasing absolute φ thresholds in seven multi-label
data sets.

Note also that there seems to be a slight correlation between the cardinality of the
dataset and the mean number of label correlations per given φ threshold. For example,
the curves of yeast and mediamill with a cardinality of around 4 seem to be on top of
the rest, despite the difference in number of labels, while on the other side, the curves
of tmc2007 and medical, with the smallest cardinality, seem to be lower than the rest of
the curves.

3.3 Semantic Analysis of the φ Coefficient

The φ coefficient of correlation between pairs of labels is estimated from data sets that
are typically annotated manually. Manual annotations can be incomplete, erroneous
and even biased depending on target and time constraints of the labeling procedure,
the accuracy of the labeling effort, and the content of the dataset being labeled. Taking
into account all these possible complications, it is useful to examine whether a direct
analogy between the φ-based and the semantic-based correlation of two labels exists in
practice.

In the radar/spider diagram of Figure 2, the φ coefficient between two indicative
labels, namely building and government leader, and the rest of the labels from the me-
diamill dataset is depicted. Due to the high number of labels (101), some of them were
removed from the diagram to make it more legible. The labels that were removed had
zero or close to zero φ values with both of the illustrated labels. Moreover, the zero cor-
relation level is highlighted to help the reader distinguish between positive and negative
values. It must also be noted that the autocorrelation for both examined labels, equal to
1, has been removed to enhance legibility.
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Fig. 2. Radar/spider diagram of the φ correlation coefficient of Building and Government Leader
with the rest of the labels.

The label building is depicted in the graph with the thick black line. It is positively
correlated with the labels outdoor, sky, road, car, truck, vehicle, tree, crowd, house, and
government building. The labels house and government building have a direct semantic
relation with the label building. outdoor and sky are not part of the concept building but
they often accompany it in images. This can be explained by the tendency of human
annotators to label an image as building when the entire building, or at least a good
part of it, is depicted. To have such a perspective, the image is taken outdoors and
most probably the sky is part of the image. Moreover the concept building is strongly
related with an urban or suburban environment. In such an environment, the labels road,
car, truck, vehicle, tree and crowd are very common. On the other hand, studio, face,
indoor, male, government leader, meeting and people are labels that do not co-occur
with building in this dataset. With the exception of label people that will be further
discussed, all labels are not conceptually compatible with building. Label people is
very similar to Crowd and there seems to be an incompatibility. The difference here is
in the area of interest. An image depicting a building is not focused on people, making
them a crowd without faces and gender. There are also a number of labels like religious
leader, overlayed text, cartoon, Clinton, Arrafat, sports, natural disaster etc that have
zero correlation. These labels show a random relation with the examined one, signaling
that the added value that they may offer is very limited if existent.
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The label government leader is depicted in the graph with the thick grey line. It
is strongly and positively correlated with the labels Allawi, Bush Jr, Bush Sr, Kerry,
Lahoud, Powel, chair, corporate leader, crowd, face, flag, flag USA, meeting, table,
people and male. All of them can be mapped to international meetings between leaders
and public appearances. Negative φ correlation exists with female, studio, sports, road,
outdoor, car and building. Judging from the correlations, we can argue that label gov-
ernment Leader seems to be biased due to the dataset that is available for the training.
It includes mostly American and Arab leaders meeting indoors in an office. Outdoor
appearances, female leaders, talks in front of buildings that could also be relevant to the
government leader label are under-represented in this dataset.

The radar/spider diagram of Figure 3, depicts the φ coefficient between two indica-
tive labels, namely alliances/partnerships and company image - changing/influencing,
and the rest of the labels from the enron data set. For legibility reasons some labels
were removed, and the names of others were shortened or abbreviated in the diagram.
All labels that were removed have again zero correlation with the examined labels or a
uniform correlation with all the labels.

Fig. 3. Radar/spider diagram of the φ correlation coefficient of alliances/partnerships and com-
pany image - changing influencing with the rest of the labels.

At this point it is useful to provide some additional background information about
the enron dataset in order to support the task of the semantic analysis that follows. As
discussed in section 3.1, enron is based on a collection of e-mail messages. These mes-
sages were exchanged between employees of the Enron energy corporation and became
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available during the legal investigation of a financial scandal, involving Enron and its
accounting firm. The data set consists of 53 labels, belonging to 4 main categories,
namely Coarse genre, Included/forwarded information, Primary topic and Emotional
tone. Taking this information into consideration we can explain the inconsistency be-
tween some label groups, since they refer to 4 different aspects of an e-mail message.
Both the illustrated labels of the radar diagram fall into the Primary topics main cate-
gory.

The label alliances/partnerships is depicted in the graph with the thick grey line.
It has a strong positive correlation with the labels gratitude, secrecy/confidentiality and
press release(s) while a weaker positive correlation emerges with the labels anger/agitation
and business letter(s)/document(s). An e-mail message with alliances/partnerships as
the primary topic, is likely to have an emotional tone of gratitude, following a successful
partnership, or a tone of secrecy/confidentiality regarding a prospective alliance, prod-
uct etc. Furthermore, the reference to press release(s) or business letter(s)/document(s)
in such a message is normal in business practice. On the other hand, a failed partnership
can provoke negative emotions, justifying the correlation with the label anger/agitation.
The most negatively correlated label is competitiveness/ag-gressiveness. Again this
seems reasonable, since a message labeled as alliances/ partnerships is usually lack-
ing aggressive and competitive tones.

The label company image - changing influencing is depicted in the graph with
the thick black line. It is positively associated with the labels worry/anxiety, press
release(s), newsletters, concern, sympathy/support and internal company operations.
For these labels, the conceptual correlation with the changing image of the company
is quite straightforward. For example the strong correlation of worry/anxiety and con-
cern is totally substantiated, considering the darksome future of the company which
came in the verge of bankruptcy. On the other hand a negative φ correlation is re-
vealed with the labels government action(s), employment arrangements, sarcasm and
alliance/partnerships. All these labels are referring to actions and emotions regarding
the internal affairs of a company, thus having a negative correlation with company im-
age.

Concluding this section we can state that the φ coefficient is able to capture both
real-life and semantic-based correlations between labels. Furthermore, it is able to point
out relations that are not straightforward, e.g. the differences between people and crowd
or the differences between internal and public affairs in a company. Our experiments
have shown that in two publicly available datasets with diverse data the relationships
mapped are valid and they can prove valuable. Despite its effectiveness, the φ coeffi-
cient is still dependent on the dataset from which it is extracted and the quality of the
annotation.

4 Empirical Evaluation

We empirically evaluate the utility of the proposed approach by measuring the per-
formance of the pruned BR2 on the yeast and enron data sets, using threshold values
ranging from 0 (no pruning) to 0.3 with a step of 0.03. As we saw in the previous
section, threshold values greater than 0.3 are not expected to lead to great changes in
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predictive performance or computational efficiency, as the mean number of correlated
labels is already less than two.

In order to be able to draw general conclusions, this comparison should be made
with a variety of base and meta-level algorithms. To restrict the large space of experi-
ments, in this paper we focus on decision trees (DT) and linear kernel support vector
machines (SVM) for both base-level and meta-level learning. We also use linear re-
gression (LR) at the meta-level, based on the good results for stacking heterogeneous
classifiers (i.e. based on different learning algorithms) reported in [23]. In the plots that
follow, meta-level DTs, SVMs and LRs are marked with circles, stars and dots respec-
tively.

We used the implementations of the above algorithms from the Weka library [30].
We did not perform any parameter optimization for the above algorithms and used them
with their default settings, apart from DTs, where Laplace smoothing of the predicted
probabilities was enabled. We implemented 2BR by extending the Mulan open source
Java library for multi-label learning [29], which works on top of the Weka API.

The performance of 2BR is evaluated in terms of two criteria: a) efficiency, which is
measured by the average dimensionality of the meta-level feature vector, and b) accu-
racy, which is measured using: i) micro F1, which evaluates bipartitions, and ii) average
precision, which evaluates rankings. A description of these and other evaluation mea-
sures for multi-label data can be found in [28].

Figure 4 shows the micro F1 in enron. DTs and SVMs are employed as base-level
algorithms in sub-figures (a) and (b) respectively. For base-level DTs, pruning seems to
increase performance. All meta-level algorithms, namely DT, SVM, and LR, achieve
their peak values while employing pruning. Especially for DTs and SVMs, which are
the best performing algorithms, the improvement of the F1 measure is substantial. For
base-level SVMs, the performance of the meta-level algorithms is either improved or
stable with minor variations in terms of the F1 measure.
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Fig. 4. Micro F1 in enron.

Figure 5 depicts the micro F1 in yeast. The performance trend is the same as in
the previous data set. For all combinations of algorithms, the peak value of micro F1

is obtained with pruning for different thresholds of φ. Overall, pruning is enhancing
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the accuracy of the examined algorithms. Their accuracy is either kept constant, or
improved, sometimes substantially.
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Fig. 5. Micro F1 in yeast.

In analogy to micro F1 the average precision is depicted in Figures 6 and 7. In
enron, pruning is improving the average precision in all cases. Using a DT at both the
base and the meta-level gives the best performance in Figure 6(a) showing an almost
linear improvement as the φ threshold increases. When SVMs are used at the base-level,
average precision is almost constant with the peak values obtained always with the aid
of pruning.
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Fig. 6. Average precision in enron.

For the yeast dataset the conclusions are similar. With the exception of base-level
DTs with meta-level LRs, where the performance shows an insignificant decrease, in
all other cases pruning seems to improve average precision, including the peak perfor-
mance. Especially the combination of base and meta-level DT seems to significantly
benefit from pruning.

In order to validate the usefulness of pruning we have employed two data sets,
three learning algorithms in eight different configurations and two different metrics.
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Fig. 7. Average precision in yeast.

According to our experiments, the learning procedure seems to benefit from pruning. In
several cases there are significant performance improvements, while in all other cases
there is no substantial deviation from the accuracy of the baseline 2BR results.

Moreover, the label elimination that takes place, significantly reduces the system
complexity, thus increasing its time-efficiency, in all cases where |φ| > 0. Table 3 shows
the reduction of the average number of classifiers employed in the meta-level learning
for different φ thresholds. It suggests that if we bounded the number of labels from
the base-level that contribute to the prediction of a label at the meta-level, to a small
number (e.g. 5), we could achieve the same or better results at a linear time complexity
with respect to M .

0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.30
enron 19.34 10.25 7.08 5.42 4.70 4.21 3.98 3.64 3.34 3.34
yeast 11.57 8.85 8.00 6.29 4.86 4.57 4.00 3.86 3.57 2.86

Table 3. Average number of classifiers being stacked for different φ thresholds and data sets.

5 Conclusions and Future Work

In our view, one of the important contributions of this paper is the use of the φ coeffi-
cient to explicitly quantify the correlation between labels. We believe that this can help
improve the scalability and predictive performance of other multi-label methods be-
yond BR2 as well. For example, in RAkEL [29], it could be used to construct subsets of
correlated labels, with potentially improved performance. It could play the role of the
similarity measure in the clustering phase of HOMER [27], perhaps leading to more
appropriate clusters. Finally, in DML-kNN [33], it could be utilized in the construction
of the margin vectors that are used to characterize the dependency level between labels.

One of the advantages of 2BR, as a classifier fusion method, is that it can encom-
pass additional base-level models at the meta-level. This can be very helpful when the
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objects to be classified are characterized by different representations (e.g. textual, mi-
croarray and clinical descriptors of gene functions) [11, 7]. It can also help with the
fusion of heterogeneous base-level classifiers, leading to an improvement of the overall
performance. Exploring this direction is among our near future plans, especially since
the results of this paper showed that different algorithms work well in different datasets.
In both of these scenarios (heterogeneous descriptors and learning algorithms) the prun-
ing is expected to play a more prominent role, as the dimensionality of the meta-level
feature vector will grow linearly by a factor equal to the number of different represen-
tations/algorithms, unless a hierarchical stacking approach is employed.

We also plan to investigate the relation of pruning to a number of variations of
the baseline 2BR algorithm, such as extending the meta-level feature vector with the
original base-level features [9, 17] and replacing the numeric meta-level features, which
represent the confidence in the binary decision of base-level classifiers, with binary
ones, representing the boolean decisions themselves [9, 15].
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11. Hans-Peter Kriegel, Peer Kröger, Alexey Pryakhin, and Matthias Schubert. Using support
vector machines for classifying large sets of multi-represented objects. In Proc. 4th SIAM
Int. Conf. on Data Mining, pages 102–114, 2004.



115

12. David D. Lewis, Yiming Yang, Tony G. Rose, and Fan Li. Rcv1: A new benchmark collection
for text categorization research. J. Mach. Learn. Res., 5:361–397, 2004.

13. T. Li and M. Ogihara. Toward intelligent music information retrieval. IEEE Transactions on
Multimedia, 8(3):564–574, 2006.

14. A. McCallum. Multi-label text classification with a mixture model trained by em. In Pro-
ceedings of the AAAI’ 99 Workshop on Text Learning, 1999.

15. F. Pachet and P. Roy. Improving multilabel analysis of music titles: A large-scale validation
of the correction approach. IEEE Transactions on Audio, Speech, and Language Processing,
17(2):335–343, 2009.

16. Beau Piccart, Jan Struyf, and Hendrik Blockeel. Empirical asymmetric selective transfer
in multi-objective decision trees. In Proceedings of the 11th International Conference on
Discovery Science, Budapest, Hungary, 2008.

17. Guo-Jun Qi, Xian-Sheng Hua, Yong Rui, Jinhui Tang, Tao Mei, and Hong-Jiang Zhang.
Correlative multi-label video annotation. In MULTIMEDIA ’07: Proceedings of the 15th
international conference on Multimedia, pages 17–26, New York, NY, USA, 2007. ACM.

18. J. Read. A pruned problem transformation method for multi-label classification. In Proc.
2008 New Zealand Computer Science Research Student Conference (NZCSRS 2008), pages
143–150, 2008.

19. Y. Schapire, R.E. Singer. Boostexter: a boosting-based system for text categorization. Ma-
chine Learning, 39(2/3):135–168, 2000.

20. Cees G. M. Snoek, Marcel Worring, Jan C. van Gemert, Jan-Mark Geusebroek, and Arnold
W. M. Smeulders. The challenge problem for automated detection of 101 semantic concepts
in multimedia. In MULTIMEDIA ’06: Proceedings of the 14th annual ACM international
conference on Multimedia, pages 421–430, New York, NY, USA, 2006. ACM.

21. Yang Song, Lu Zhang, and Lee C. Giles. A sparse gaussian processes classification frame-
work for fast tag suggestions. In CIKM ’08: Proceeding of the 17th ACM conference on
Information and knowledge management, pages 93–102. ACM, 2008.

22. A. Srivastava and B. Zane-Ulman. Discovering recurring anomalies in text reports regarding
complex space systems. In IEEE Aerospace Conference, 2005.

23. K.M. Ting and I.H. Witten. Issues in stacked generalization. Journal of Artificial Intelligence
Research, 10:271–289, 1999.

24. K. Trohidis, G. Tsoumakas, G. Kalliris, and I. Vlahavas. Multilabel classification of music
into emotions. In Proc. 9th International Conference on Music Information Retrieval (ISMIR
2008), Philadelphia, PA, USA, 2008, 2008.

25. G. Tsoumakas and I. Katakis. Multi-label classification: An overview. International Journal
of Data Warehousing and Mining, 3(3):1–13, 2007.

26. G. Tsoumakas, I. Katakis, and I. Vlahavas. A review of multi-label classification meth-
ods. In Proceedings of the 2nd ADBIS Workshop on Data Mining and Knowledge Discovery
(ADMKD 2006), pages 99–109, 2006.

27. G. Tsoumakas, I. Katakis, and I. Vlahavas. Effective and efficient multilabel classification
in domains with large number of labels. In Proc. ECML/PKDD 2008 Workshop on Mining
Multidimensional Data (MMD’08), pages 30–44, 2008.

28. G. Tsoumakas, I. Katakis, and I. Vlahavas. Mining multi-label data (accepted). In O. Mai-
mon and L. Rokach, editors, Data Mining and Knowledge Discovery Handbook. Springer,
2nd edition, 2009.

29. G. Tsoumakas and I. Vlahavas. Random k-labelsets: An ensemble method for multila-
bel classification. In Proceedings of the 18th European Conference on Machine Learning
(ECML 2007), pages 406–417, Warsaw, Poland, September 17-21 2007.

30. Ian H. Witten and Eibe Frank. Data Mining: Practical machine learning tools and tech-
niques. Morgan Kaufmann, 2005.



116

31. David H. Wolpert. Stacked generalization. Neural Networks, 5:241–259, 1992.
32. Ying Yang, G. I. Webb, J. Cerquides, K. B. Korb, J. Boughton, and Kai M. Ting. To

select or to weigh: A comparative study of linear combination schemes for superparent-
one-dependence estimators. IEEE Transactions on Knowledge and Data Engineering,
19(12):1652–1665, 2007.

33. Z. Younes, F. Aballah, and T. Denoeux. Multi-label classification algorithm derived from
k-nearest neighbor rule with label dependencies. In roceedings of the 16th European Signal
Processing Conference, August 2008.

34. M-L Zhang and Z-H Zhou. Multi-label neural networks with applications to functional
genomics and text categorization. IEEE Transactions on Knowledge and Data Engineering,
18(10):1338–1351, 2006.

35. M-L Zhang and Z-H Zhou. Ml-knn: A lazy learning approach to multi-label learning. Pattern
Recognition, 40(7):2038–2048, 2007.

36. Yi Zhang, Samuel Burer, and W. Nick Street. Ensemble pruning via semi-definite program-
ming. Journal of Machine Learning Research, 7:1315–1338, 2006.



Multi-label Classification by Analyzing Labels
Dependencies

Lena Tenenboim, Lior Rokach, and Bracha Shapira

Department of Information Systems Engineering, Ben-Gurion University of the Negev
Deutsche Telekom Laboratories at Ben-Gurion University of the Negev,

P.O.B. 653, Beer-Sheva 84105, Israel
{lenat,liorrk,bshapira}@bgu.ac.il

Abstract. This research study deals with the improvement of multi-label classi-
fication by modeling existing dependencies between labels. The main purpose of
the study is to define and develop a classification algorithm for multi-label classi-
fication tasks by partitioning the class set into several subsets. According to this
algorithm, first, dependencies among the labels are analyzed and then the whole
set of labels is divided into several mutually exclusive subsets. Finally, a classi-
fication algorithm incorporating dependencies among labels within each subset
can be applied. An experimental study shows that the proposed method has high
potential to achieve the defined objectives and improve multi-label classification
performance.

1 Introduction

Regular classification tasks deals with classifying instances to a single label. In multi-
label classification, the instances can be associated with a set of labels. Tsoumakas and
Katakis [1] provide an exhaustive overview of the existing approaches for multi-label
classification. They partition the existing methods for multi-label classification into two
main categories:

1. Problem Transformation - methods that transform the multi-label classification
problem into either one or more single-label classification or regression problems.

2. Algorithm Adaptation - methods that extend specific learning algorithms in order to
handle multi-label data directly. Examples of the application of Algorithm Adap-
tation methods for multi-label problems in the literature can be found in [2–11].
The main disadvantage of Algorithm Adaptation methods is that their application
requires changes of known classification algorithms in order to adapt them to a
specific problem.

As for Problem Transformation, the common methods used are the Binary and La-
bels Power-set (LP) approaches. According to the LP approach each different set of
labels that exists in the multi-label dataset is considered as a single label. The main
disadvantage of this method is data sparseness: datasets created based on this approach
are likely to have a large number of classes and only a few examples per class.
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This issue was recently addressed in [12]. The authors propose Pruned Sets (PS)
and Ensembles of Pruned Sets (EPS) methods to concentrate on only the most impor-
tant correlations. This is achieved by pruning away infrequently occurring label sets;
instances having a label combination occurring fewer times than the pruning parameter
are rejected. The rejected examples are then post processed and partially reintroduced
into the data by decomposing them into more frequently occurring label subsets. Finally
a process similar to the regular LP approach is applied on the new dataset. This set is
supposed to contain a limited number of frequent combinations. The authors show em-
pirically that the proposed methods are often superior to other multi-label methods over
a range of multi-labelled datasets. However, they are likely to be inefficient in domains
with large Proportion of Distinct label combinations [12] and an even distribution of
examples over those combinations. Another limitation of the PS and EPS methods is
the need to balance the trade-off between information loss and adding too many exam-
ples with smaller label sets. Also, the correlations within the decomposed label sets are
not considered.

According to the Binary approach, a multi-labeled classification problem is decom-
posed into multiple, independent binary classification problems, and the final labels for
each data point are determined by aggregating the classification results from all binary
classifiers. The main problem of this method is that possible dependencies among the
labels are ignored. Also, when a large number of binary classifiers have to be learned,
memory and classification time problems can result.

This issue was recently addressed in [13] where a new approach dealing with multi-
label classification in domains with a large number of labels was proposed. The pro-
posed algorithm (HOMER) organizes all labels into a tree-shaped hierarchy with a
much smaller set of labels at each node. Each non-leaf node contains a disjoint sub-
set of initial labels which is labeled with a new meta-label. A multi-label classifier is
then constructed at each non-leaf node, following the Binary approach. The multi-label
classification is performed recursively in a top-down manner. It starts from the root by
classification into one or more meta-labels and proceeds into the child nodes only if their
labels are among those predicted by the parent’s classifier. One of the main HOMER
processes is the clustering of the label set into disjoint subsets so that similar labels are
placed together. This is accomplished by applying a balanced k means clustering algo-
rithm on the label part of the data. Empirical evaluation showed that HOMER provides
more accurate and quicker predictions than the popular Binary approach. However, it
also ignores possible dependencies among the labels within each node.

An idea relatively close to that proposed in this research is presented in [14].
Tsoumakas and Vlahavas propose an approach that constructs an ensemble of LP clas-
sifiers. Each LP classifier is trained using a different small random subset of the set of
labels. This approach (RAKEL) aims at taking into account label correlations and at
the same time avoiding the problems of LP mentioned above. A comparison shows that
the performance is better than that achieved by applying the popular Binary Relevance
and LP methods on the full set of labels. Tsoumakas and Vlahavas note that the random
nature of their method may lead to the inclusion of models that affect the ensemble’s
performance in a negative way.
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This research aims to improve multi-label classification accuracy and computation
cost by defining and developing classification methods that discover and consider pos-
sible dependencies among labels. We propose to discover existing dependencies among
labels, in advance, before any classifiers are induced, and then to use the discovered de-
pendencies to construct a multi-label classifier. This approach will overcome the main
disadvantages of the common solutions, such as independence assumption and data
sparseness. The proposed approach should improve the accuracy of multi-labeled clas-
sification, as it tries to find the optimal tradeoff between the simplicity of the Binary
and the complexity of the Labels Power-set approaches.

In order to obtain an initial estimation of the validity of our hypotheses and a jus-
tification of our proposed methods, we ran some preliminary tests. During the tests we
compared results (in terms of classification effectiveness) of common Binary and LP
approaches with the results potentially achieved by the proposed methods. The results
show that the proposed methods can achieve superior results compared to popular stan-
dard approaches.

The rest of the paper is structured as follows: the next section outlines the research
objectives and hypothesis. We then describe the methods proposed for identification of
dependencies among labels and multi-label classification incorporating the discovered
dependencies. Finally, we describe the performed preliminary tests and present their
results.

2 Research Objectives and Hypothesis

This section describes the objectives and the hypotheses of the research. Our hypotheses
are based on the important concepts of bias and variance. Recall that bias measures the
distance between the predictions of a learning algorithm for an example and the target
value. Variance measures the effect of a training set on the predictions of the learning
algorithm.

In general, bias and variance both depend on the complexity of the model but in
opposite directions. Models that perfectly describe a specific learning set will not nec-
essarily perform well on unseen data. As the fitness of a model to a learning set in-
creases, the generality of the model decreases and the model is said to be “over-fitted”
to the dataset. Thus, we assume that there exists an optimal tradeoff between these two
sources of error.

2.1 Research Objectives

The main objective of this research is to improve multi-label classification accuracy
and time performance by defining and developing classification methods that consider
possible dependencies among labels and reduce the bias-variance error source.

We will define specific heuristic methods for all steps of the proposed classifica-
tion process, namely: discovering dependencies among labels; clustering the labels into
mutually exclusive subsets; and classification incorporating discovered dependent com-
binations. When defining the above methods we will ensure that the training and classi-
fication time will remain acceptable and as short as possible. Then, we plan to automate
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all the defined methods allowing their simple application to any classification problem,
and to examine the effectiveness of the proposed methods by running classification ex-
periments. Based on an analysis of the achieved results, we hope to be able to define
some rules of thumb for identifying the best multi-label method in terms of the accuracy
of results based on different context properties (e.g., number of concepts, training set
size, label density and cardinality, application requirements, etc.).

2.2 Hypotheses

Referring to the research goals detailed above we define the following hypotheses:
Hypothesis 1: The proposed Dependent Clusters approach for multi-label classifi-

cation performs better (in terms of accuracy) than Binary approach.
Hypothesis 2: The proposed Dependent Clusters approach for multi-label classifi-

cation performs better (in terms of accuracy) than Labels Power-set approach.
Hypothesis 3: The proposed Dependent Clusters approach for multi-label classifi-

cation results in a ’middle-complexity’ model allowing better tradeoff between bias and
variance in terms of accuracy measures.

The binary approach to multi-label classification results in a ’simple’ model with
high variance and bias. Ignoring the facts of category relations and treating single-
labeled and multi-labeled items equally simplifies the model and generalize its results.
Thus, the overall level of classification error of the process when applying this approach
will be high due to many incorrect or partially correct results.

The Labels Power-set approach to multi-label classification results in a ’compli-
cated’ model with low bias and high variance. Modeling all possible combinations of
labels will increase dependency of a model on specific samples presented in the learning
set. Also, all eventual noisy relations will be modeled, and thus the overall classification
error level will remain high.

The proposed Dependent Clusters approach for multi-label classification results in a
’middle-complexity’ model allowing optimal tradeoff between bias and variance. Con-
sidering only a relevant part of all possible combinations of labels, i.e., only highly
(or most) dependent labels, we generate a model that on the one hand treats the new
multi-label examples in a sophisticated manner, and on the other is not “over-fitted” to
the learning set. Thus, by achieving minimal bias and variance error contributors, the
overall classification error level of the model will be reduced.

Hypothesis 4: In some specific cases of classification problems, the Binary and La-
bel Power-set approaches can perform better than the proposed method. Among such
specific cases are (1) small training set and (2) few labels with sufficient training exam-
ples for all existing combinations.

For a small training set it is important to produce a more general model, and thus in
such a case the Binary approach will cope better with the problem. A reasonable number
of label combinations and sufficient training examples for each combination eliminate
the main problem of the LP approach and hint that all combinations are important and
not incidental. Thus the LP approach is expected to produce better results than just
partial modeling of dependencies and also is feasible in this case.
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3 Research Methods

To achieve the research goals presented in the previous section we defined some heuris-
tic methods based on statistical analysis of datasets. These methods allow rapid and
simple modeling of category dependencies and are supposed to lead to a solution that
is reasonably close to the best possible one.

The proposed approach consists of two main steps. The aim of the first step is to
identify preliminary dependencies and to cluster all labels into several independent sub-
sets. The second step is actually a multi-label classification incorporating the category
dependencies discovered at the previous step. For each step we propose some possible
methods. The proposed methods for the both steps are described below. In the frame-
work of this research study we will implement and evaluate each one of the proposed
methods and draw conclusions about its effectiveness depending on the applications
domain and classification algorithms.

3.1 Dependencies Identification and Clustering

The first step towards multi-label classification incorporating dependencies among la-
bels is dependencies identification and clustering of labels into independent groups. In
this section we describe the methods proposed for this step.
Dependencies Identification. Our approach to multi-label classification is based on
identifying related labels by analyzing data available in a training set before construct-
ing the classifier. Once the dependent labels are identified we can consider the rest of the
labels as independent according to the common binary approach. We plan to evaluate
the following methods for identification of dependencies among labels:

1. Labels distribution analysis
2. Features among category distribution analysis
3. Category combinations shown in the training set
4. Supervised definition of dependencies.

Labels distribution analysis. The first proposed method is based on an analysis of the
number of items in each category. This analysis can be carried out by applying one
of statistical tests for independence (e.g., Chi-square, Fisher exact test, difference in
proportions, likelihood-ratio-test) on the number of instances for each possible category
combination. The analysis should begin by discovering related pairs of labels and can
then continue to discover triples, quadruples, etc. of related labels. The analysis stops
when no more dependencies can be discovered. Alternatively, we can define a maximum
number of labels in a cluster and stop when this number is reached and all combinations
of this number of labels are already analyzed.
Features among labels distribution analysis. This method is based on the analysis of
features among items related to different labels. We can assume that classes are poten-
tially dependent if they contain a certain number of common features. The number of
common features depends on the total number of features in the model and should be
defined empirically. Also, we will need to define what type of feature will be consid-
ered as relevant for the analysis, i.e., should we consider only representative features
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having high weights in a class, or all features, regardless of their importance weight.
For this analysis we can incorporate functions which measure the informative level of
each feature. Such functions are also applied for dimensionality reduction purposes and
are summarized in [15].
Labels combinations shown in training set. This method is based on the analysis of only
those combinations of labels that are shown in the training set. To achieve this, any of
the methods described above (i.e., category distribution analysis or feature distribution
analysis) will be applied only to category combinations having at least one training
example.
Supervised definition of dependencies. In some applications certain dependencies among
labels can be known in advance. Such information could be used as a priori knowledge
for modeling dependencies. Later, we can also use this knowledge to test the method
proposed above.
Dependent labels clustering. When the dependent labels are identified, we need to
cluster them into some groups, so all labels within the group are interdependent and
labels in different groups are independent. Thus, each one of the groups will be treated
as an independent set of labels. For this, an automatic clustering algorithm should be
defined and implemented. We propose the following methods:

1. Execute some clustering algorithm that will analyze discovered dependencies and
calculate the ”distance” function taking into consideration the class dependency
strength (for example, alpha value if Chi-square test was applied) and the number of
instances of co-occurrences in a certain class combination. Finally, the cluster with
the best value of ”distance” function will be chosen. Thus we will find and cluster
together the strongest dependency relations among all existing dependencies.

2. Use the Genetic Algorithm for exploring many grouping options and choose the
one resulting in the best fitness function. For this we will need to define a genetic
representation of the dependent class clusters and a fitness function, similarly to
the “distance” function described above. This approach is expected to result in a
combination modeling the strongest dependencies, as well.

3. Also, for clustering, a priori knowledge and a supervised definition can be available
in some applications.

3.2 Multi-label classification incorporating labels dependencies

The second step is actually a multi-label classification incorporating category dependen-
cies discovered at the previous step. In this section two methods proposed for carrying
out this step are described. The first method is to apply a combination of standard Binary
and Label Power-set approaches to the defined independent groups of labels. Another
method is to train a meta-classifier that will predict additional labels for instances given
a previously assigned label (or labels).
Binary and Label Power-set Combined Classification. One of the main disadvan-
tages of the regular binary approach commonly applied to multi-label classification is
that dependencies among labels are ignored. The main problem of the Label Power-set
approach is data sparseness and the large number of label combinations. The proposed
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new approach applies combination of these common methods eliminating points where
each of them suffers from its disadvantages.

Once we have identified the dependent labels and clustered them into independent
groups, we can divide the classification responsibility in the following way:

- the Binary approach to the independent groups of labels will be applied without
suffering from the problem of ignored dependencies;

- the Label Power-set approach to classification into labels within the dependent
groups will be applied without incurring the problem of a large number of class combi-
nations (as it is applied to a group with a limited, potentially small, number of classes).

For each independent group of labels, one single Label Power-set classifier is in-
dependently created and is used to determine to which of the labels from the group an
instance belongs. In the case when a group includes only one category, the classifier
will be binary. However, if a group consists of k labels, the classifier will, actually, be a
single-label multi-class classifier with 2k labels. Note that k is a number of maximum
labels within one group and is in the control of the model designer. Eventually, the final
classification prediction is determined, similarly to the Binary approach, by combining
labels generated by each single Label Power-set classifier.

This approach: a) overpowers the independence assumption of the regular binary
approach and b) allows simple multi-label classification using any readily available
single-label classifier. The steps of the classification process according to the proposed
approach will be as follows:

1. Preprocessing and instances re-labeling: All instances should be prepared for the
classification according to the defined groups. For each independent group the full
set of instances labeled according to category combinations within the group (fol-
lowing the LP approach) should be prepared.

2. Classifier Training: All the sets of instances prepared at the previous step will now
be used to construct an independent single-label classifier for each independent
group of labels. For this purpose any readily available classifier implementing some
multi-class algorithm can be used.

3. Classification: each new instance will be processed by all independent classifiers
and their single-label classification decision should be translated into names of ini-
tial labels.

4. Results interpretation: classification decisions received from each independent clas-
sifier are combined together in the final classification vector representing the multi-
label classification result in terms of the initial set of labels.

Meta-classifier. Meta-learning methods, such as boosting and stacking, were previ-
ously successfully applied to multi-label classification problems [3] and [16]. These
methods help to model dependencies implicitly existing in the dataset among labels
and features. We propose applying the meta-learning techniques that explicitly provide
dependencies among labels discovered earlier. The proposed approach is described be-
low.

Generally, the meta-learning approach includes the construction of two types of
classifier: a Base classifier, applied on row data; and a meta-classifier, a higher level
classifier, applied to the results of base classifier.
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We propose to use any readily available single-label classifier as our base classifier
and then apply a number of meta-classifiers for multi-label classification on its result in
the following way. First, a single-label classification of an instance is performed. The
received classification decision is concatenated to the features’ vector which is then
processed by meta-classifiers to decide whether the instance, also, belongs to any other
labels. The number of meta-classifiers that should be applied at each classification is
equal to the number of independent groups of labels and denoted by m. According
to this approach a group of m meta-classifiers for each category from the predefined
set is required. Thus, the total number of meta-classifiers in the model will be |L| *
m. Although, the number of required models could be relatively high (|L|2 in a worst
case), the number of classifiers employed at each single classification is 1 + m. As m
can be of maximum of |L|, this simplifies to a worst case of |L|+ 1.

This approach allows one to model dependencies among labels, provides multi-
label classification using any readily available single-label classifier, and has a faster
expected classification time than that of the Binary approach.

First, describe the proposed approach more precisely using a simple example. Then
detail the required steps for the training and classification processes.

Let the whole set of labels L={A,B,C,D,E,F}, |L|=6, and discovered groups of de-
pendent labels be {A,B,C}, {D,E }, {F}. Thus, m, the number of independent groups
and the number of meta-classifiers for each category, is 3. The total number of required
meta-classifiers is 18 (=6*3). The constructed classifiers should be:

Base-level: any single-label classifier available to classify an instance x to one of
|L| labels.

Meta-level: for each category 3, single-label classifiers should be constructed, so
that they can predict the relevance of other labels in all independent groups given a
label result from the base classifier. The required classifiers are shown in Table 1, while
notation h{A,B|C} means a classifier available to predict the relevance of A and/or B
labels, given label C.

Table 1. Example of required meta-classifiers.

Predefined 

label 

Independent group 

{A,B,C} {D,E} {F} 

A h{B,C|A} h{D,E|A} h{F|A} 

B h{A,C|B} h{D,E|B} h{F|B} 

C h{A,B|C} h{D,E|C} h{F|C} 

D h{A,B,C|D} h{E|D} h{F|D} 

E h{A,B,C|E} h{D|E} h{F|E} 

F h{A,B,C|F} h{D,E|F} - 

Training process includes the construction of a base classifier and number of meta-
classifiers.

Base classifier construction: a regular single-label classifier should be trained to
predict one of labels in the predefined set.
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Meta-classifiers construction: one meta-classifier should be constructed for each
combination of a predefined category l and an independent group, except for a case
when the predefined category is a single category in the independent group (see exam-
ple in Table 1). For each such meta-classifier all instances should be pre-processed to
prepare a special training set. In each training set, one feature column should be added
to all instances and their label columns should be replaced by a new label. The value
of the added feature corresponds to instance relevance to the related category l and is
the same in all training sets for this category. The new label is created according to the
instance relevance to the rest (except for l) of the categories in the independent group.

As an example of this process, consider the above labels set L along with the dis-
covered independent groups of labels and training data of Table 2. New training sets
required to induce meta-classifiers for category A are presented in Table 3. Similarly,
training sets should be created for the other 5 labels of L.

Table 2. Example of a multi-label training set.

Example Label set 

1 {A,E} 

2 {B,C} 

3 {B} 

4 {C,F} 

Table 3. Example of training sets required to induce meta-classifiers for category A.

New labels in training sets for each independent group 
Example 

An added 

feature {A,B,C} {D,E} {F} 

1 1 ¬B¬C ¬DE ¬F 

2 0 BC ¬D¬E ¬F 

3 0 B¬C ¬D¬E ¬F 

4 0 ¬BC ¬D¬E F 

Classification process: The steps of the classification process according to the pro-
posed approach will be as follows. First, the base single-label classifier is applied to the
instance x. Then, the classification decision of the base classifier is concatenated to the
x features’ vector and is processed by relevant m meta-classifiers to decide whether x,
also, belongs to any other labels. The classification decisions of meta-classifiers should
be translated into the names of initial |L| labels, according to how it was coded in the
training phase.
Results interpretation: the classification decision received from the base classifier is
combined with the classification decisions of all the applied meta-classifiers.
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4 Results

In order to obtain an estimation of the validity of our hypotheses and a justification of
our proposed methods we performed the following experiments. The purpose of the per-
formed tests was to compare the results (in terms of classification effectiveness) of the
common Binary and LP approaches to multi-label classification with results potentially
achieved by the proposed methods.

We tested the response of classification evaluation measures for different depen-
dency combinations as a function of the training set size. By ‘Dependency combina-
tion’ we mean any possible combination of groups of correlated labels supposed to be
discovered as the strongest combination during the Dependencies identification step.

The test was performed using Weka [17] and Mulan [14] software and was applied
on Scene [18] and Emotions [19] datasets. These datasets have six distinct labels; each
instance can be classified to one or more of these labels. We used the C4.5 tree classifier
provided by Weka as our underlying base classifier for binary and single-label classifi-
cation. The tests were performed in 10 cross-validation format. For evaluation purposes
we used multi-label measures, namely Accuracy [8], H-Loss [3] and Subset Accuracy
[20]. Below we describe the test performed and analyze its results.

4.1 Test description

In order to test our hypotheses we wanted to:

1. Compare the performance of the Binary and LP approaches given different training
set sizes.

2. Compare the performance of the LP approach (where full inter-dependency among
labels is considered) with the performance of the proposed approach, where partial
dependency among labels is considered, at different training set sizes.

To this end, we ran the test applying the proposed method, which combines the LP
and Binary approaches, on all possible dependency combinations of the initial labels,
including full independence (Binary approach) and full inter-dependency among labels
(LP approach). This test was iterated k times, removing N random instances from the
training set before each next iteration.

As there are six different labels, we obtained 203 possible dependency combina-
tions, including Binary (six groups: each of one independent category) and LP (one
group of six correlated labels). There are 2407 instances in the Scene dataset, and 593
in the Emotions dataset. Thus, for the Scene dataset we set the N random instances to be
removed at each time at 200; and for the Emotions dataset at 100. In total we performed
12 iterations (from 2407 to 207 instances) for the Scene dataset and 5 iterations (from
593 to 193 instances) for the Emotions dataset over all 203 combinations.

4.2 Results Evaluation

Results (Accuracy, Subset Accuracy and H-Loss) of the performed tests for some arbi-
trary chosen combinations are presented in Figure 1. The Scene dataset is seen on the
left and Emotions dataset on the right.
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Fig. 1. Accuracy, Subset Accuracy and Hamming-Loss of different dependency combinations as
a function of training set size (left- Scene dataset, right - Emotions dataset).

Firstly, consider the Scene dataset results. It can be seen from the graphs that the
Accuracy and Subset Accuracy of LP are highest for large training sets and as the train-
ing set becomes smaller, other combinations provide similar or even better accuracy.
The accuracy of BR is much worse for almost all combinations at all training set sizes,
and it decreases much more drastically at smaller training sets. Considering the H-loss
measure, providing an estimation of classification error, we can see that the error level
of the LP approach is often relatively high compared to other combinations, especially
when the size of the training set is reduced. So, also, the H-Loss of the Binary method
has high values at small training set sizes. Other combinations of labels, especially the
combination of two groups {1,4,6}, {2,3,5}, provide a stable level of error over differ-
ent sizes of training set. Their H-Loss values are often lower than in the Binary and LP
approaches.

Considering the Emotions dataset we ascribe it to medium or even small training
sets as its full set contains only 593 instances. Even so we also evaluate it for some
smaller training set sizes. From the graphs it can be seen that LP is outperformed by
different combinations at almost all dataset sizes in terms of all three measures. The
superiority of the different combinations over LP increases at smaller dataset sizes. The
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Binary approach results in worse Accuracy and Subset Accuracy measures on the full
dataset. However on smaller datasets it outperforms LP and some of other combinations
in terms of all three measures.

The results for both datasets strongly support our hypotheses 1 and 2 that the pro-
posed Dependent Clusters approach can provide results better that the Binary one and
in many cases close to or even better than the LP approach. The results also support hy-
pothesis 4(2) that the LP approach is preferable if a rich training set is available. Results
for the Emotions dataset also support hypothesis 4(1) that the Binary approach could
be preferable for small training sets. However, this hypothesis is not supported by the
results for the Scene dataset. We plan to investigate this issue using additional datasets.

Surprisingly, the H-Loss of the Binary method in many cases on both datasets has
values relatively low compared to those of LP and other combinations. This result con-
tradicts our hypothesis 1 that the simplicity of the Binary model causes more errors.
This issue should be further investigated using additional datasets.

We also present some graphs demonstrating the correlation between Accuracy and
H-Loss measures for different training set sizes of the Scene dataset. The graphs for the
full dataset with 2407 instances, for the medium dataset with 1207 instances and for
the small dataset with 207 instances are presented in Figure 2. The points on the graphs
mark the Accuracy and H-loss measures obtained for different group combinations.

 

Fig. 2. The correlation between Accuracy and Hamming-Loss measures for the training sets with
2407, 1207 and 207 instances (Scene dataset).
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We can see that for small and medium dataset sizes the general tendency of the cor-
relatio n between Accuracy and H-Loss measures is as expected, i.e., for lower Accu-
racy values the H-Loss values are higher. However, for the full dataset size, the tendency
of Accuracy and H-Loss measure is the opposite. There are higher values of H-Loss at
higher Accuracy results. Also, we observe a strong correlation between the H-loss and
Accuracy measure for small datasets and that this correlation reduces as the dataset size
increases.

As for the Accuracy vs. H-Loss graphs of the Emotions dataset we will not present
them here. Just let it be noted that the correlation between those measures is as expected
(higher H-Loss values at lower Accuracy) for all training set sizes of this dataset. Recall
that the Emotions dataset is considered to be of small to medium size.

From these observations we conclude that the correlation between Accuracy and
Hamming-Loss is dataset-dependent, which is a point of interest for further investiga-
tion.

Consider the Accuracy and Hamming-Loss measures of the selected combinations
at different training set sizes in both datasets (see graphs in Figure 3). From the graphs
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Fig. 3. Accuracy and H-Loss of selected combinations for Scene (left) and Emotions (right) train-
ing sets of different sizes.
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we can see that (i) the Binary approach results in low Accuracy in almost all cases, ex-
cept for the smallest training set of the Emotions dataset; (ii) the LP approach results in
high H-Loss values for all training set sizes in both datasets and in low Accuracy values
in all Emotions training sets; (iii) some combinations of independent groups result in
high Accuracy and low H-Loss values for all training set sizes in both datasets. From
these observations we conclude that the clustering of labels into independent groups of
related categories may improve Accuracy and reduce H-Loss simultaneously, especially
for small training set sizes.

These results strongly support our hypothesis 3 that the proposed Dependent Clus-
ters approach results in a ’middle-complexity’ model reducing overall classification
error and improving Accuracy.

5 Conclusions

From all the above results, we can conclude that the proposed approach provides a
classification accuracy that is competitive with or even better than the LP approach.
Also, the proposed approach can be applied to problems where the LP approach is not
feasible (when the labels set is too large) while providing an accuracy rate which is
higher than that of the binary approach.

In this paper we examined the proposed method in two datasets. In order to validate
the results, additional experiments with more datasets are required. Also, it will be in-
teresting to compare our approach with some recent multi-label classification methods,
such as RAKEL, EPS, and HOMER.

Moreover, other methods for identifying the label dependencies should be analyzed,
and tested. Finally, other methods for classification incorporating the identified depen-
dencies should be examined.
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Abstract. The genome-wide hierarchical classification of gene functions, using
biomolecular data from high-throughput biotechnologies, is one of the central
topics in bioinformatics and functional genomics. In this paper we present a mul-
tilabel hierarchical algorithm inspired by the “true path rule” that governs both
the Gene Ontology and the Functional Catalogue (FunCat). In particular we pro-
pose an enhanced version of the True Path Rule (TPR) algorithm, by which we
can control the flow of information between the classifiers of the hierarchical en-
semble, thus allowing to tune the precision/recall characteristics of the overall
hierarchical classification system. Results with the model organism S. cerevisiae
show that the proposed method significantly improves on the basic version of the
TPR algorithm, as well as on the Hierarchical Top-down and Flat ensembles.

1 Introduction

Gene function prediction is a multiclass, multilabel classification problem characterized
by hundreds or thousands of functional classes structured according to a predefined hi-
erarchy (a directed acyclic graph for the Gene Ontology [1] or a tree forest for Fun-
Cat [2]). Functional classes are usually unbalanced (with positive examples usually less
than negatives), with labels that can be uncertain and in many cases unknown or only
partially known.

From a general standpoint several approaches have been proposed for multilabel
classification, with applications ranging from protein function classification, to music
categorization and semantic scene classification [3].

Different approaches to the hierarchical multilabel classification of gene function
have been proposed [4, 5], but schematically we can individuate two main research
lines: a) structured-output methods, based on the joint kernelization of both input vari-
ables and output labels using perceptron-like learning algorithms [6] or maximum-
margin algorithms [7]; b) ensemble methods by which different classifiers are trained to
learn each class, and then combined to take into account the hierarchical relationships
between functional classes [8–10].

Along this second line of research, we propose a multilabel ensemble algorithm,
specialized for tree-structured taxonomies, to predict the functional classes of genes.
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Our proposed approach is directly inspired by the true path rule that governs the
annotations of both GO and FunCat taxonomies [1]:

“An annotation for a class in the hierarchy is automatically transferred to its
ancestors, while genes unannotated for a class cannot be annotated for its de-
scendants”.

According to this rule the proposed ensemble method is characterized by a two-way
asymmetric flow of information that traverses the graph-structured ensemble: positive
predictions for a node influence in a recursive way its ancestors, while negative predic-
tions influence its offsprings. The resulting ensemble embeds the functional relation-
ships between functional classes that characterize the hierarchical taxonomy.

The proposed method predicts the annotations of genes at the level of the entire tax-
onomy or considering specific subsets of the hierarchical functional classes, and pro-
vides probabilistic and structured predictions of gene annotations. Moreover, by tuning
a single global parameter, it allows to regulate the trade-off between precision and re-
call that characterizes gene function prediction problems. We apply the True Path Rule
(TPR) hierarchical ensemble methods to the prediction of gene functions in yeast, using
probabilistic SVMs as base learners [11], but the algorithm is general enough to be used
with any probabilistic base learner and with other model organisms. Considering that
data integration is crucial to improve prediction performances [12], TPR ensembles can
be easily integrated with state-of-the-art biomolecular data integration methods [13],
such as vector-space integration [14], kernel fusion [15] or ensembles of learning ma-
chines [16], without any modification of the algorithmic scheme.

This paper is organized as follows: in Sect. 2 the ensemble method inspired by the
true path rule is presented. Sect. 3 summarizes the experimental set-up, while Sect. 4
show genome-wide gene function prediction results obtained with the model organ-
ism S. cerevisiae using the proposed method compared with hierarchical top-down and
“flat” ensemble approaches. The conclusions and future developments end the paper.

2 Methods

2.1 Basic Definitions

Genome-wide gene function prediction can be modeled as a hierarchical, multiclass and
multilabel classification problem. Indeed a gene/gene product x can be assigned to one
or more functional classes of the set Ω = {ω1, ω2, . . . , ωm}. The assignments can be
coded through a vector of multilabels y =< y1, y2, . . . , ym >∈ {0, 1}m, by which if x
belongs to class ωj , then yj = 1, otherwise yj = 0.

In both the Gene Ontology (GO) and FunCat taxonomies the functional classes
are structured according to a hierarchy and can be represented by a directed graph,
where nodes correspond to classes, and arcs to relationships between classes. Hence
the node corresponding to the class ωi can be simply denoted by i. We represent the
set of children nodes of i by child(i), and the set of its parents by par(i). Moreover
ychild(i) denotes the labels of the children classes of node i and analogously ypar(i)
denotes the labels of the parent classes of i. Note that in FunCat only one parent is
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permitted, since the overall hierarchy is a tree forest, while in the GO, more parents are
allowed, because the relationships are structured according to a directed acyclic graph.
A classifier D : X → {0, 1}m computes the multilabel associated to each example
x ∈ X , and di(x) ∈ {0, 1} is the label predicted by the classifier for class ωi. For the
sake of simplicity if there is no ambiguity we represent di(x) simply by di.

2.2 An algorithm inspired by the “True Path Rule”

In both FunCat and GO ontologies, genes annotated to a specific functional class auto-
matically belong to all its ancestors. Moreover, in FunCat, if a gene is not annotated to
a given class, none of its offsprings can be annotated 1.

These basic rules constitute the so called “True Path Rule” that govern both GO and
FunCat. Fig. 1 illustrates an example of the application of the true path rule.

14

14.01 14.04 14.07

14.07.01 14.07.02

14.07.02.02

14.07.03 14.07.04 14.07.05 14.07.11

14.10 14.13

14.13.01

14.13.01.01
x

x

x

x

Fig. 1. FunCat tree rooted at class 14 (Protein fate): if example x belongs to class 14.03.01.01
then it belongs also to class 14.03.01, 14.03 and 14. On the contrary, if an example x does not
belong to class 14.07 it cannot belong to any of its children (e.g. 14.07.01, 14.07.02, 14.07.03,
14.07.04, 14.07.05, 14.07.11).

1 For the GO, this rule is slightly more complicated, because the GO is structured according to
a directed acyclic graph, and even if a gene is not annotated to a class i, it can be annotated to
a child of i, say j, if it is annotated to at least one of its parents k 6= i.
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For a given example x, considering the parents of a given node i, a classifier that
respects the true path rule needs to obey the following rules:{

di = 1⇒ dpar(i) = 1
di = 0 ; dpar(i) = 0 (1)

On the other hand, considering the children of a given node i, a classifier that re-
spects the true path rule needs to obey the following rules:{

di = 1 ; dchild(i) = 1
di = 0⇒ dchild(i) = 0 (2)

The proposed hierarchical ensemble algorithm puts together the predictions made
at each node by local ”base” classifiers to realize an ensemble that obeys the “true path
rule”.

The basic ideas behind the true path rule ensemble algorithm can be summarized
as follows:

1. Training of the base learners: for each node of the hierarchy a suitable learning
algorithm (e.g. a multi-layer perceptron or a support vector machine) provides a
classifier for the associated functional class

2. In the evaluation phase the trained classifiers associated to each class/node of the
graph provide a local decision about the assignment of a given example to a given
node.

3. Positive decisions may propagate from bottom to top across the graph: they influ-
ence the decisions of the parent nodes and of their ancestors in a recursive way, by
traversing the graph towards higher level nodes/classes. On the contrary negative
decisions do no affect decisions of the parent node (that is they do not propagate
from bottom to top, eq. 1).

4. Negative predictions for a given node (taking into account the local decision of its
descendants) are propagated to the descendants, to preserve the consistency of the
hierarchy according to the true path rule. On the contrary positive decisions do not
influence decisions of child nodes (eq. 2).

The ensemble combines the local predictions of the base learners associated to each
node with the positive decisions that come from the bottom of the hierarchy, and with
the negative decisions that spring from the higher level nodes. More precisely, base
classifiers estimates local probabilities p̂i(x) that a given example x belongs to class
ωi, but the core of the algorithm is represented by the evaluation phase, where the
ensemble provides an estimate of the “consensus” global probability pi(x).

In [17] we proposed a basic algorithm based on the “True Path Rule” (the TPR
algorithm), by which, given the set φi(x) of the children of node i for which we have a
positive prediction for a given example x:

φi(x) = {j|j ∈ child(i), dj(x) = 1} (3)

we can compute the consensus probability of the ensemble. The global consensus prob-
ability pi(x) of the ensemble depends both on the local prediction p̂i(x) and on the
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prediction of the nodes belonging to φi(x):

pi(x) =
1

1 + |φi(x)|

p̂i(x) +
∑

j∈φi(x)

pj(x)

 (4)

The decision di(x) at node/class i is set to 1 if pi(x) > t, and to 0 otherwise (a natural
choice for t is 0.5). In the leaf nodes the sum of eq. 4 disappears and eq. 4 reduces to
pi(x) = p̂i(x). In this way positive predictions propagate from bottom to top. On the
contrary if for a given node di(x) = 0, then this decision is propagated to its subtree.

Note that with this basic version of the TPR algorithm there is no way to explicitly
balance the local prediction p̂i(x) at node i with the positive predictions coming from
its offsprings (eq. 4). By balancing the local predictions with the positive predictions
coming from the ensemble we can explicitly modulate the interplay between local and
descendant predictors. To this end we introduce a parent weight wp, 0 ≤ wp ≤ 1, such
that if wp = 1 the decision at node i depends only by the local predictor, otherwise
the prediction is shared proportionally to wp and 1−wp between respectively the local
parent predictor and the set of its children:

pi(x) = wp · p̂i(x) +
1− wp
|φi(x)|

∑
j∈φi(x)

pj(x) (5)

In this way we can balance the weight of the prediction between the local component at
node i and the component coming from its children, thus obtaining the weighted TPR
(TPR-w) hierarchical ensemble algorithm.

The pseudocode of the TPR-w method is presented in Algorithm 1.
The algorithm is characterized by two main for loops: the external for (from row 1

to 30) handles a per level bottom-up traversal of the tree, while the internal (from row
2 to 29) scans the nodes at each level. If a node is a leaf (row 3), then the consensus
probability pi is equal to the local probability p̂i(x). Note that a positive decision is
taken if pi(x) is larger than a threshold t (row 5). If a node is not a leaf (row 10), at
first the set φi(x) collects all the children nodes for which we have a positive predic-
tion, and the consensus probability pi of the ensemble is computed by considering the
weighted local estimate of the probability p̂i and the weighted probabilities computed
by the children nodes for which a positive decision has been taken (row 13). In case of
a negative decision for a node i, all the predictions relative to the subtree rooted at i are
set to negative and their probabilities are set to pi if larger than pi. (rows 19-27). The al-
gorithm provides both the multilabels associated to the example x and the probabilities
pi that a given example belongs to the class i, 1 ≤ i ≤ m.

The bottom-up per level traversal of the tree assures that all the offsprings of a given
node i are taken into account for the ensemble prediction. For the same reason we can
safely set the classes belonging to the subtree rooted at i to negative, when di(x) is set to
0. It is worth noting that we have a two-way asymmetric flow of information across the
tree: positive predictions for a node influence its ancestors, while negative predictions
influence its offsprings.
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Algorithm 1 Weighted True Path Rule (TPR-w) hierarchical ensemble
Input:
- a test example x
- tree T of the m hierarchical classes
- set of m classifiers (one for each node) each predicting p̂i(x), 1 ≤ i ≤ m
- the weight wp of the local prediction.

1: for all levels k of T from bottom to top do
2: for all nodes i at level k do
3: if i is a leaf then
4: pi(x)← p̂i(x)
5: if pi(x) > t then
6: di(x)← 1
7: else
8: di(x)← 0
9: end if

10: else
11: φ(x)← {j|j ∈ child(i), dj(x) = 1}
12: if |φi(x)| > 0 then
13: pi(x)← wp · p̂i(x) +

1−wp
|φi(x)|

∑
j∈φi(x) pj(x)

14: else
15: pi(x)← p̂i(x)
16: end if
17: if pi(x) > t then
18: di(x)← 1
19: else
20: di(x)← 0
21: for all j ∈ subtree(i) do
22: dj(x)← 0
23: if pj(x) > pi(x) then
24: pj(x)← pi(x)
25: end if
26: end for
27: end if
28: end if
29: end for
30: end for
Output:
For each node i:

- the ensemble decisions di(x) =

{
1 if x belongs to node i
0 otherwise

- the probabilities pi(x) that x belongs to the node i ∈ T

3 Experimental set-up

We predicted the functions of genes of the unicellular eukaryote S. cerevisiae using 7
different data sets and the FunCat taxonomy.



138

For each data set we evaluated the performance of four different ensembles: the
Flat ensemble, that does not take into account the hierarchical structure of the data, the
Hierarchical Top-down [18, 19], the basic True Path Rule (TPR) hierarchical ensemble
and the proposed weighted variant (TPR-w described in the previous section). The hi-
erarchical Top-down algorithm classifies an example x, where di(x) is the classifier
decision at node i and root(T ) denotes the set of nodes at the first level of the tree T ,
in the following way:

yi =

di(x) if i ∈ root(T )
di(x) if i /∈ root(T ) ∧ ypar(i) = 1
0 if i /∈ root(T ) ∧ ypar(i) = 0

For each ensemble we used as base learners linear Support Vector Machines (SVMs)
with probabilistic output [11]. The performance of the ensembles have been compared
using 5-fold cross-validation techniques. The selection of the wp parameter in TPR-w
ensembles have been performed by internal cross-validation. The threshold t of TPR
ensembles has been set to 0.5 in all the experiments.

For the prediction of gene function in the yeast we used 7 bio-molecular data sets.
For each data set we selected only the genes annotated to FunCat 2, using the HCgene
R package [20]. We also removed the genes annotated only with the ”99” FunCat class
(”Unclassified proteins”) and selected classes with at least 20 positive examples, in
order to get a not too small set of positive examples for training. As negative examples
we selected at each node/class genes not annotated to that node, but annotated to its
parent. From the data sets we removed also uninformative features (e.g. features with
the same value for all the available examples). At the end of these pre-processing steps
we obtained data whose characteristics are summarized in Tab. 1.

Table 1. Data sets

Data set Description n.samples n. feat. n.class
Pfam-1 protein domain binary data from Pfam [21] 3529 4950 211
Pfam-2 protein domain log E data from Pfam [22] 3529 5724 211
Phylo phylogenetic data [14] 2445 24 187
Expr gene expression data [23, 24] 4532 250 230
PPI-BG PPI data from BioGRID [25] 4531 5367 232
PPI-VM PPI data from von Mering experiments [26] 2338 2559 177
SP-sim Sequence pairwise similarity data [15] 3527 6349 211

Considering the unbalance between positive and negative examples, we adopted the
classical F-score to jointly take into account the precision and recall of the ensemble
for each class of the hierarchy.

2 We used funcat-2.1 scheme, and funcat-2.1 data 20070316, available from the MIPS web site
(http://mips.gsf.de/projects/funcat).
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Moreover, we used also the Hierarchical F-measure that represents a generaliza-
tion of the classical F-measure, in order to take into account the hierarchical nature of
functional annotation [27].

Viewing a multilabel as a set of paths, hierarchical precision measures the aver-
age fraction of each predicted path that is covered by some true path for that gene.
Conversely, hierarchical recall measures the average fraction of each true path that is
covered by some predicted path for that gene. More precisely, given a general taxon-
omyG representing the graph of the functional classes, for a given gene/gene product x
consider the graph P (x) ⊂ G of the predicted classes and the graph C(x) of the correct
classes associated to x, and let be l(P ) the set of the leaves (nodes without children) of
the graph P . Given a leaf p ∈ P (x), let be ↑ p the set of ancestors of the node p that
belong to P (x), and given a leaf c ∈ C(x), let be ↑ c the set of ancestors of the node c
that belong to C(x). The original definitions of Hierarchical Precision (HP), Hierarchi-
cal Recall (HR) and Hierarchical F-score (HF) [27], with the tree forests of FunCat can
be simplified as follows:

HP =
1

|l(P (x))|
∑

p∈l(P (x))

|C(x) ∩ ↑p|
| ↑p|

HR =
1

|l(C(x))|
∑

c∈l(C(x))

| ↑c ∩ P (x)|
| ↑c|

HF =
2 ·HP ·HR
HP +HR

(6)

An overall high hierarchical precision is indicative of most predictions being an-
cestors of the correct predictions, or in other words that the predictor is able to detect
the most general functions of genes/gene products. On the other hand a high average
hierarchical recall indicates that most predictions are successors of the actual, or that
the predictors are able to detect the most specific functions of the genes.

4 Results

At first we compared the performance of ensemble methods considering the “per class”
F-measure averaged across all FunCat classes for each data set. The results show that hi-
erarchical methods largely outperform flat ensembles: flat ensembles obtain an average
F-measure across the 7 data sets used in the experiments of 0.15 against respectively
0.22, 0.18 and 0.24 with Top-down, TPR and TPR-w ensembles (Tab. 2).

As explained in the experimental set-up (Sect. 3), the F hierarchical measure is a
more appropriate performance metric for the hierarchical classification of gene func-
tions. Tab. 3 shows that on the average TPR-w achieves the best results: 0.34 versus
0.25 (TPR) and 0.29 (Top-down ensembles). Note that TPR-w obtains equal or better
results than Top-down ensembles with respect to all the data sets. More precisely con-
sidering 5-fold cross validation results for each of the 7 considered data sets TPR-w
reported better results than Top-down at 0.05 significance level on 5 tasks, according to
the 5-fold cross-validated paired t-test [28]. The basic TPR ensemble on the contrary
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Table 2. Per class F-measure results. Flat: flat ensemble; HTD: Hierarchical Top-Down ensem-
bles; TPR: True Path Rule hierarchical ensembles; TPR-w True Path Rule weighted hierarchical
ensembles.

Data set Flat HTD TPR TPR-w
Pfam-1 0.2816 0.4041 0.3622 0.4037
Pfam-2 0.1153 0.2056 0.1562 0.2197
Phylo 0.0711 0.0067 0.0625 0.0906
Expr 0.0752 0.0623 0.0702 0.0773
PPI-BG 0.1730 0.2690 0.2344 0.2946
PPI-VM 0.2145 0.3589 0.2613 0.3558
SP-sim 0.1121 0.2489 0.1306 0.2540
Average 0.1489 0.2222 0.1824 0.2414

achieves slightly worse results than the Top-down. These results show that we need the
weighted version of TPR ensembles to significantly enhance Top-down predictions.

Even if the main goal of this work consists in the development of a hierarchical
algorithm that can be applied to the prediction of the overall taxonomy of a gene, we
can restrict the analysis to specific subtrees of the taxonomy. For instance, Tab. 4 shows
the results restricted to the subtree rooted at the “Metabolism” FunCat class (FunCat ID
= 01, Fig.2).

A specific advantage of the TPR-w ensembles is the capability of tuning precision
and recall rates, through the parameter parent-weight wp (eq. 5). Fig. 3 shows, the
hierarchical precision, recall and F-measure as functions of the parameter wp. For small
values of wp (wp can vary from 0 to 1) the weight of the decision of the parent local
predictor is small, and the ensemble decision depends mainly by the positive predictions
of the offsprings nodes (classifiers): as a consequence we obtain a higher hierarchical
recall for the TPR-w ensemble. On the contrary higher values of wp correspond to a
higher weight of the “parent” local predictor, with a resulting higher precision. The

Table 3. Hierarchical F-measures results. HTD: Hierarchical Top-Down ensembles; TPR: True
Path Rule hierarchical ensembles; TPR-w True Path Rule weighted hierarchical ensembles. Sta-
tistically significant difference at 0.05 significance level are in boldface.

Data set HTD TPR TPR-w
Pfam-1 0.4123 0.3080 0.4131
Pfam-2 0.3406 0.2684 0.3700
Phylo 0.0497 0.2010 0.2174
Expr 0.1166 0.1696 0.1784
PPI-BG 0.3226 0.2670 0.3485
PPI-VM 0.3977 0.2796 0.4000
SP-sim 0.4251 0.2398 0.4472
Average 0.2949 0.2468 0.3392
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Fig. 2. Tree of the FunCat classes rooted at Funcat ID=01 (Metabolism).

opposite trends of precision and recall are quite clear in all graphs of Fig. 3. The best
F-score is in “middle” values of the parameter parent-weight: in practice in most of the
analyzed data sets the best F-measure is achieved for wp between 0.5 and 0.8, but if
we need higher recall rates (at the expense of the precision) we can choose lower wp
values, and higher values ofwp are needed if precision is our first aim. It is worth noting
that we may vary the threshold t to obtain precision recall curves for a fixed value of
wp. In other words we may obtain different precision-recall curves for different value
of wp: the parent weight is a global parameter that affect the general precision/recall
characteristics of the ensemble.

5 Conclusions

F hierarchical measures results show that TPR-w achieves equal or better results than
the basic TPR algorithm and the Top-down hierarchical strategy, and all the hierarchical
strategies achieve significantly better results than flat classification methods, using the
classical ”per-class” F-measure.

Another advantage of TPR-w consists in the possibility of tuning precision and
recall by using a global strategy: large values of the parent weight improve the precision,
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Table 4. Classification results on the FunCat tree rooted at ”Metabolism”, using Pfam-1 data.
Each row represents a functional class of the FunCat taxonomy. Prec. stands for precision, Rec.
recall, Sp. specificity, F F-measure, Acc. accuracy.

FunCat ID Description Prec. Rec. Sp. F Acc.
01 Metabolism 0.83 0.59 0.93 0.69 0.80
01.01 amino acid metabolism 0.62 0.34 0.98 0.45 0.94
01.01.03 assimilation of ammonia, metabolism of the glutamate group 0.27 0.15 0.99 0.19 0.98
01.01.03.02 metabolism of glutamate 0.37 0.32 0.99 0.34 0.99
01.01.03.05 metabolism of arginine 0.00 0.00 0.99 0.00 0.99
01.01.06 metabolism of the aspartate family 0.38 0.22 0.99 0.28 0.98
01.01.06.05 metabolism of methionine 0.53 0.29 0.99 0.37 0.99
01.01.09 metabolism of the cysteine - aromatic group 0.49 0.26 0.99 0.34 0.97
01.01.13 regulation of amino acid metabolism 0.10 0.03 0.99 0.05 0.98
01.02 nitrogen, sulfur and selenium metabolism 0.55 0.20 0.99 0.29 0.97
01.02.07 regulation of nitrogen, sulfur and selenium metabolism 0.27 0.11 0.99 0.16 0.99
01.03 nucleotide/nucleoside/nucleobase metabolism 0.65 0.35 0.98 0.46 0.95
01.03.01 purin nucleotide/nucleoside/nucleobase metabolism 0.72 0.40 0.99 0.52 0.98
01.03.01.03 purine nucleotide/nucleoside/nucleobase anabolism 0.61 0.29 0.99 0.39 0.99
01.03.04 pyrimidine nucleotide/nucleoside/nucleobase metabolism 0.63 0.42 0.99 0.51 0.98
01.03.16 polynucleotide degradation 0.52 0.27 0.99 0.36 0.98
01.03.16.01 RNA degradation 0.54 0.29 0.99 0.37 0.98
01.04 phosphate metabolism 0.81 0.61 0.98 0.70 0.94
01.05 C-compound and carbohydrate metabolism 0.79 0.50 0.97 0.61 0.91
01.05.02 sugar, glucoside, polyol and carboxylate metabolism 0.65 0.35 0.99 0.46 0.98
01.05.02.04 sugar, glucoside, polyol and carboxylate anabolism 0.55 0.33 0.99 0.41 0.99
01.05.02.07 sugar, glucoside, polyol and carboxylate catabolism 1.00 0.09 1.00 0.18 0.98
01.05.03 polysaccharide metabolism 0.78 0.25 0.99 0.38 0.98
01.05.25 regulation of C-compound and carbohydrate metabolism 0.47 0.16 0.99 0.24 0.96
01.06 lipid, fatty acid and isoprenoid metabolism 0.75 0.44 0.98 0.56 0.95
01.06.02 membrane lipid metabolism 0.76 0.41 0.99 0.54 0.98
01.06.02.01 phospholipid metabolism 0.69 0.36 0.99 0.48 0.98
01.06.05 fatty acid metabolism 0.42 0.15 0.99 0.22 0.99
01.06.06 isoprenoid metabolism 0.65 0.34 0.99 0.45 0.99
01.06.06.11 tetracyclic and pentacyclic triterpenes metabolism 0.61 0.23 0.99 0.34 0.99
01.06.10 regulation of lipid, fatty acid and isoprenoid metabolism 0.86 0.24 0.99 0.37 0.99
01.07 metabolism of vitamins, cofactors, and prosthetic groups 0.74 0.29 0.99 0.42 0.96
01.07.01 biosynthesis of vitamins, cofactors, and prosthetic groups 0.72 0.32 0.99 0.44 0.97
01.20 secondary metabolism 0.80 0.11 0.99 0.20 0.98

and small values the recall. The choice to favour precision or recall depends on the
researcher’s experimental objectives. In most data sets the best compromise between
precision and recall is achieved for weights in the range between 0.5 and 0.8, that is
giving a weight equal or larger to the local predictor with respect to the predictions
taken by its offsprings.

Results show that also using a single source of evidence we can obtain a very high
precision and recall for specific trees of the FunCat forest, but the overall results need
to be improved for the genome-wide prediction of gene function. To this end, we need
to integrate multiple data sources to obtain methods to predict function of hypothetical
genes, or to discover or complete the functional annotation of genes whose function
is incomplete or unknown. To this end the proposed approach can be easily integrated
with at least three different general strategies for biomolecular data integration: vec-
tor space integration [14], kernel fusion [15] and ensemble methods [16]. Indeed for
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Fig. 3. Hierarchical Precision, Recall and F-measure as a function of the parent weight in TPR-w
ensembles. Horizontal lines refers to top-down ensembles. (a) Protein domain binary data; (b)
PPI BioGRID data; (c) PPI Von Mering data (d) Pairwise sequence similarity data.

each node/class of the tree we may substitute a classifier trained on a specific type of
biomolecular data with a classifier trained on concatenated vectors of different data, or
trained on a (weighted) sum of kernels, or with an ensemble of learners each trained on
a different type of data.
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Classification in Open-Class-Set Scenarios?

Santiago D. Villalba and Pádraig Cunningham
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Abstract. Multilabel classification is frequently reduced to binary classification
via a simple one-versus-rest transformation. While supervised binary classifica-
tion is the best understood and most successful strategy in machine learning, it is
not exempt from practical problems that arise after this kind of transformation, for
instance lack of robustness to class-skewness and noisy datasets or poor scalabil-
ity. On the other hand, past research on multilabel classification has overlooked an
issue that can be important on real applications: the existence of labels not repre-
sented in the training set. Therefore, methodological design for evaluation in this
scenario is lacking. We present ongoing research on both aspects. We propose
the application of one-class classifiers, binary unsupervised classifiers trained on
positive examples only, as a theoretically appealing alternative, robust to both
imbalanced datasets and the existence of unknown labels. The initial results are
negative, showing the weakness of one-class classifiers. We also discuss possible
pitfalls when evaluating classification performance on open-class-set problems.

1 Introduction

Amongst the approaches to solve the multilabel classification problem, a large body
of the literature deals with reductions to standard binary classification (see [1] and
references therein). A straightforward way of reorganizing the data to create binary
classification problems is to follow a one-versus-rest approach, which is sometimes
called Binary Relevance (BR) in multilabel domains. Following the notation in [1], let
L = {λj : j = 1, . . . ,M} be the finite set of labels in a multilabel learning task and
D = {(xi, Yi) : i = 1, . . . , N} denote a set of inputs xi and their corresponding out-
puts Yi ⊆ L. For each λj , a binary classifier cj : X → {0, 1} is trained using a binary
dataset Dj = {(xi, yi) : (xi, Yi) ∈ D ∧ yi = IYi(λj)}. Here IA(x) is the indicator
function, one if x ∈ A and zero otherwise. At prediction time, label λj is included in
the predicted set Ŷ if cj casts a positive prediction.

It is easy to prove that, for many of the usual multilabel classification performance
criteria, we can achieve a minimum on the overall multilabel loss by just minimiz-
ing the loss on each individual label, and so the BR reduction is consistent for those
losses. A reduction is said to be consistent if it yields an optimal predictor for the orig-
inal problem when the auxiliary problems are also solved optimally [2]. In particular,

? This research is supported by Enterprise Ireland Commercialisation Fund Grant No.
CFTD/05/222.
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label-based macro average measures, which include the Hamming-loss, render BR con-
sistent. Those losses permit partial matches between predicted and actual label sets and
are defined as the summation of the individual losses for each label; therefore the min-
imum is reached only when each different summand is minimum too. This contrasts
with the analogous one-versus-rest reduction for crisp multiclass classification, that is
not consistent as it requires classifier coordination; if a single base classifier casts a
bad prediction, the whole multiclass classifier is deemed to fail unless a sophisticated
decision function is applied.

Ultimately the appropriate loss depends on the application, but the consistency of
BR for macro-averaged losses indicates that, in many cases, in order to maximize the
performance of multilabel classifiers, one just needs to maximize the performance on
each individual label. In those cases research in multilabel classification is just research
into ways of getting closer to optimal binary classifiers. This is not to say that research
in multilabel algorithms is futile, or that correlations between labels are not to be taken
into account when training the classifier for each label. On the contrary, any single piece
of information might be useful when training.

What is called for is to take into account the specific characteristics of the binary
problems induced by the reduction from the multilabel setting, applying sensible cor-
rections to any possible problems associated with this approach. Several deficiencies in
the data, that can make supervised discriminative approaches fail, arise naturally from
multilabel to binary reductions:

Imbalanced datasets. Because of the nature of the transformations and the typical
high cardinality of the label set, usually the class distribution in the individual bi-
nary classification problems is highly skewed towards the negative class (where all
the other labels have been put together). This creates known problems for the stan-
dard supervised classifiers [3] and so counter-measures (adjusting the loss function
by adding costs, subsampling the majority class, oversampling the minority class)
must be taken.

Noisy datasets. Directly relating to the quality of the data, if labeling is not consistent
and complete for all the examples, contradictory goals can be given to the super-
vised crisp-classifier. In several of the most important domains where multi-label
classification is necessary the process of generating labels can be highly subjective
(for example emotion recognition or multimedia annotation) and so a gold standard
is missing. If the base classifier is not robust to noise, performance can be severely
damaged.

Scalability issues. In many cases computational costs become prohibitive in problems
with a high number of labels.

Awareness of all the labels. Sometimes we do not have information about all pos-
sible labels (i.e.ifnextchar,latex@errorDont forget the comma!, an open-class-set
scenario). This is important in domains where the label set is not static or there
exists concept drift, like semantic multimedia annotation and network intrusion de-
tection. A related question is whether our classifier must have an abstaining option.
In multilabel classification this means equipping the classifier with the ability to
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predict the empty set. BR provides this option automatically, although sometimes
it is regarded as bad behavior and therefore combatted1 [4, 5].

If these are real problems in multilabel classification, what are suitable solutions? In
section 2 we propose the use of one-class classifiers, that is, classifiers trained on posi-
tive examples only, as a possible approach to overcome some of the difficulties experi-
enced by standard supervised classifiers after problem transformation. Then in section 3
we describe an exploratory experiment on open-class-set multilabel scenarios and study
the applicability of one-class classifiers as building blocks in the BR algorithm, com-
pared with standard supervised classifiers. We also discuss the methodological pitfalls
that can arise in such experiments in section 4. The paper is brought to a conclusion in
section 5.

2 One-Class and Multilabel Classifiers

One-class classifiers (OCC) [6] are classifiers trained with data from one class only,
arbitrarily called positive. They are just normal binary classifiers that operate differ-
ently at training time by using only a subset of the data required to train conventional
supervised classifiers. Therefore their application as building blocks for multilabel clas-
sifiers, for example as components for BR, is straightforward. The question is whether
it is worthwhile.

One-class classification is motivated by a deficiency, not by the prospect of higher
performance on conventional supervised problems. That deficiency can result from the
quality of the raw material used to solve the classification problem: if the training data
available is not representative of the concept to be learnt (the discrimination between
classes) applying one-class classification is an option. That can be the case when the
negatives space is too broad (e.g.ifnextchar,latex@errorDont forget the comma!, the
writings of Cervantes against any other possible writing), when it is expensive to label
the negatives (e.g.ifnextchar,latex@errorDont forget the comma!, multimedia annota-
tion) or when negative examples have not yet arisen (e.g.ifnextchar,latex@errorDont
forget the comma!, industrial process monitoring). In these cases building a discrimi-
native model using the ill-defined negatives sample will lead to very poor generaliza-
tion performance and therefore conventional supervised techniques are not appropriate
(when usable).

Some other benefits, relevant to multilabel classification, can result from the ap-
plication of one-class classifiers. As there is no need to trade-off between classes the
decision boundaries are better specialized for each class and they do not suffer when
classes are imbalanced in the training set. In fact, OCCs can be regarded as an ex-
treme re-balancing process [7]. They naturally extend to open-class-set problems and
despite suffering from normalization and combination issues, they are suitable as build-
ing blocks for multiclass classifiers with reject (predict “unseen class”) option [8].

They also scale gracefully with the number of labels and have zero-cost retraining
when adding a new label in BR, as this only requires us to train a new classifier on the

1 In fact, due to the class imbalance problem, often the individual binary classifiers become
reject-all machines and so the prediction an the empty label set becomes a real problem.
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data available for the new class. This contrasts with the cost of adding a new class in
BR when using standard supervised classifiers. In this case we will need to retrain |L|
classifiers. If we assume for a moment that the average number of examples per class is
N̄ = N/|L| and that training a classifier is O(f(N)) = O(f(|L|N̄)) , then the whole
operation is O(|L|f(|L|N̄)). With the addition of new classes, supervised classifiers
may not have the capacity to model the new space of concepts and so they must be
adapted to the learning complexity of the problem. It appears to us that this is not such
an important issue for one-class classifiers.

But one-class classification does not come at no cost and usually there is a high
penalty in terms of generalization performance when compared with standard super-
vised classification on datasets where the motivational characteristics for one-class clas-
sification are not present. Usually one-class classifiers are much poorer than standard
binary classifiers, as eliminating class dependencies from the training bias dismisses
potentially critical information. One-class classification is, by definition, an ill-posed
problem, as it tries to solve a discrimination problem without having direct information
of what to discriminate against.

Operationally, one-class classification models are made up of two elements: the re-
semblance (or distance) function and the threshold. The first element to be considered
is a measure for the distance d(x) or the resemblance (probability) r(x) of an exam-
ple to the target class. The way those measures are computed vary from one approach
to another, but finally we have a method for computing the degree of positiveness or
negativeness (“outlierness”) for any example. The second ingredient for one-class clas-
sification models is the threshold τ , a value that, when compared to the resemblance
for a new example, determines whether it is classified as positive or not. Once we have
trained the model to describe the positives, which includes the estimation of τ , the clas-
sification for an example is given by:

c(x) = I(r(x) ≥ τ)

where I is an indicator function: 1 if x is to be accepted as positive and 0 otherwise.
The most common approach is to define a global threshold, that is, a sole number that
dictates the classification for a new example regardless of its nature or location. The
standard way of computing this global threshold is by assuming that a certain (usually
user supplied) percentage of the training data are outliers; in this way, it is enough to
sort the values of the resemblance function for the training data and set the threshold to
a value that will make the classifier reject the specified percentage of examples.

Threshold selection is directly related to the robustness and capital for one-class
classifiers generalization capabilities. If it is too tight the number of false negatives will
be increased; this can happen if the noise level specified by the user is too high. If it is
too loose, the number of false positives will increase; this will happen if the noise level
specified is too low. In either case one-class classifiers become reject-all or accept-all
machines, which is a very common and undesirable effect.

This is not the first study that has considered the application of one-class classi-
fiers in the multilabel context. An example is the work of Lee et alifnextchar..[9]. They
propose a multilabel system for solving a protein localization classification problem
based on an extension to support-vector data description [6], a one-class classifier in
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the family of support vector machines. They claim the whole classification system to
be well-adapted to multilabel problems where classes overlap 2 and report good perfor-
mance, competitive with the state of the art.

In the next section we report an initial experiment on multilabel classification in
an open-class-set scenario, assessing whether one-class classifiers used as components
in a plain BR classifier provide any distinctive advantage, specially on handling the
unknown classes.

3 An Experiment: Growing the Known Classes Set

In order to assess the performance of both supervised and one-class algorithms in a
scenario where not all the classes are known, we perform a partition of the label set into
two disjoint sets:

L = LK ∪ LU , LK ∩ LU = ∅

where LK are the known labels and LU are the unknown. We then split the known
examples (DK = {xi ∈ D : Yi ∩ LK 6= ∅}) into training and testing sets. We eval-
uate the performance using two different test sets: one containing known labels only,
which is the usual setting, and a superset contaminated with unknown labels, violat-
ing the assumption that training and testing sets come from the same distribution. This
methodology is applied in domains such as network intrusion detection, where classi-
fiers should be able to detect new kinds of attacks [10].

3.1 Growing the Known Class Set

The number of possible label subsets is exponential in |L|. The empirical results can be
highly dependent on label sampling artifacts for the known/unknown classes combina-
tions, and it is difficult to ascertain whether a chosen set reflects the real characteristics
of the domain. Different classifiers model better some classes than others and so the re-
sults are influenced by taking combinations of easy or difficult to separate classes from
one set to another. In many cases there is also a high class skew with rare and common
labels, and the size of the known labels set combined with the size of the classes it con-
tains control the prior probability of known and unknown classes, which is an important
parameter in assessing the trade-off between the performances in both samples.

A possible approach in practical research is to fix the proportion |LK |/|LU | and
randomize the choice of the known labels, running the evaluation several times. Here we
follow a different, systematic approach when splitting the label set. We consider a total
order of the labels in L = {λ1, . . . , λM} and create a sequence of sets L(1)

K ⊂ L
(2)
K ⊂

. . . ⊂ L
(t)
K = L by always adding only consecutive labels. For example, a possible

sequence of known-label sets for L = {λ1, λ2, λ3, λ4} is L(1)
K = {λ1, λ2}, L(2)

K =
Ł(1)
K ∪ {λ3}, L(3)

K = Ł(2)
K ∪ {λ4}.

This approach allows us to measure the performance over a range of known / un-
known proportions. Running several repetitions with random label orderings would help

2 The concept of class overlap is to some extent vague in a multilabel scenario.
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to combat label-sampling biases, which we do not do in the following experiments due
to computational time constraints. A fundamental question is whether this methodology
is appropriate and to which extent it is free of artifacts, which is not clear to us yet and
we discuss in section 4, after presenting some experiments.

3.2 Datasets and Preprocessing

In Table 1 we show a summary of the datasets3 we use. The only preprocessing we per-
form is on the bibtex dataset, where each document is normalized to unit L2 norm; even
if the features in bibtex are just binary indicators of the presence of a word, this approach
never harms and sometime substantially improves the performance of the classifiers.

Table 1. Summary of the datasets used in the evaluation. Cardinality is the average number of
labels per example ( 1

N

∑N
i=1 |Yi|), Density is the cardinality normalized by the number of labels

( 1
M

Cardinality) and Distinct is the number of different label subsets present.

Dataset Domain Size Dimensions Labels Cardinality Density Distinct Source
emotions music 593 72 6 1.25 0.311 27 [11]

scene image 2407 294 6 1.07 0.179 15 [12]
yeast biology 2417 103 14 4.24 0.303 198 [13]
bibtex text 7395 1836 159 2.41 0.015 2856 [14]

mediamill video 43907 120 101 4.38 0.043 6555 [15]

3.3 Classifiers

We compare the performance of six classifiers, three one-class classifiers and corre-
sponding supervised models, as building blocks in the BR reduction.

Lazy learning (k-Nearest-Neighbours): The nearest neighbour approach can be used
for constructing one-class classifiers. The training data is stored and an outlier-
ness criterion is calculated for new examples based on their nearest neighbours,
i.e.ifnextchar,latex@errorDont forget the comma!, their position relative to the seen
examples. Several criteria have been proposed to measure the outlierness of an ex-
ample. Here we use γ [16] which is the average of the distances to the k nearest
neighbours (oc-kNN). We set the threshold via an inexpensive leave-one-out cross-
validation of the scores in the training set combined with the usual fraction-of-
rejection approach with a parameter of 0.01. The corresponding supervised tech-
nique is BRkNN (kNN) [5]. We set k = 5.

Generative model (Mixture of Gaussians): A simple mixture of 3 Gaussians with
diagonal covariances (oc-MoG) is fitted to the positives and the emitted probability
is used as the resemblance criterion. The threshold is set using the fraction-of-
rejection criterion with a parameter of 0.01. The corresponding supervised tech-
nique fits a second mixture to the negatives and uses the probability emitted as the

3 Available for download at http://mlkd.csd.auth.gr/multilabel.html
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score for the negative class (MoGDA, standing for Mixture of Gaussians Discrimi-
nant Analysis).

Boundary Method (One-class SVM): We use the one-class ν-SVM [17] method (oc-
SVM), that computes hyper-surfaces enclosing (most of) the positive data. We set
ν, the regularization parameter that controls how much we expect our training data
to be contaminated with outliers, to 0.01. As is common practice in OCC we use
the Gaussian kernel, initializing the width of the kernel to the average pairwise
Euclidean distance in the training set for emotions, scene, yeast and mediamill,
and to the inverse of the dimensionality for bibtex. The corresponding supervised
technique is standard C-SVM, with the same kernel parameters and C = 1; we also
calibrate the scores using Platt scaling [18].

3.4 Results

We perform a 5-fold cross validation on the “small datasets” (emotions, scene and yeast)
and a 75% train / 25% test partition in the “big ones” (mediamill and bibtex). We grow
the known class set at regular intervals and report the evolution of the macro-averaged
AUC and F1. In Figure 2 we show the results on the scene dataset, that are consistent
with those observed on the rest of the datasets (see Figures 3 and 4). Several general
observations can be made:

– Including unknown classes in the testing set provokes worse results for all classi-
fiers but does not change the relative order in the classifier ranking for any of the
datasets. For that reason we only report results in all-labels for emotions, yeast,
bibtex and mediamill.

– The one-class classifier approaches are usually not competitive against the super-
vised ones. Even if expected, it is disappointing that they are not able to provide
a distinctive advantage in scenarios with many unknown labels. Anyway one-class
classifiers are fairly insensitive to the presence of unknown classes, as witnessed by
their AUC performance curves being almost flat.

– The threshold selection policies for the one-class classifiers are especially weak.
This is exemplified in the relation between oc-MoG and MoGDA for the F1 mea-
sure. They both have exactly the same potential as classifiers, since their scores for
the positive class are the same. The only difference between them is in the thresh-
olding policy, and it is the case that MoGDA always beats the fixed threshold policy
of oc-MoG. Using thresholding biases based on the known negatives seem therefore
a more reasonable approach to improve the performance of one-class classifiers.

– C-SVM is the overall winner amongst the supervised approaches in terms of rank-
ing capabilities. In agreement with the results reported in [10], where SVMs have
the best behavior on both known and unknown classes, this is probably due to the
generalization capabilities of the SVM rooted on the margin maximization bias.
However only in bibtex does that difference translate to actual classification im-
provements. For the F1 measure the winner is kNN, indicating that effort must also
be made on improving the thresholding methodology for supervised approaches.

– kNN has the worst performance for AUC with small number of known labels and
is always beaten by oc-kNN. This is due to kNN being constrained to report always
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one of the known classes - there will always be a nearest neighbor to one of the
examples in training set, even if it is very far. This suggest that a combination of
both approaches could increase performance in both areas.

To illustrate the scalability at training time of the supervised approaches as opposed
to that of one-class classification, we show in Figure 1 the training times of the six
classifiers on the bibtex dataset.
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Fig. 1. Scalability of the classifiers on the bibtex dataset with increasing number of known labels.
On the left, it is clear that the supervised SVM has the worst computational performance, as its
training time is cubic on the size of the training set, and so it is orders of magnitude slower with
a high number of labels. On the right, the second slower method is MoGDA. In any case, the
one-class approaches have no problems on scaling in domains with many labels.
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Fig. 2. Results for the scene dataset. On the top row is the test set with only known classes and on
the bottom the test set augmented with examples from the unknown labels. On the left we report
macro-AUC and on the right macro-F1. We appreciate that the performance on scenarios with
unknown labels is much worse for all the classifiers, but that the relative performances between
classifiers are constant. The relative positions of the curve with all the labels and the one with
only known labels is consistent in all the analyzed datasets, so for the rest we only report the
results on the test set with known and unknown labels.
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Fig. 3. Results for the emotions (top row) and yeast (bottom row) datasets. On the left we report
macro-AUC and on the right macro-F1. The performance of oc-SVM is very poor, probably
because of the lack of model selection and one of the key ingredients for the success of the
supervised SVM: margin maximization.



156

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160

A
U

C

|LK |

Bibtex: AUC in All Labels

kNN
oc-kNN

MoGDA
oc-MoG
C-SVM
oc-SVM

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160

F
1

|LK |

Bibtex: F1 in All Labels

kNN
oc-kNN

MoGDA
oc-MoG
C-SVM
oc-SVM

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120

A
U

C

|LK |

Mediamill: AUC in All Labels

kNN
oc-kNN

MoGDA
oc-MoG
C-SVM
oc-SVM

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120

F
1

|LK |

Mediamill: F1 in All Labels

kNN
oc-kNN

MoGDA
oc-MoG
C-SVM
oc-SVM

Fig. 4. Results for the bibtex (top row) and mediamill (bottom row) datasets. On the left we report
macro-AUC and on the right macro-F1. For mediamill C-SVM is not able to complete in the time
allotted even for a small subset of the labels, indicating its poor scalability. We regard the results
of the one-class approaches on the bibtex dataset as promising.
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4 More methodological issues

Adding an unknown class poses a serious challenge for performance evaluation. We
cannot measure the performance on it alone, as the only defined measure is specificity
(the true negative rate) because there are only negative instances of the unknown class.
Measuring specificity alone is not an option, as classifiers that are reject-all machines
will have a perfect score while more balanced models will probably perform worse. The
option is to mix them with the known classes and measure a more balanced criterion
in this test set. In our experiments we have observed that the specificity of supervised
classifiers in the unknown set promptly becomes perfect, as they are biased towards pre-
dicting all negatives - the number of training negatives is soon overwhelming - while
for one-class classifiers it depends on whether they are reject-all, accept-all or more
balanced models. As specificity depends on a good thresholding policy, the option to
measure the classifier scoring capabilities is to look at the differences in AUCs. In this
case useful information on the performance can be hidden by the already present rank-
ing of positive and negative examples, so an alternative is to measure AUC on positives
and unknown negatives only.

There is an important question of whether we fix the test set size or not, and the
composition of the test set can become both an artifact and an opportunity to gain insight
into the tradeoffs between different proportions of the actual set of unknown negatives.
We are not so comfortable with the idea of growing the known class set by taking classes
from the unknown set, as that creates fluxes of examples from testing to training whose
interaction with the performance measurement is not always neat. We cannot think of
a sensible alternative if we want to study the problem under different proportions of
known / unknown negatives other than fixing a set of unknown labels that are never
included in training and grow the known set from the rest of the labels.

In Figure 5 we show two different ways of conducting the splitting for the method-
ology that we have followed in this paper. We call them “train vs test first” and “known
versus unknown first”. The results reported in here followed the “train versus test first”
splitting that dismisses the unknown examples in the train set. The relation between
using this approach and that of always using all the possible unknown examples in the
testing set are always the same: the ratios between classifier performances remain con-
stant but performance is severely damaged as we increase the proportion of unknown
examples to be tested (see Figure 6). Estimating the prior probability of finding an
unknown example is a problem that has important implications for performance esti-
mation in real scenarios, but this is not the only catch here. There is an artifact due to
the performance criterion we use. F1 shows a tradeoff between recall and precision.
Adding more negatives to the test set will keep recall constant while it can only damage
precision. This effect must be taken into account when using F1 or related metrics to
measure the performance in a context where we only vary the number of negatives.

There is also an obvious interaction between changing the number of negatives in
the training sets while keeping constant the number of positive examples. For many
supervised models, the recall is a monotonically non-increasing function of the number
of negatives used to train them. The specificity is in turn a non-decreasing function of
the number of training negatives and so this usually cancels out in measures like F1. The
performance of the classifiers can appear similar but in fact the operating points may be
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Fig. 5. Possible dataset splitting methodologies for research under the assumption of the existence
of unknown labels. On the left, the original set is first split into known and unknown labels and
then the examples from the known labels are sampled randomly (class stratification is difficult
in multilabel datasets) to create training and testing sets. On the right, train and test sets are
created first and then the training set is split into examples from the known and examples from
the unknown labels; these approaches become roughly equivalent if the unknown-labels examples
that do not participate in training are all added to the test set, with the exception that, due to the
lack of stratification, the second approach does not guarantee the size of the actual training set.
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Fig. 6. Effect of increasing the number of the unknown examples in the test set. The F1 measure
can only get worse, as recall remains constant while precision can only decrease. F1 measure-
ments should be combined or replaced with other performance measures robust to this problem,
such as the Balanced Accuracy Rate (average between recall and the true negative rate).
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completely different, hiding the performance on the samples of interest, for example for
the unknown examples. Again other measures must be used and tracking the evolution
of both sides of the error becomes desirable.
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Fig. 7. Effect of increasing the number of negatives used for training an individual classifier. As
we increase the number of negatives used for training the recall can only fall while, empirically,
F1 remains constant or increases, due to both the classifiers rejecting more examples and getting
less negatives in the testing sets. In an ideal scenario we would increase the proportion of positives
accordingly, but our sample is finite. This is just another face of the problem with class skewness
that must be taken into account in research with dynamic class sets.

5 Conclusions

In many ways research on multilabel classification is concerned with seeking solutions
to the specific problems that arise on predicting individual labels. When reducing to
binary classification this requires us to address problems like class skewness and high
complexity of the concept space. In this respect, one-class classification is appealing,
but its successful application would require a great deal of skill from the data miner.
Choosing the right model, performing parameter selection and using heterogeneous
combinations by choosing those models that are better adapted to the characteristic of
each class are crucial tasks.The results in this paper are preliminary and should not be
taken as of discouraging further research in this direction. Applying hybrid methods
for introducing discriminative biases into one-class classifiers promises improvements.
Apart from focusing on the individual classifiers, other previously proposed approaches,
like splitting the label set to simplify the classification problems, appear to us as the
most sensible lines of research in this area.

Research on scenarios where not all the classes are known at training time is not an
active topic in multilabel classification at the moment. If it becomes relevant, a consen-
sus on the proper evaluation methodology should be achieved, as different experimental
setups can convey numerous artifacts. Here we conducted an initial attempt and stated
some of the pitfalls we are aware of, but more reflection and debate are needed.
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