
 1

R-DEVICE1: An Object-Oriented Knowledge Base System
for RDF Data

User and Installation Manual

Nick Bassiliades

Dept. of Informatics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

nbassili@csd.auth.gr

Introduction
R-DEVICE is a deductive object-oriented knowledge base system, which transforms RDF triples into objects
and uses a deductive rule language for querying and reasoning about them. More specifically, R-DEVICE
imports RDF data into the CLIPS production rule system as COOL objects. The main difference between the
RDF data model and our object model is that properties are treated both as first-class objects and as attributes of
resource objects. In this way properties of re-sources are not scattered across several triples as in most other RDF
storage and querying systems, resulting in increased query performance due to less joins. The descriptive
semantics of RDF data may call for dynamic redefinitions of resource classes, which are handled by R-DEVICE.

R-DEVICE features a powerful deductive rule language which is able to express arbitrary queries both on the
RDF schema and data, including generalized path expressions, stratified negation, aggregate, grouping, and
sorting, functions, mainly due to the second-order syntax of the rule language which is efficiently translated into
sets of first-order logic rules using metadata. R-DEVICE rules define views which are materialized and
incrementally maintained. Finally, users can use and define functions using the CLIPS host language.

R-DEVICE Architecture
The R-DEVICE system consists of two major components (Figure 1): the RDF loader/translator and the rule
translator. The former accepts from the user requests for loading specific RDF documents. The RDF triple loader
downloads the RDF document from the Internet
and uses the ARP parser to translate it to triples in
the N-triple format. Both the RDF/XML and
RDF/N3 files are stored locally for future
reference. Furthermore, the RDF document is
scanned for namespaces that have not already been
imported/translated into the system. Some of the
untranslated namespaces may already exist on the
local disk, while others are fetched from the
Internet. All namespaces (both fetched and locally
existing) are recursively scanned for namespaces,
which are also fetched if not locally stored. Finally,
all untranslated namespaces are also parsed using
the ARP parser.

All N-triples are loaded into memory, while the
resources that have a URI#anchorID or
URI/anchorID format are transformed into a
namespace:anchorID format if URI belongs to the
initially collected namespaces, in order to save
memory space. The transformed RDF triples are
fed to the RDF triple translator which maps them

1 http://lpis.csd.auth.grsystems/r-device.html

RDF triple
Loader

RDF triple
Translator

Internet

Local Disk

User

URI

ARP

Rule
Program

Rule
Translator

CLIPS / COOL

RDF triples

Objects

RDF
documents

XML

N3

Results - Objects

Results -
RDF

R-DEVICE

XML/N3
documents

RDF
Extractor

Results - Objects

Web server

Rules

Figure 1. Architecture of the R-DEVICE system.

Nick Bassiliades R-DEVICE Manual

 2

into COOL objects, according to the mapping schema that is described in the next section.

The rule translator accepts from the user a set of R-DEVICE rules and translates them into a set of CLIPS
production rules. Details about the translation scheme are given in the corresponding section. When the
translation ends, CLIPS runs the production rules and generates the objects that constitute the result of the initial
rule program or query. Finally, the result-objects are exported to the user as an RDF document through the RDF
extractor.

The R-DEVICE Deductive Rule Language
R-DEVICE has a deductive rule language that supports querying over objects and RDF data represented as
objects and define materialized views over them that are maintained incrementally. The conclusions of deductive
rules represent derived classes, i.e. classes whose objects are generated by evaluating these rules over the current
set of objects. Furthermore, R-DEVICE supports recursion, stratified negation, path expressions over the objects,
generalized path expressions (i.e. path expressions with an unknown number of intermediate steps), derived and
aggregate attributes. Finally, users can call out to arbitrary built-in or user-defined functions of the
implementation language, i.e. Prolog and CLIPS, respectively.

In R-DEVICE each deductive rule is implemented as a pair of CLIPS production rules: one for inserting a
derived object when the condition of the deductive rule is met and one for deleting the derived object when the
condition is no more met, due to base object deletions and/or slot modifications. R-DEVICE uses RETE
algorithm to match production rule conditions against the objects.

Figure 1 shows the pair of production rules generated by R-DEVICE for the deductive rule q6 found in the
Appendix. We notice that the assertion of a derived object is based on a counter mechanism which counts how
many derivations exist for a certain derived object, based on the values of its slots. The latter also define the
identifier of the derived object. Derived objects are created only when not already exist, otherwise their counter
is just increased by one. Furthermore, derived objects are deleted when their counter is one, otherwise their
counter is decreased by one. Production rules that watch out for possible deletion of derived objects, have the
negation of the original deductive rule condition in their condition. Finally, derived objects also keep the object
identifiers of their derivators, i.e. the base objects to which they owe their existence, and the name of the rule
that derived them. This is needed in order to correctly maintain the derived view.

The syntax of R-DEVICE deductive rules is a variation of the syntax for CLIPS production rules (see section R-
DEVICE Rule Syntax). Although R-DEVICE uses COOL objects, the syntax of rules is as if deductive rules
query over CLIPS templates, because the syntax is simpler. Specifically, each condition element follows the
following format:

?OID <- (classname (path-expr value-expr) …)

where ?OID is the (optional) object identifier (or instance name, not address) of an object of class classname, and
(path-expression value-expression) are zero, one, or more conditions to be tested on each object that
matches this pattern.

When the name of the class is unknown, a variable can be used in place of a concrete class name. Classnames
can consist of a namespace prefix followed by a colon and a local part name. R-DEVICE allows the use of
variables in both the place of the namespace prefix and the local part name. For example, the following condition
element applies to instances of classes of the rss namespace.

(rss:?c (rss:title ?t))

A value expression can be a constant or a variable or a constraint or a combination of those, as defined by CLIPS
rule syntax. Examples of value expressions are given below.

A path expression is an extension of CLIPS's single ground slot expression. Specifically, in R-DEVICE a path
expression can be one of the following:

• A single slot of the class classname. For example, the following single condition element of query q5 in the
Appendix queries slots rss:title and rss:link of objects of class rss:item:

(rss:item (rss:title ?t) (rss:link ?l))

• A single variable denoting any slot of class classname. For example the following condition element
searches for a resource object with an unknown slot whose value is "Smith".

(rdfs:Resource (?s "Smith"))

Nick Bassiliades R-DEVICE Manual

 3

• A ground path that consists of a list of multiple slots surrounded by brackets. Query q7 in the Appendix
shows an example of such a path in the first condition element:

((dcq:RFC1766 dc:language) ?language)

The right-most slot should be a slot of the "departing" class. Moving to the left, slots belong to classes that
represent the range of the predecessor slots. The value expression in such a pattern (e.g. variable ?language)
actually describes a value of the left-most slot of the path.

• A path that contains one or more single-field variables, i.e. a path whose length is known but some of the

steps are not. The above ground path can be turned into such a path:
((dcq:RFC1766 ?x) ?language)

• A path that contains one or more multi-field variables, i.e. variables that their value is a list. These non-
ground paths have an unknown length. The path below can have at least two steps and at most four (given
the specific example):

((dcq:RFC1766 dc:language $?p) ?x)

• A path that contains an encapsulated recursive sub-path, i.e. a sub-path that is traversed an unknown number
of times. The following path contains the recursive sub-path (dcq:references) which recursively follows
resources that reference each other:

((dc:title (dcq:references)) ?t)

Recursive paths can be used to express transitive closure queries. For example, the following query collects all
resources (pages) recursively referenced by a certain resource.
(deductiverule collect_refs
 (? (uri "http://www.csd.auth.gr/~lpis") ((uri (dcq:references)) ?uri))
 =>
 (result (uri ?uri)))

Notice that URIs that are reachable following many paths will only be included once in the result and that
infinite loops will be avoided, due to the counter mechanism (see above).

(defrule gen80
 (declare (salience (calc-salience result)))
 (run-deductive-rules)
 (object (name ?gen79) (is-a rss:item) (rss:title ?title) (rss:link ?link))
 (test (str-index "RDQL" ?title))
 (not (object (name ?DO&:(eq ?DO (symbol-to-instance-name (sym-cat result ?link)))) (is-a result)

(link ?link) (derivators $? +++ ? ?gen79 +++ $?)))
 =>
 (bind ?oid (symbol-to-instance-name (sym-cat result ?link)))
 (if (instance-existp ?oid)
 then
 (slot-insert$?oid derivators 1 +++ gen80 ?gen79 +++)
 (send ?oid put-counter (+ (send ?oid get-counter) 1))
 else
 (make-instance ?oid of result (link ?link) (derivators +++ gen80 ?gen79 +++))))

(defrule gen81
 (declare (salience 1000))
 (run-deductive-rules)
 (object (name ?derived-object) (is-a result) (link ?link) (counter ?old-counter)

(derivators $?DER-B +++ gen80 ?gen79 +++ $?DER-A))
 (or (test (not (all-instance-existp (create$?gen79))))
 (and (object (name ?gen79) (is-a rss:item))
 (not (and (object (name ?gen79) (is-a rss:item) (rss:title ?title) (rss:link ?link))
 (test (str-index "RDQL" ?title))))))
 =>
 (bind ?new-counter (- ?old-counter 1))
 (if (= ?new-counter 0)
 then
 (send ?derived-object delete)
 else
 (modify-instance ?derived-object
 (counter ?new-counter)
 (derivators $?DER-B $?DER-A))))

Figure 1. CLIPS production rules generated for the deductive rule q6 (see Appendix).

Nick Bassiliades R-DEVICE Manual

 4

Recursive sub-paths can be implicitly included in a path of unknown length. For example in the following path,
the multifield variable $?p can represent both linear and recursive sub-paths:

((dc:title $?p) ?t)

Multifield variables can also occur at the place of value expressions, since all RDF properties are treated as
multislots. For example, the following pattern retrieves in a list $?l all the values for the rss:link property of a
resource object:

(rss:link $?l)

On the other hand, if we know that a resource object has many values for one property and we want to iterate
over them, the pattern should be:

(rss:link $? ?l $?)

which means that variable ?l will eventually become instantiated with all the values of the property rss:link.
This retrieval pattern is so common that a shortcut is provided which expands to the above pattern during a
macro expansion phase.

(rss:link ??l)

When the value of a specific variable is of no interest then an anonymous variable '?' can be used, which is
replaced by a singleton system-generated variable during the macro expansion phase.

Selection conditions can be placed inside value expressions or as individual test condition elements, as in
CLIPS. For example, the following pattern retrieves the family name in a variable and, at the same time, tests if
the slot value does not equal "Smith":

(vcard:Family ?last&~"Smith")

The same condition can also be expressed as:
 (vcard:Family ?last)
 (test (neq ?last "Smith"))

Conditions can also express disjunction and negation. Only stratified negation is allowed.

Rule conclusion can also contain a set of function calls that calculate the values to be stored at the slots of the
derived object. Such calls are placed inside a calc construct before the derived class template. For example, the
following variation of rule q2 retrieves the given and family name of a resource object and using a CLIPS
function concatenates them into a single string that is stored in the slot full-name of the derived objects of class
person.
(deductiverule q2-variation
 (? (vcard:Family ?f) (vcard:Given ?v))
 =>
 (calc (bind ?full (str-cat ?v " " ?f)))
 (person (full-name ?full)))

Finally, R-DEVICE supports aggregate functions and grouping in the form of aggregate attribute rules. These
rules express how values are accumulated and combined into attributes of existing objects. For example, the
following rule iterates over all resources and generates one object for each distinct creator, which holds in the
URIs slot all the resources that he/she has created.
(deductiverule ex1-aggregate
 (? (dcq:creator ?c) (uri ?uri))
 =>
 (pages (author ?c) (URIs (list ?uri))))

Function list is an aggregate function that just collects values in a list. There are several other aggregate
functions, such as sum, count, avg, etc. Notice in the above example that grouping is performed when the
conclusion contains any slot (author) other than the aggregate one (URIs).

Nick Bassiliades R-DEVICE Manual

 5

Installation Instructions
• Unzip r-device.zip in C:\Program Files\R-DEVICE directory.

o If you want R-DEVICE installed in another directory, then after unzip, edit r-device.bat
and change the directory at line 1.

• Install LibWWW binaries at c:\Program Files\Libwww (or change directory at line 1 of file
arp.bat).

o Binaries can be downloaded from http://www.idm.ru/libwww.htm.

• Install ARP RDF parser at c:\Program Files\arp and Xerces XML parser at
c:\Program Files\xerces (or change directories at line 2 of file arp.bat and line 1 of file
arp-only.bat).

o The above parsers can be downloaded from:

 ARP: http://www.hpl.hp.com/semweb/arp.html

 Xerces: http://xml.apache.org/xerces-j/index.html

• Install CLIPS v.6.20.

o Binaries can be downloaded from http://www.ghg.net/clips/CLIPS.html.

• Run CLIPS and File → Load Batch… → r-device.bat

Running the ODP example
After loading r-device.bat …

• Load the batch file run-test.bat in the test/ directory.

o To run different query examples change the filename questionN.clp at line 5.

R-DEVICE commands
• (set verbose on|off)

Set R-DEVICE to display information when importing RDF triples and/or translating deductive rules.

• (load-rdf <filename> local)

Load in R-DEVICE an RDF file that is stored locally in <filename>.rdf.

• (load-rdf <filename> <address>)

Load in R-DEVICE an RDF file that can be found at URL <address> and also store it locally in
<filename>.rdf.

• (import)

Translate all the loaded RDF triples into COOL objects.

• (r-device <filename>)

Load and translate the R-DEVICE rules found in <filename>.

• (go)

Run the loaded R-DEVICE rules.

• (export_rdf <filename> <classes>)

Export CLIPS <classes> in RDF/XML format to file <filename>.

Nick Bassiliades R-DEVICE Manual

 6

R-DEVICE Rule Syntax
<r-device-rule> ::=
 <deductive-rule> | <derived-attribute-rule> | <aggregate-attribute-rule>

<deductive-rule> ::=
 (deductiverule [<rule-name>]
 <conditional-element>*
 =>
 <conclusion>)

<derived-attribute-rule> ::=
 (derivedattrule [<rule-name>]
 <conditional-element>*
 =>
 <derived-attribute-conclusion>)

<aggregate-attribute-rule> ::=
 (aggregateattrule [<rule-name>]
 <conditional-element>*
 =>
 <aggregate-attribute-conclusion>)

<conditional-element> ::=
 <pattern-CE> | <assigned-pattern-CE> |
 <not-CE> | <and-CE> | <or-CE> | <test-CE>

<pattern-CE> ::=
 <class-pattern-CE>

<assigned-pattern-CE> ::=
 <single-field-variable> <- <pattern-CE> | <instance-name> <- <pattern-CE>

<not-CE> ::=
 (not <conditional-element>)

<and-CE> ::=
 (and <conditional-element>+)

<or-CE> ::=
 (or <conditional-element>+)

<test-CE> ::=
 (test <function-call>)

<class-pattern-CE> ::=
 (<class-expr> <LHS-slot>*)

<class-expr> ::=
 <class-name> | <svar-expr> | <namespace>':'<class-name> |
 <svar-expr>':'<class-name> | <namespace>':'<svar-expr>

<LHS-slot> ::=
 <single-field-LHS-slot> | <multifield-LHS-slot>

<single-field-LHS-slot> ::=
 (<path-expr> <constraint>)

<multifield-LHS-slot> ::=
 (<path-expr> <constraint>*)

<path-expr> ::=
 <slot-expr> | (<path-item>+)

<slot-expr> ::=
 <slot-name> | <svar-expr>

<svar-expr> ::=

Nick Bassiliades R-DEVICE Manual

 7

 <single-field-variable> | '?'

<path-item> ::=
 <slot-expr> | <multifield-variable> | (<slot-name>+)

<constraint> ::=
 '?' | '$?' | <connected-constraint>

<connected-constraint> ::=
 <single-constraint> | <single-constraint> '&' <connected-constraint> |
 <single-constraint> '|' <connected-constraint>

<single-constraint> ::=
 <term> | ~<term>

<term> ::=
 <constant> | <single-field-variable> | <multifield-variable> |
 <single-field-variable-multifield-expression> |
 ':'<function-call> | '='<function-call>

<single-field-variable> ::=
 '?'<variable-symbol>

<multifield-variable> ::=
 '$?'<variable-symbol>

<single-field-variable-multifield-expression> ::=
 '??'<variable-symbol>

<constant> ::=
 <symbol> | <string> | <integer> | <float> | <instance-name>

<function-call> ::=
 (<function-name> <expression>*)

<conclusion> ::=
 [(calc <function-call>+)]
 (<RHS-class-expr> <RHS-slot>*)

<RHS-class-expr> ::=
 <class-name> | <single-field-variable> | <namespace>':'<class-name> |
 <single-field-variable>':'<class-name> |
 <namespace>':'<single-field-variable>

<RHS-slot> ::=
 <simple-assign-expr> | <aggregate-assign-expr>

<simple-assign-expr> ::=
 (<RHS-slot-expr> <value>)

<RHS-slot-expr> ::=
 <slot-name> | <single-field-variable>

<value> ::=
 <single-field-variable> | <multifield-variable> | <constant>

<aggregate-assign-expr> ::=
 (<RHS-slot-expr> <aggregate-function-expr>)

<aggregate-function-expr> ::=
 (<aggregate-function> <single-field-variable>)

<derived-attribute-conclusion> ::=
 [(calc <function-call>+)]
 <single-field-variable> <- (<RHS-class-expr> <simple-assign-expr>)

<aggregate-attribute-conclusion> ::=
 [(calc <function-call>+)]

Nick Bassiliades R-DEVICE Manual

 8

 <single-field-variable> <- (<RHS-class-expr> <aggregate-assign-expr>)

<rule-name> ::=
 A symbol which represents the name of a rule

<variable-symbol> ::=
 A symbol beginning with an alphabetic character.

<function-name> ::=
 Any symbol which corresponds to a system or user defined function, a deffunction name, or a defgeneric name

<class-name> ::=
 A valid defclass name

<slot-name> ::=
 A valid defclass slot name

<aggregate-function> ::=
 A valid aggregate function name

Appendix
This appendix contains examples of R-DEVICE rules for sample RDF queries that have been obtained from
"RDF Query and Rule languages Use Cases and Examples survey2".

(deductiverule q1
 ?x <- (? (email:message-id '123456@example.com'))
 =>
 (result (email ?x)))

(deductiverule q2
 ?x <- (? (vcard:N ?y))
 ?y <- (? (vcard:Family "Smith") (vcard:Given ?v))
 =>
 (person (name ?v)))

(deductiverule q3
 data:x <- (? (?property ?value))
 ?property <- (rdf:Property (rdfs:range $? ?t $?))
 =>
 (result (property ?property) (value ?value)(type ?t)))

(deductiverule q5
 (rss:item (rss:title ?title) (rss:link ?link))
 =>
 (result (title ?title) (link ?link)))

(deductiverule q6
 (rss:item (rss:title ?title) (rss:link ?link))
 (test (str-index "RDQL" ?title))
 =>
 (result (link ?link)))

(deductiverule q7
 ?x <- (? (dc:title ?tt) (dc:description ?dd) ((etbthes:ETBT dc:subject) ?ss2)
 (dc:identifier ?identifier) ((dcq:RFC1766 dc:language) ?language))
 ?tt <- (? (rdf:value ?t_val) ((dcq:RFC1766 dc:language) ?t_lang))
 ?ss2 <- (? (rdf:value ?subject_val) ((dcq:RFC1766 dc:language) ?subj_lang))
 ?dd <- (? (rdf:value ?desc_val) ((dcq:RFC1766 dc:language) ?desc_lang))
 =>
 (result (title_value ?t_val) (title_language ?t_lang) (subj_val ?subject_val)
 (subj_lang ?subj_lang) (desc_value ?desc_val) (desc_lang ?desc_lang)
 (language ?language)(identifier ?identifier)))

2 http://rdfstore.sourceforge.net/2002/06/24/rdf-query/

