
 EMERALD: User Guide and Manual 2009

http://lpis.csd.auth.gr/systems/emerald/
1

EMERALD
A Knowledge-based Framework for Semantic Web Agents

Author: Kalliopi Kravari (Aristotle University of Thessaloniki, Greece)

Contact: kkravari@csd.auth.gr

http://lpis.csd.auth.gr/systems/emerald/�

 EMERALD: User Guide and Manual 2009

http://lpis.csd.auth.gr/systems/emerald/
2

Contents

INTRODUCTION ... 3

FRAMEWORK .. 4

Reasoning Service .. 5

Agent model .. 5

Basic Java Library ... 5

USER GUIDE .. 6

Software requirements .. 7

EMERALD installation .. 7

Reasoners .. 8

KC-Agents .. 9

SAMPLE USE CASES ... 10

Brokering Scenario ... 10

Negotiation Scenario ... 14

REFERENCES .. 17

http://lpis.csd.auth.gr/systems/emerald/�

 EMERALD: User Guide and Manual 2009

http://lpis.csd.auth.gr/systems/emerald/
3

INTRODUCTION

Based on the plethora of proposals and standards for rule-based and logic-based reasoning for the

Semantic Web, a key factor for the success of Semantic Web information systems, in general, and

agents, in particular, is interoperability of reasoning tasks among multiple, heterogeneous web software

entities exchanging rule bases to justify their positions.

EMERALD is an implementation framework for interoperable reasoning among agents in the Semantic

Web, by using third-party trusted reasoning services. The advantage is that every agent can exchange its

position justification arguments (i.e. rule set) with any other agent, without the need for all agents to

conform to the same kind of rule paradigm or logic; the receiving agent can use an external reasoning

service to grasp the semantics of the rule set, namely the set of the results of the rule set.

EMERALD is built on-top of the JADE multi-agent system. In EMERALD, reasoning services are “wrapped”

by an agent interface, called the Reasoner, allowing other IAs to contact them via ACL (Agent

Communication Language) messages. The Reasoner can launch an associated reasoning engine, in order

to perform inference and provide results. Notice that the Reasoner is actually a service and not a fully

autonomous agent. The only reason that we have provided an agent interface is to be able to integrate

into the JADE MAS environment.

Currently, the following rule engines have been integrated:

• DR-DEVICE (defeasible reasoning)
• R-DEVICE (deductive, Datalog-like rules)
• SPINdle(defeasible logic engine)
• Prova (prolog-like rule engine)

http://lpis.csd.auth.gr/systems/emerald/�
http://jade.tilab.com/�
http://lpis.csd.auth.gr/systems/dr-device.html�
http://lpis.csd.auth.gr/systems/r-device.html�
http://spin.nicta.org.au/demo/index.html�
http://prova.ws/�

 EMERALD: User Guide and Manual 2009

http://lpis.csd.auth.gr/systems/emerald/
4

FRAMEWORK

Each human user controls a single all-around agent; agents can intercommunicate, but do not have to

“grasp” each other’s logic. This is why trusted, third-party, reasoning services are deployed. In

EMERALD, reasoning services are “wrapped” by an agent interface, called the Reasoner, allowing other

IAs to contact them via ACL messages. The goal is to apply as many standards as possible, in order to

encourage framework application and development. Thus, RuleML (Rule Markup Language) will serve as

the common rule interchange format and RDF(S) (Resource Description Framework) and OWL (Web

Ontology Language) as SW language formalisms, using in practice the SW as infrastructure for the

framework.

Moreover, agents are not confined in having their logics and strategies/policies hard-wired. Instead,

they can be either generic or customizable; each agent contains a rule base that describes its knowledge

of the environment, its behaviour pattern as well as its strategy/policy. By altering the rule base, the

agent’s knowledge and/or behaviour will instantly be modified accordingly. So, EMERALD provides a

generic, reusable agent model for knowledge-customizable agents, called KC-Agents.

http://lpis.csd.auth.gr/systems/emerald/�

 EMERALD: User Guide and Manual 2009

http://lpis.csd.auth.gr/systems/emerald/
5

Reasoning Service

The reasoning service is provided by a JADE IA, called the Reasoner. The Reasoner can call an associated

reasoning engine, in order to perform inference and provide results. The Reasoner constantly stands by

for new requests (ACL messages with a “REQUEST” communication act). As soon as it gets a valid

request, it launches the associated engine that processes the input data (i.e. rule base) and returns the

results. Finally, the Reasoner returns the above result through an “INFORM” ACL message.

Currently, EMERALD supports four reasoning engines, which use a variety of logics.

• DR-DEVICE: (defeasible reasoning)
• R-DEVICE: (deductive, Datalog-like rules)
• SPINdle:(defeasible logic engine)
• Prova: (prolog-like rule engine)

Agent model

This model (KC-Agents) consists of the Knowledge-base (KB), the Advanced Yellow Pages Service (AYPS)

and some external JAVA methods.

http://lpis.csd.auth.gr/systems/emerald/�
http://lpis.csd.auth.gr/systems/dr-device.html�
http://lpis.csd.auth.gr/systems/r-device.html�
http://spin.nicta.org.au/demo/index.html�
http://prova.ws/�

 EMERALD: User Guide and Manual 2009

http://lpis.csd.auth.gr/systems/emerald/
6

The KB contains the agent’s knowledge, in the form of facts, and the behavior pattern, in the form of

production rules. Actually, the agent’s behavior is a set of potential actions, expressed as Jess

production rules. These rules derive new facts by inserting them into the KB or lead to the execution of a

special action. Special actions can either refer to agent communication or Java calls.

So, in order to provide a standard communication interface between the jess KB and the JADE agent, we

have developed a number of Java methods that can be evoked from JESS production rule actions.

Moreover, we provide a customized procedure for the yellow pages service, both for registered and

required services. Its most important feature is that the proper providers are inserted into working

memory as Jess facts with a designated format: (service_type (provider provider_name)).

Finally note that, the service type provided by the DR-Reasoner and R-Reasoner is

“Defeasible_Reasoning_Service” and “Deductive_Reasoning_Service”, accordingly.

Basic Java Library

 Finally, this framework supports a java library, called BASIC that provides a number of java methods.

• fileToString: Reads a file and returns its content as a String

• createRulebase: Given a rulebase (.ruleml) creates a backup of it, replacing the value of the
"rdf_import" attribute.

• extractTriples: Given an RDF file (.rdf) extracts its triples and stores them in a clp file.

In order to use it, write the following jess code into the KC-AGENT agent's strategy:

(defrule call_method

;preconditions

=>

(bind ?tt (new Basic))

(bind ?str (?tt method's_name argument(s))))

For more information, read the javadoc. (Available at

http://lpis.csd.auth.gr/systems/emerald/resource.html)

http://lpis.csd.auth.gr/systems/emerald/�
http://lpis.csd.auth.gr/systems/emerald/resource.html�

 EMERALD: User Guide and Manual 2009

http://lpis.csd.auth.gr/systems/emerald/
7

USER GUIDE

EMERALD is, actually, an extended JADE MAS, containing Reasoners and an agent model, called KC-

Agents.

Software requirements

It is important to have already installed JADE. Be sure that JADE’s path is C:\jade. Depending on which of

the reasoning engines you want to use, install it/them to your system. No special care for paths.

EMERALD installation

Download Emerald and just run EMERALD-x.x.exe.

Be careful NOT to select agent files for rule engines that are not already installed to your system.

After the successful installation a new folder (called EMERALD) is created under the jade folder.

http://lpis.csd.auth.gr/systems/emerald/�

 EMERALD: User Guide and Manual 2009

http://lpis.csd.auth.gr/systems/emerald/
8

Reasoners

Reasoning Agents (DR-Reasoner, R-Reasoner, SPINdle-Reasoner, Prova-Reasoner) use a similar

procedure, receive new requests by REQUEST ACL messages and reply with an INFORM ACL messages.

• INPUT (REQUEST ACL msg): The content should be a path (e.g C:\\test.xxx)

• OUTPUT (INFORM ACL msg): The content is the result file’s path (e.g.

C:\jade\EMERALD\conclusions\xeg00.xxx)

Notice that the name of the results’ file is quite random. To be specific, the prefix is the engine’s name

and the suffix is four elements, two letters followed by two digits.

Also, notice that Reasoners receive and return specific file formats exactly the same with the associated

reasoning engines. For more details, see the reasoning engine’s manual.

• DR-Reasoner: receives xxx.ruleML documents and returns xxx.RDF documents.

• R-Reasoner: receives xxx.ruleML documents and returns xxx.RDF documents.

• SPINdle-Reasoner: receives xxx.dfl documents and returns xxx.dfl or xxx.xml documents.

(currently, EMERALD uses the xml format)

• Prova-Reasoner: receives xxx.prova documents.

Finally, notice that there is a general directory for the result files, the C:\jade\EMERALD\conclusions\.

http://lpis.csd.auth.gr/systems/emerald/�

 EMERALD: User Guide and Manual 2009

http://lpis.csd.auth.gr/systems/emerald/
9

KC-Agents

This generic, reusable agent model is equipped with a jess rule engine and a knowledge base that

contains environment knowledge, behavior patterns and strategies. So, by altering the KB, both the

agent's knowledge and behavior is modified accordingly.

In order to create a new agent based on KC-Agents model, insert jessAgent to the Class Name and be

careful to insert as first Argument the path of the knowledge base in the form of C:\xxx.clp, written in

jess.

For the agent’s advertised services (register) insert an argument in the form of xxxreg.txt. Be careful to

name that file with the ‘reg.txt’ suffix.

Similar, for the required services (require) insert an argument in the form of xxxreq.txt. Again, be careful

to name that file with the ‘req.txt’ suffix.

Each service (registered or required) has to be in a new row, as shown below.

Moreover, a KC-Agent that wants to contact to the DR-Reasoner, have the ability to determine its

parameters by another argument. It has to be in the form xxxparam.txt.

http://lpis.csd.auth.gr/systems/emerald/�

 EMERALD: User Guide and Manual 2009

http://lpis.csd.auth.gr/systems/emerald/
10

Notice that you can insert as many arguments as you want, but always the first one must be the

knowledge file.

IMPORTANT: Visit JESS’ site (http://www.jessrules.com/) to download it.

SAMPLE USE CASES

Two use case scenarios will demonstrate the integration of these technologies, a brokering and a

negotiation scenario.

Brokering Scenario

This scenario is a complete example of applying defeasible logic in a brokering scenario, by using the DR-

Reasoner.

The application chosen is apartment renting1

1 The example was taken from : Grigoris Antoniou and Frank van Harmelen, "A Semantic Web Primer", MIT
Press, 2004.

, an activity that is often tedious and time‐consuming.

Three independent parties are involved: the customer, the broker and the DR-Reasoner. Both the

customer and the broker are based on the KC-Agents model.

http://lpis.csd.auth.gr/systems/emerald/�
http://www.jessrules.com/�

 EMERALD: User Guide and Manual 2009

http://lpis.csd.auth.gr/systems/emerald/
11

The customer (let’s call him Carlos) is actually a potential renter that wishes to rent an apartment based

on his requirements (e.g. apartment size, location, floor, facilities etc.) as well as his preferences (e.g.

cheapest, largest apartment etc.).

The broker, on the other hand, possesses a number of available apartments stored in an appropriate

database. His role is to match Carlo’s requirements with the features of the available apartments and

eventually propose suitable flats to the potential renter.

The DR-Reasoner is an independent third‐party service that has the capability of processing inference on

defeasible logic rule bases and producing the results in the form of an RDF file. The input to the

mediator is the rule base and the output is represented by the RDF document.

More specifically, Carlo’s requirements are formulated as below:

http://lpis.csd.auth.gr/systems/emerald/�

 EMERALD: User Guide and Manual 2009

http://lpis.csd.auth.gr/systems/emerald/
12

1. Carlos is looking for an apartment of at least 45 m2 with at least 2 bedrooms. If it is on the 3rd floor or higher,

the house must have an elevator. Also, pet animals must be allowed.

2. Carlos is willing to pay $300 for a centrally located 45 m2 apartment, and $250 for a similar flat in the suburbs.

In addition, he is willing to pay an extra $5 per m2 for a larger apartment, and $2 per m2 for a garden.

3. He is unable to pay more than $400 in total. If given the choice, he would go for the cheapest option. His 2nd

priority is the presence of a garden; lowest priority is additional space.

So, he delegates the transaction to his agent that sends Carlos’ requirements to a broker in order to get
back all the available houses with the proper properties. These requirements are expressed in defeasible
logic, in a RuleML‐like syntax.

Then, the first step is done; a document containing Carlos’ requirements is send to the broker (broker’s

agent). The broker has a list of all available houses but does not want reveal it to Carlo, because its one

of its most valuable assets. However, the broker cannot process the customer’s requirements using

defeasible logic, so he requests an independent party’s reasoning service. Hence, the broker sends both

the customer’s (Carlos’) requirements and the list of available houses, waiting to get back the proper

houses.

Consequently, the DR-Reasoner calls the DR‐DEVICE application. The DR‐DEVICE processes the above

data and returns an RDF document, which contains all acceptable houses that fill all requirements. The

DR-Reasoner sends back the results to the broker and the broker, on his behalf, sends it to the

customer. So, steps three and four are already completed.

Eventually, the customer receives the appropriate list and has to decide which house he prefers. The

customer’s agent does not want to send his preferences to the broker, because he is afraid that the

broker will take advantage of that and will not present him his most preferred choices. The Carlo’s agent

sends the list of acceptable houses (an RDF document) and Carlos’ preferences (once again in the form

of a defeasible logic rule base) to

http://lpis.csd.auth.gr/systems/emerald/�

 EMERALD: User Guide and Manual 2009

http://lpis.csd.auth.gr/systems/emerald/
13

the DR-Reasoner agent, waiting for reply. Once again, the DR-Reasoner calls the DR‐DEVICE reasoner

and gets the most preferred house as an answer. After that, he replies and proposes the best

transaction for the customer.

At last, the procedure ends and Carlos can safely make the best choice based on his requirements but

also his specific preferences. The whole procedure is carried out in six concrete steps, as shown below

Part of the exchanged documents is shown below:

http://lpis.csd.auth.gr/systems/emerald/�

 EMERALD: User Guide and Manual 2009

http://lpis.csd.auth.gr/systems/emerald/
14

Negotiation Scenario

This is a negotiation scenario and involves 3 parties, the broker, the customer and the owner of the

apartment.

Each of them is a KC-Agent, with a new KB for the broker and the customer (different from the previous

scenario)

The customer initially has to find out the owner of the apartment. So, he asks the broker to inform him.

Then, the Customer starts a negotiation process with the Owner. Meanwhile, the Broker observes the

negotiation and in the end asks for a fee of 2%, depending on the agreed rent.

http://lpis.csd.auth.gr/systems/emerald/�

 EMERALD: User Guide and Manual 2009

http://lpis.csd.auth.gr/systems/emerald/
15

Customer’s strategy increases the bid gradually and is constrained by:

• ttr (time-to-rent): the number of maximum negotiation rounds

• min_profit: the amount of minimum rent decrement

• interest : the degree of “how much” the agent wants the apartment (range: 1-10)

Owner’s strategy is keen to making deals but attempts to get a better deal when there is available time

(by delaying 1 round) and is constrained by:

o tts (time-to-sell): the number of maximum negotiation rounds

o min_rent: the minimum rent amount,

o start_rent: the first offer amount,

o L: a timer parameter, indicating on which round (starting from the end) the
o Owner’s offer starts to rapidly decrease.

A sample run of that scenario is shown below.

http://lpis.csd.auth.gr/systems/emerald/�

 EMERALD: User Guide and Manual 2009

http://lpis.csd.auth.gr/systems/emerald/
16

http://lpis.csd.auth.gr/systems/emerald/�

 EMERALD: User Guide and Manual 2009

http://lpis.csd.auth.gr/systems/emerald/
17

REFERENCES

1. K. Kravari, E. Kontopoulos, N. Bassiliades, “A Trusted Defeasible Reasoning Service for Brokering

Agents in the Semantic Web”, 3rd International Symposium on Intelligent Distributed

Computing (IDC 2009), Ayia Napa, Cyprus, 13-14 October 2009.

2. K. Kravari, E. Kontopoulos, N. Bassiliades, “Towards a Knowledge-based Framework for Agents

Interacting in the Semantic Web”, Proc. 2009 IEEE/WIC/ACM International Joint Conference on

Web Intelligence and Intelligent Agent Technology (WI-IAT 09), pp. 482-485, Milano, Italy, 15-18

September 2009.

http://lpis.csd.auth.gr/systems/emerald/�

	EMERALD
	A Knowledge-based Framework for Semantic Web Agents

	INTRODUCTION
	FRAMEWORK
	Reasoning Service
	Agent model
	This model (KC-Agents) consists of the Knowledge-base (KB), the Advanced Yellow Pages Service (AYPS) and some external JAVA methods.
	Basic Java Library

	In order to use it, write the following jess code into the KC-AGENT agent's strategy: (defrule call_method ;preconditions => (bind ?tt (new Basic)) (bind ?str (?tt method's_name argument(s))))
	For more information, read the javadoc. (Available at http://lpis.csd.auth.gr/systems/emerald/resource.html)
	USER GUIDE
	Software requirements
	EMERALD installation
	Reasoners
	KC-Agents

	IMPORTANT: Visit JESS’ site (http://www.jessrules.com/) to download it.
	SAMPLE USE CASES
	Two use case scenarios will demonstrate the integration of these technologies, a brokering and a negotiation scenario.
	Brokering Scenario
	Negotiation Scenario

	REFERENCES

