
 1

DR-DEVICE1: A Defeasible Logic Reasoner for the Semantic
Web

User Guide and Installation Manual

Nick Bassiliades*, Grigoris Antoniou**, and Ioannis Vlahavas*
*Dept. of Informatics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

{nbassili|vlahavas}@csd.auth.gr
**Institute of Computer Science, FO.R.T.H., P.O. Box 1385, GR-71110, Heraklion, Greece

antoniou@ics.forth.gr

Table of Contents
INTRODUCTION... 1

DR-DEVICE SYSTEM ARCHITECTURE ... 2

THE RULE LANGUAGE OF DR-DEVICE .. 3

INSTALLATION INSTRUCTIONS... 4

USER GUIDE.. 4
RUNNING A REMOTE DR-DEVICE RULEML FILE ... 4
RUNNING A LOCAL DR-DEVICE RULEML FILE.. 6
RUNNING THE DEMONSTRATION (BROKERED TRADE) EXAMPLE ... 6
USEFUL DR-DEVICE FUNCTIONS... 6

DR-DEVICE RULE SYNTAX... 7

REFERENCES.. 8

ACKNOWLEDGMENTS .. 8

Introduction
Defeasible reasoning is a rule-based approach for efficient reasoning with incomplete and inconsistent
information. Such reasoning is, among others, useful for ontology integration, where conflicting information
arises naturally; and for the modeling of business rules and policies, where rules with exceptions are often used.
In this demonstration we pre-sent a prototype system for defeasible reasoning on the Web. The system is called
DR-DEVICE ([1], [2], [3]) and is capable of reasoning about RDF metadata over multiple Web sources using
defeasible logic rules. The system is implemented on top of CLIPS production rule system and builds upon R-
DEVICE ([4], [2]), an earlier deductive rule system over RDF metadata that also supports derived attribute and
aggregate attribute rules. Rules can be expressed either in a native CLIPS-like language, or in an extension of the
OO-RuleML2 syntax. The operational semantics of defeasible logic are implemented through compilation into
the generic rule language of R-DEVICE. This demonstration includes a complete use case of a semantic web
broker that reasons about apartment renting.

1 http://iskp.csd.auth.gr/systems/dr-device.html
2 http://www.ruleml.org/

Nick Bassiliades, et al. DR-DEVICE Manual

 2

The most important features of DR-DEVICE are the following:

• Support for multiple rule types of defeasible logic, such as strict rules, defeasible rules, and defeaters.

• Support for both classical (strong) negation and negation-as-failure.

• Support for conflicting literals, i.e. derived objects that exclude each other.

• Direct import from the Web of RDF ontologies and data as input facts to the defeasible logic program.

• Direct import from the Web of defeasible logic programs in an XML compliant rule syntax (RuleML).

• Direct export to the Web of the results (conclusions) of the logic program as an RDF document.

DR-DEVICE System Architecture
The DR-DEVICE system consists of two major components (Fig. 1): the RDF loader/translator and the rule
loader/translator. The former accepts from the latter (or the user) requests for loading RDF documents. The RDF
triple loader downloads the RDF document from the Internet and uses the ARP parser3 to translate it to triples in
the N-triple format. Both the RDF/XML and N-triple files are stored locally for future reference. Furthermore,
the RDF document is recursively scanned for namespaces which are also translated. The rationale for translating
namespaces is to obtain a more detailed RDF Schema. Fetching multiple RDFS files aggregates multiple RDF-
to-OO schema translations into a single OO schema redefinition. If namespaces are not RDFS documents, then
the parser does not produce triples and DR-DEVICE will make assumptions, based on the RDF semantics about
non-resolved properties, resources, classes, etc. All N-triples are loaded into memory, while the resources that
have a URI#anchorID format are trans-formed into a ns:anchorID format if URI belongs to the initially collected
namespaces, to save memory space. The transformed RDF triples are fed to the RDF triple translator which maps
them into COOL objects and then deletes them.

RDF triple
Loader

RDF triple
Translator

Local Disk

User

Input RDF
document URI

ARP

RuleML/DR-DEVICE
Rulebase

CLIPS / COOL

RDF triples

COOL
Objects

RDF/XML
documents

RDF/XML

RDF/
N-triples

Results - Objects

Results -
RDF/XML

DR-DEVICE

RDF/XML
RDF/N-triple
Documents RDF

Extractor

Results - Objects CLIPS Rules

Logic Program

Loader

Xalan
XSLT

Processor

Local Disk

RuleML
documents

RuleML document URI

RuleML documents

DR-DEVICE
Rulebase

Rule Translator

Defeasible Rule
Translator

Deductive Rule
Translator

DR-DEVICE Rulebase

Results -
RDF/XML

DR-DEVICE
XSLT

stylesheet

Internet

Fig. 1. Architecture of the DR-DEVICE system.

The rule loader accepts from the user a URI that contains a defeasible logic rule program in RuleML notation.
The RuleML document may also contain the URI of the input RDF document on which the rule program will
run, which is forwarded to the RDF loader. The RuleML program is translated into the native DR-DEVICE rule
notation using the Xalan XSLT processor4 and an XSLT stylesheet. The DR-DEVICE rule program is then
forwarded to the rule translator. The rule translator accepts from the rule loader (or directly from the user) a set

3 http://www.hpl.hp.com/personal/jjc/arp/
4 http://xml.apache.org/xalan-j/

Nick Bassiliades, et al. DR-DEVICE Manual

 3

of rules in DR-DEVICE notation and translates them into a set of CLIPS production rules. The translation of the
defeasible logic rules is performed in two steps: first, the defeasible logic rules are translated into sets of
deductive, derived attribute and aggregate attribute rules of the basic R-DEVICE rule language, and then, all
these rules are translated into CLIPS production rules5. When the translation ends, CLIPS runs the production
rules and generates the objects that constitute the result of the initial rule program or query. Finally, the result-
objects are exported to the user as an RDF/XML document through the RDF extractor.

The Rule Language of DR-DEVICE
There are three types of rules in DR-DEVICE, closely reflecting defeasible logic: strict rules, defeasible rules,
and defeaters. For example, the rule construct in Fig. 2 represents the following defeasible rule, which is adopted
from the use case in next section:

r2: apartment(X), bedrooms(X,Y), Y<2 => ¬acceptable(X).

(defeasiblerule r2
 (declare (superior r1))
 (carlo:apartment (carlo:name ?x) (carlo:bedrooms ?y&:(< ?y 2)))
 =>
 (not (acceptable (apartment ?x)))

Fig. 2. Sample defeasible DR-DEVICE rule in CLIPS-like syntax.

Predicates have named arguments, called slots, since they represent CLIPS objects. DR-DEVICE has also a
RuleML-like syntax. The same rule is represented in RuleML notation (version 0.85) as shown in Fig. 3. Several
features of defeasible logic and its DR-DEVICE implementation could not be captured by the latest RuleML
DTDs, so we have developed a new DTD using the modularization scheme of RuleML, extending the Datalog
with negation DTD (both classical and NAF) with OO features.

Classes and objects (facts) can also be declared in DR-DEVICE; however, the focus in this demo is the use of
RDF data as facts. The input RDF file(s) are declared in the rdf_import attribute of the rulebase (root)
element of the RuleML document. There exist two more attributes in the rulebase element: the rdf_export
attribute that declares the address of the RDF file with the results of the rule program to be exported, and the
rdf_export_classes attribute that declares the derived classes whose instances will be exported in
RDF/XML format. Further extensions to the RuleML syntax, include function calls that are used either as
constraints in the rule body or as new value calculators at the rule head. Furthermore, multiple constraints in the
rule body can be expressed through the logical operators: _not, _and, _or.

<!DOCTYPE rulebase SYSTEM "http://.../dr-device/defeasible.dtd" [
 <!ENTITY carlo "http://.../dr-device/carlo/carlo.rdf#">
 <!ENTITY carlo_rb "http://.../dr-device/carlo/carlo-rbase.ruleml#">]>
<rulebase xmlns:carlo_rb="&carlo_rb;" xmlns:carlo="&carlo;" rdf_import="&carlo;"
 rdf_export_classes="acceptable rent" rdf_export="http://.../dr-device/carlo/export-carlo.rdf">
 <_rbaselab>
 <ind type="defeasible" href="&carlo_rb;">carlo-rules</ind>
 </_rbaselab>
 ...
 <imp>
 <_rlab ruleID="r2" ruletype="defeasiblerule" superior="r1"> <ind href="&carlo_rb;r2">r2</ind>
 </_rlab>
 <_head> <neg> <atom> <_opr> <rel>acceptable</rel> </_opr>
 <_slot name="apartment"> <var>x</var> </_slot>
 </atom>
 </neg>
 </_head>
 <_body> <atom> <_opr> <rel href="carlo:apartment"/> </_opr>
 <_slot name="carlo:name"> <var>x</var> </_slot>
 <_slot name="carlo:bedrooms"> <_and> <var>y</var>
 <function_call> <fname><</fname>
 <var>y</var>
 <ind>2</ind>
 </function_call>
 </_and>
 </_slot>
 </atom>
 </_body>
 </imp>
 ...
</rulebase>

Fig. 3. Sample defeasible DR-DEVICE rule in RuleML-like syntax.

5 http://www.ghg.net/clips/CLIPS.html

Nick Bassiliades, et al. DR-DEVICE Manual

 4

The translation of defeasible rules into R-DEVICE rules is based on the translation of defeasible theories into
logic programs through a meta-program. We use the meta-program to guide defeasible rule compilation. Each
defeasible rule in DR-DEVICE is translated into a set of 5 R-DEVICE rules. Correct order of execution is
guaranteed by predefined ordering among different R-DEVICE rule types and by stratification. For non-stratified
programs the correct result is guaranteed through “truth maintenance” rules that undo (retract) the conclusions of
rules when their condition is no longer met. In this way, even if rules are not executed in the correct order, the
correct result will be eventually deduced because conclusions of rules that should have not been executed can be
later undone.

Installation Instructions
• Download DR-Device setup.exe from http://iskp.csd.auth.gr/systems/dr-device.html

• Run the setup program and follow the instructions

• Reboot after installation ends.

User Guide

Running a remote DR-Device RuleML file
• From the File... menu, choose New Project.

• Click on the URL choice at the radio button.

• Fill-in the Project Name and Filename fields:

o Filename is the URL address of a DR-Device RuleML file.

o Project Name is the corresponding local filename that will be used to address to this file. A new
directory Project Name is generated for each new project, under the projects directory inside the
Dr-Device installation directory. All files related to this project are stored inside this directory.

• Click on the OK button and wait until the corresponding ruleml file is downloaded from the specified
address. The file can be edited and saved locally using the File -> Save As... menu item.

• Choose the Run -> Compile & Run menu item. Watch the execution trace on the DOS window that
appears. After the demo runs successfully press any key to close the DOS Window.

o The Parameters menu contains some parameters that can modify the detail of the trace. When the
Verbose parameter is "on", DR-Device reports on the major steps that it performs, such as:

 Accessing Remote rule and RDF files

 Translating rules between different rule formats (RuleML, DR-DEVICE, R-DEVICE,
CLIPS)

 Loading and translating RDF files

 Running rules

 Extracting results

o When the Debug parameter is "on" DR-Device reports on many minor steps that it performs, such
as:

 Loading RDF triples

 Details on translating RDF triples into COOL objects (class/object creation, schema
re-configuration, RDF Semantics entailment rules, etc.)

 Details on translating high-level rules (DR-DEVICE, R-DEVICE) into low-level
CLIPS production rules.

o When the Time-report parameter is "on" DR-Device reports on how much time some steps take
(mainly concerning loading & translating RDF triples).

Nick Bassiliades, et al. DR-DEVICE Manual

 5

• Choose the View -> View Results menu item to view the result of the defeasible reasoning process that
the loaded DR-Device RuleML file performed. Results are presented as an RDF/XML file on a separate
Internet Explorer window.

• Choose the View -> View Trace menu item to (re-)view (on a separate text window) the trace of
execution that appeared earlier in the DOS window.

• All compiled rule formats are kept into local files, so that the next time they are needed they can be
directly loaded and run, using the Run -> Run Compiled menu item, increasing, thus, speed.

• Choose File -> Exit to quit, closing both the Java GUI window and the background DOS window. If
you close first the background DOS window, then the Java GUI window closes as well.

Nick Bassiliades, et al. DR-DEVICE Manual

 6

Running a local DR-Device RuleML file
Follow the same procedure as above, except for the following:

• Click on the Local choice at the radio button.

• Click on the Browse... button and browse the local file system to open a local DR-Device RuleML file.
The file can be edited and saved locally using the Save As... button.

• Fill-in the Project Name field. Project Name is the filename that will be used by Dr-Device to address
to this local file. A new directory Project Name is generated for each new project, under the projects
directory inside the Dr-Device installation directory. All files related to this project are stored inside this
directory. The local RuleML file is copied to this directory.

Running the demonstration (Brokered Trade) example6
• Click on the DEMO button. The Project Name and Filename fields are filled in with a name for the

Brokered Trade example and the URL address (http://iskp.csd.auth.gr/systems/dr-
device/carlo/carlo-rbase.ruleml) of the ruleml file, correspondingly.

• Perform the rest of the steps as above.

Running a Saved Project
Choose File -> Open Project and select a project folder under the projects subdirectory of the Dr-Device
installation directory. Then either choose Compile & Run or Run Compiled.

Useful DR-Device Functions
In this section we briefly outline a number of useful DR-Device functions:

• (load-ruleml-defeasible <filename> <address>)

Load, translate, and run a remote DR-Device RuleML file from URL <address> and save it locally
under the name <filename>.

• (load-ruleml-defeasible-local <filename> <path-file>)

Load, translate, and run a local DR-Device RuleML file from path & filename denoted by <path-
file>. Copy the file in the current directory under the name <filename>.

• (load-defeasible <filename>)

Load, translate, and run the local DR-Device rule file <filename> in native CLIPS-like syntax.

• (load-only-defeasible <filename>)

Load and translate (but not run) the local DR-Device rule file <filename> in native CLIPS-like
syntax.

• (load-compiled-defeasible <filename>)

Load (but not run) the local DR-Device rule file <filename> in native CLIPS-like syntax, that has
been already been compiled with one of the previous commands.

• (go-defeasible)

Run all the DR-Device rules that have been already loaded with one of the previous commands.

• (defeasibly_export_rdf <export-rdf-file> <export-rdf-classes>)

Export at file <export-rdf-file> the schema and instances of the defeasible classes <export-
rdf-classes> in RDF/XML format. The exported instances are supposed to represent the results of

6 http://iskp.csd.auth.gr/systems/dr-device/carlo/carlo.html

Nick Bassiliades, et al. DR-DEVICE Manual

 7

the inference process. Usually, <export-rdf-file> is indicated in the rdf_export attribute of
the root rulebase element of the DR-Device RuleML file, and <export-rdf-classes> are
indicated in the rdf_export_classes attribute of the same element (see Apendix).

• (import-rdf-files <URL-or-files>)

Import (load and transform to objects) all the RDF files <URL-or-files> that are identified either by
local names or URLs. The import of each file is performed in a single step (no streaming). This can be
slow for large RDF files. Usually the RDF files to be imported are indicated in the rdf_import
attribute of the root rulebase element of the DR-Device RuleML file (see Apendix).

• (import-rdf <URL-and-files>)

Import (load and transform to objects) all the RDF files <URL-and-files> that are identified by
pairs (filename address) where filename is the local filename under which the remote RDF file
will be saved and address is the URL address of the remote RDF file. The import of each file is
performed in a single step (no streaming). This can be slow for large RDF files.

• (inc-import-rdf <limit> <hash-buckets> <URL-and-files>)

Import (load and transform to objects) all the RDF files <URL-and-files> that are identified by
pairs (filename address) where filename is the local filename under which the remote RDF file
will be saved and address is the URL address of the remote RDF file. The import of each file is
performed in a streaming fashion. <limit> is an integer indicating how many RDF triples are
translated at each step. If the def value is given, the default value 10000 is assumed. <hash-
buckets> is an integer indicating the number of buckets that are internally used for keeping track of
useful information when loading the RDF triples. If the def value is given, the default value 100 is
assumed.

DR-DEVICE Rule Syntax
<!ELEMENT rulebase (((_rbaselab, (imp | competing_rules)*) |
 ((imp | competing_rules)+, _rbaselab?))?)>
<!ATTLIST rulebase
 xmlns CDATA #IMPLIED
 xsi:schemaLocation CDATA #IMPLIED
 xmlns:xsi CDATA #IMPLIED
 <!-- The URLs of the RDF files to load -->
 rdf_import CDATA #IMPLIED
 <!-- The name of the file that the results of the reasoning process will be written to -->
 rdf_export_classes NMTOKENS #IMPLIED
 <!-- The names of the classes whose instances will constitute the results of the inference process -->
 rdf_export CDATA #IMPLIED
>
<!ELEMENT _rbaselab (ind)>
<!ELEMENT imp ((_rlab, ((_head, _body) | (_body, _head))) |
 (_head, ((_rlab, _body) | (_body, _rlab?))) |
 (_body, ((_rlab, _head) | (_head, _rlab?))))>
<!ELEMENT competing_rules (_crlab, _slots?)>
<!ATTLIST competing_rules
 c_rules IDREFS #REQUIRED
>
<!ELEMENT _slots (slotname+)>
<!ELEMENT slotname (#PCDATA)>
<!ELEMENT _rlab (ind)>
<!ATTLIST _rlab
 ruleID ID #REQUIRED
 ruletype (strictrule | defeasiblerule | defeater) #REQUIRED
 superior IDREFS #IMPLIED
>
<!ELEMENT _crlab (ind)>
<!ELEMENT _head (calc?, (atom | neg))>
<!ELEMENT _body (atom | neg | naf | and | or)>
<!ELEMENT atom ((_opr, (_slot)*, ((ind | var)+, (_slot)*)?) |
 ((((_slot)+, ((ind | var)+, (_slot)*)?) | ((ind | var)+, (_slot)*)), _opr))>
<!ELEMENT and ((atom | neg | naf | or)*)>

Nick Bassiliades, et al. DR-DEVICE Manual

 8

<!ELEMENT or ((atom | neg | naf | and)*)>
<!ELEMENT neg (atom)>
<!ELEMENT naf (atom | and)>
<!ELEMENT _opr (rel)>
<!ELEMENT rel (#PCDATA)>
<!ATTLIST rel
 href CDATA #IMPLIED
>
<!ELEMENT _slot (ind | var | _not | _or | _and)>
<!ATTLIST _slot
 name CDATA #REQUIRED
 card CDATA #IMPLIED
 weight CDATA #IMPLIED
>
<!ELEMENT ind (#PCDATA)>
<!ATTLIST ind
 type CDATA #IMPLIED
 href CDATA #IMPLIED
>
<!ELEMENT var (#PCDATA)>
<!ATTLIST var
 type CDATA #IMPLIED
>
<!ELEMENT calc (function_call+)>
<!ELEMENT function_call (fname, (ind | var | function_call)*)>
<!ELEMENT fname (#PCDATA)>
<!ENTITY % term "(_not | ind | var | function_call)">
<!ELEMENT _not (ind | var)>
<!ELEMENT _or (%term;, (%term;)+)>
<!ELEMENT _and (%term;, (%term;)+)>

Acknowledgments
The graphical user interface for DR-Device has been developed by Stratos Kontopoulos. Thomas Skylogiannis
has helped in evaluating DR-Device, by using it as a back-end reasoning system for price negotiating agents [6].

References
[1] N. Bassiliades, G. Antoniou, I. Vlahavas, “DR-DEVICE: A Defeasible Logic System for the Semantic

Web”, Workshop on Principles and Practice of Semantic Web Reasoning (PPSWR04), Sebastian
Schaffert (Ed.), Springer-Verlag, LNCS 3208, pp. 134-148,St Malo, France, Sept. 2004.

[2] N. Bassiliades, G. Antoniou, I. Vlahavas, “A Defeasible Logic Reasoner for the Semantic Web”, Third
International Workshop on Rules and Rule Markup Languages for the Semantic Web (RuleML 2004), G.
Antoniou, H. Boley (Ed.), Springer-Verlag, LNCS 3323, pp. 49-64, Hiroshima, Japan, 8 Nov. 2004.

[3] N. Bassiliades, G. Antoniou, I. Vlahavas, “DR-DEVICE: A Defeasible Logic RDF Rule Language",
Demo, Demonstration at 3rd International Semantic Web Conference (ISWC2004), 7-11 November 2004,
Hiroshima, Japan (available at: http://iswc2004.semanticweb.org/demos/index.html).

[4] N. Bassiliades, I. Vlahavas, "Capturing RDF Descriptive Semantics in an Object Oriented Knowledge
Base System", Electronic Poster Proc. 12th Int. WWW Conf. (WWW2003), 20-24 May 2003, Budapest,
Hungary.

[5] N. Bassiliades, I. Vlahavas, “R-DEVICE: A Deductive RDF Rule Language”, Third International
Workshop on Rules and Rule Markup Languages for the Semantic Web (RuleML 2004), G. Antoniou, H.
Boley (Ed.), Springer-Verlag, LNCS 3323, pp. 65-80, Hiroshima, Japan, Nov. 2004.

[6] T. Skylogiannis, G. Antoniou, N. Bassiliades, G. Governatori, “DR-NEGOTIATE – A System for
Automated Agent Negotiation with Defeasible Logic-Based Strategies”, IEEE International Conference
on E-Technology, E-Commerce and E-Service, IEEE, pp. 44-49, Hong Kong, China, 2005.

