
 1

Implement gateways between Rule Responder and Emerald

 Authors:
Kalliopi Kravari
Nick Bassiliades

 Release Date:
15-12-2010

Table of Contents
Introduction .. 1

Conceptual Comparison between Rule Responder and EMERALD 1
EMERALD Rule Responder Architecture ... 2
EMERALD Rule Responder Gateway ... 3
EMERALD Rule Responder Use Case ... 4

Explanation for the documents and program files involved in this Use Case 5
RRP (Rule Responder Proxy) .. 5
Partner (EMERALD agent) .. 5
Prova Rule Base .. 9
POSL Rule Base ... 10

Rule Responder EMERALD Gateway ... 10
Rule Responder EMERALD Use Case ... 12
References .. 12

Introduction
This document describes the implementation of gateways between Rule Responder
(RR) and EMERALD. Nevertheless, this report can guide the process of implementing
new gateways between agent-based platforms as well. EMERALD is a JADE-based
implementation framework for interoperable reasoning among agents in the
Semantic Web, by using third-party trusted reasoning services. Rule Responder and
EMERALD are to be compared regarding their agent-connection topologies, their
interchange principles (performative wrapper and content language), and their used
subsets of RuleML.

Conceptual Comparison between Rule Responder and EMERALD

 Rule Responder EMERALD
Agent

technology Java servlets / Mule Java (JADE) agents

Interchange
principles Mule middleware JADE (ACL)

RuleML Reaction RuleML (D)R-DEVICE RuleML

Agent
knowledge

Internal rule base
Internal & External data-

knowledge base

External rule base
External data-knowledge base

Reasoning
Multiple reasoning engines
and instances of reasoning

engines

Multiple reasoning engines
(independent external

services)

http://jade.tilab.com/�
http://ruleml.org/papers/EvalArchiRule.pdf�

 2

 Rule Responder EMERALD
Directory

service NO AYPS

Use of
Prova

OAs always written in Prova,
PAs and CAs optionally

A Prova Reasoner has been
developed

(one of the reasoning agents)
prova 3 not supported because
it does not support JADE yet

Use
Use cases can be obtained as

instantiations of the Rule
Responder framework

Use cases can be obtained by
using different reasoners and
different agent behavior KBs

EMERALD Rule Responder Architecture
Based on this comparison and analysis, (bidirectional) RuleML gateways between
Rule Responder and EMERALD were designed and implemented. The resulting
EMERALD RuleML Responder was tested both by extending the Rule Responder use
case SymposiumPlanner (WP1 and WP2) with an EMERALD bridge to
additional/external agents and, conversely, by extending an EMERALD use case with
a Rule Responder bridge.

The Rule Responder EMERALD (RREMERALD) Gateway was implemented as a new
CA that handles an appropriate communication channel. On the other hand, the
EMERALD Rule Responder (EMERALDRR) Gateway was implemented as a new
proxy agent in EMERALD, communicating directly with RR OA.

 3

EMERALD Rule Responder Gateway
The implementation of this Gateway consists of the following subsequent steps:

1. Development of the Rule Responder Proxy Agent (RRP): The RRP Agent is an
EMERALD agent, acting as a gateway to Rule Responder. This RRP agent is
flexible and reusable and, thus, not hardwired, meaning that it can receive
any (RuleML) query, connect to Rule Responder, forward the query by
invoking the proper Rule Responder agent and finally receive the result. Thus,
RRP was developed as a Java (EMERALD) agent class that integrates API
methods for interacting both with EMERALD agents and Rule Responder’s
PAs.

2. Placement of the new agent in EMERALD directory: the newly developed
agent (its class file) has to be appropriately placed inside EMERALD’s file
directory. For convenience, it has to be placed in [C:\jade\EMERALD\] folder.
Mention that EMERALD itself has to be already downloaded from
http://lpis.csd.auth.gr/systems/emerald/resource.html and installed.

3. Registering the new agent in EMERALD: A new agent has to be created either
inside the GUI (Agent name: RRProxy; Agent class:RRPAgent) or in command
line [java jade.Boot RRProxy:RRPAgent].

 4

EMERALD Rule Responder Use Case
In order to demonstrate the EMERALD-RR gateway, we have devised a scenario
where an external-to-SymposiumPlanner partner (an EMERALD agent) would like to
sponsor the RuleML-YYYY Symposium. The decision on the sponsoring level will be
based on its personal preferences, related to the benefits of each level. The latter
can be obtained from the corresponding RuleML Symposium-Planner chair. So, the
EMERALD agent has to communicate with the PublicityChair in the Symposium
Planner application. First of all, it sends its query (requesting the sponsoring levels
and their benefits) to the RRP, the proxy agent, in order to forward it to the PA. RRP
forwards the query, receives the response and returns it back to the partner. The
decision making of the EMERALD agent is based on rules, and more specifically on
defeasible logic rules. EMERALD hosts a defeasible logic reasoner, which is actually
DR-Device, wrapped up as an agent. For details regarding the EMERALD architecture
and philosophy, see [1].

The partner transforms the received RuleML message to RDF, in order to be used as
a fact base for the rule base, which is formed in a defeasible RuleML dialect. The rule
base contains its personal preferences and a link to the data that will be used (the
RDF file) and it is sent to the defeasible logic reasoner (DR-Reasoner) in order to find
out the best sponsoring level. Afterwards, the partner receives back DR-Reasoner’s
response (in this case the decision was the Gold sponsoring level) and sends a new
query to the PublicityChair (through RRP) requesting the appropriate submission
information for that level (e.g. to contact Sponsor chair by e-mail or phone).

 5

Explanation for the documents and program files involved in this Use
Case

RRP (Rule Responder Proxy)
The proxy (RRP) has just a Java file: RRPAgent.java (see above)

Partner (EMERALD agent)
In order for the partner to operate, certain files have to be present in the host PC:
“WP3” folder in [C:\WP3] containing

1. WP3C.clp: This file describes the partner’s personal strategy. It is written in
Jess, part of this file can be found below (for details see [2])).

 6

2. req.txt: This file contains necessary information for the partner. It actually
contains the types of the required services provided in EMERALD (also
described in [2]).

Note that the above files have to be specified as arguments when initializing
the agent in EMERALD: (Agent class: jessAgent; Agent Arguments:
C:\\WP3\\WP3C.clp C:\\WP3\\req.txt).

 7

Tip: In order to run the use case scenario in EMERALD either place the
WP3e.bat file in C:\jade\EMERALD and execute it or use command line (at
C:\jade\EMERALD) java jade.Boot -gui DR_Reasoner:ReasoningAgent
RRProxy:RRPAgent sniffer:jade.tools.sniffer.Sniffer(DR_Reasoner;RRProxy)
and then start a new GUI agent as shown above. The procedure steps,
regarding the EMERALD side, are displayed (see below) by Sniffer, a special
JADE agent that tracks message exchanges in the (EMERALD) environment.

3. dr-device-input.xslt: This file contains the essential XSL transformation rules
in order to transform the Reaction RuleML document that contains the
answer of the PublicityChair agent to an RDF document (sponsors-level.rdf),
which is required as input data for the DR-Reasoner

 8

Notice that this file is domain-dependent, so in a different use case must be
changed to reflect the class and properties of the input RDF facts for the
defeasible logic rule base.

4. query.ruleml: This file contains the query (in Reaction RuleML) for requesting
(from the PublicityChair PA) the sponsoring levels and their benefits.

5. sponsors2.ruleml: This file contains the rule base (in the defeasible logic
RuleML dialect of DR-Device) for deciding upon the best sponsoring level
according to the potential sponsor’s personal preferences. The file content is
presented here in d-POSL (defeasible-POSL) syntax that is more concise:

The above rules indicate that the partner is looking for a sponsoring level that offers
him/her the possibility to present a demo at the symposium, and at least one free

r1: possibleOffer(level->?x) :=
 sponsorLevel(level->?x).
r2: ~possibleOffer(level->?x) :=
 sponsorLevel(level->?x, demo->false).
r3: ~possibleOffer(level->?x) :=
 sponsorLevel(level->?x, amount->?y),
 ?y > 5000.
r4: ~possibleOffer(level->?x) :=
 sponsorLevel(level->?x, free-registration->?y),
 ?y < 1.
r2 > r1.
r3 > r1.
r4 > r1.
r5: makeOffer(level->?x) :=
 possibleOffer(level->?x),
 sponsorLevel(level->?x, amount->?z),
 \+ (possibleOffer(level->?y), ?y \= ?x,
 sponsorLevel(level->?y,amount->?w), ?w < ?z).

 9

registration, without spending more than 5000$. If there are more than one such
sponsoring levels, the lowest one will be preferred.

The corresponding RuleML file is available at:
http://emerald.csd.auth.gr:8080/ruleSetsRuleML-2010/sponsors2.ruleml.

6. query2.ruleml: This file contains the query (in Reaction RuleML) for
requesting (from the PublicityChair PA) the appropriate sponsor offer
submission procedure according to the desired sponsoring level.

Prova Rule Base
OA’s Prova rule base (available at: http://emerald.csd.auth.gr:8080/ruleSetsRuleML-

2010/RuleML-2010-Responder.prova) has also been modified.

%Rule responsible for retrieving the sponsoring levels' benefits

getBenefits(XID, Level, Amount, Benefits):-

%Retrieve the responsible PA

assigned(XID, Agent, ruleml2010_PublicityChair, ruleml2010_responsible),

%Send query to the PA

sendMsg(XID, esb, Agent, "query", requestSponsoringLevel(Level, Amount, Benefits)),

%Receive the answer

rcvMult(XID, esb, Agent, "answer", substitutions(Level, Amount, Benefits)).

%Rule responsible for retrieving the appropriate contact information for a potential sponsor

askInfo(XID, Level, Action, Info) :-

assigned(XID, Agent, ruleml2010_PublicityChair, ruleml2010_responsible),

sendMsg(XID, esb, Agent, "query", sponsor_action(Level, Action, Info)),

rcvMult(XID, esb, Agent, "answer", substitutions(Action, Info)).

http://emerald.csd.auth.gr:8080/ruleSetsRuleML-2010/sponsors2.ruleml�
http://emerald.csd.auth.gr:8080/ruleSetsRuleML-2010/RuleML-2010-Responder.prova�
http://emerald.csd.auth.gr:8080/ruleSetsRuleML-2010/RuleML-2010-Responder.prova�

 10

The first new query returns the sponsoring levels and their benefits. The second new

query just returns info for all the sponsoring levels from the PublicityChair PA.

POSL Rule Base
PublicityChair PA’s knowledge base (Posl file) has also been modified. (available at:

http://emerald.csd.auth.gr:8080/ruleSetsRuleML-2010/publicityChairRuleML-2010-

Responder.posl)

There are two new queries. The first query returns the sponsoring levels and their
benefits and the second query just returns info for all the sponsoring levels.

Rule Responder EMERALD Gateway
The implementation of this Gateway consists of the following subsequent steps:

1. Development of a new Personal Agent (PA): PAs in RR are implemented as
Java servlets, which, in essence, serve as wrappers for the corresponding
reasoning engines. The PA, called EMERALDChairRuleML2010 in the
Symposium Planner application follows exactly this principle. The PA was
developed as a Java servlet class that integrates API methods for interacting
with EMERALD as well as core RR methods for exchanging messages with the
Organizational Agent (OA).

2. Placement of the new PA in Apache Tomcat: The newly developed PA has to
be appropriately placed inside Apache Tomcat’s file directory. Apache
Tomcat currently serves as RR’s servlet container and Web server. A new
folder has to be created, at the location: <Tomcat
folder>\webapps\EMERALDChairRuleML2010, where a file structure has to
be created that is similar to the tree of files in the other agents’ directories.
The compiled Java servlet class is placed appropriately inside this sub-tree.

% request sponsoring levels
requestSponsoringLevel(?Level, ?Amount, ?Benefits):-
 benefits(?Level, ?Benefits),
 sponsoringLevel(?Rank,?Level, us$[?Amount:integer]).

sponsor_action(?Level, ?Action, ?Info) :-
 actionPerformed(?Action,?Level,?),
 get_info(?Action, ?Info).

% request submission information
get_info(email, person[?Name,?Email]) :-
 person(
 symposiumChair[ruleML_2010,publicity],
 ?Name,?Title,?Email,?Phones).

% request submission information
get_info(phone, person[?Name,?Phones]) :-
 person(
 symposiumChair[ruleML_2010,publicity],
 ?Name,?Title,?Email,?Phones).

http://emerald.csd.auth.gr:8080/ruleSetsRuleML-2010/publicityChairRuleML-2010-Responder.posl�
http://emerald.csd.auth.gr:8080/ruleSetsRuleML-2010/publicityChairRuleML-2010-Responder.posl�

 11

For convenience, a .zip file containing the most up-to-date version of the
agent’s directory structure is available at
http://lpis.csd.auth.gr/systems/emerald/resource.html.

3. Assigning Responsibilities: The tasks assigned to the
EMERALDChairRuleML2010 PA are described in the role assignment matrix
(OWL Lite ontology), available at:
http://emerald.csd.auth.gr:8080/ruleSetsRuleML-2010/RuleML-2010.owl.
This way, the OA is aware each time of the responsible agents, where the
related messages are forwarded.

4. Registering the new agent with Mule: A new endpoint identifier has to be
created inside Mule’s “mule-all-config.xml” file, similarly to the endpoints for
the rest of the PAs.

5. Creating appropriate queries: Finally, the website serving as the External
Agent (EA) endpoint has to be “equipped” with appropriate queries for the
EMERALDChairRuleML2010 PA.

6. Development of the BlackBoard – JadeGateWay class: BlackBoard is an object
created by the EMERALDChairRuleML2010 PA and used as a communication
channel. Actually, it will be the message channel MyGatewayAgent
(EMERALD) and EMERALDChairRuleML2010 PA (Rule Responder).

7. Development of the MyGatewayAgent: MyGatewayAgent is also created by
the EMERALDChairRuleML2010 PA and it behaves as a dispatcher for
EMERALD. It gets the dashboard object described (and created) previously
extracts who is the recipient and what’s the message and forwards it
accordingly. Moreover, it also packs the reply and sends it via BlackBoard to
the EMERALDChairRuleML2010 PA

8. Placement of the BlackBoard and the MyGatewayAgent in Apache Tomcat:
They have to be appropriately placed inside Apache Tomcat’s file directory. A
new folder has to be created, at the location: <Tomcat
folder>\webapps\EMERALDChairRuleML2010, where a folder structure has
to be created as follows: \classes\solarforce\agent\ for the MyGatewayAgent
classes and \classes\solarforce\bean for the BlackBoard. The compiled Java
classes are placed appropriately inside this sub-tree. For convenience, a .zip
file containing the most up-to-date version of the agent’s directory structure
is available.

9. Placement of the jade.jar file in Apache Tomcat: In order for the gateway to
operate efficiently, the jade.jar file has to be present in the Apache lib
directory and in the Apache EMERALDChairRuleML2010 webapp’s lib
directory. This file is provided with JADE distribution, it can also be found at
C:\jade\lib folder.

10. Upgrade DR-Reasoner in EMERALD: DR-Reasoner has to be modified in order
to handle net queries and be able to provide not only RDF documents but
also RuleML documents. The newly upgraded reasoner is available at
http://lpis.csd.auth.gr/systems/emerald/ website.

http://lpis.csd.auth.gr/systems/emerald/resource.html�
http://emerald.csd.auth.gr:8080/ruleSetsRuleML-2010/RuleML-2010.owl�
http://lpis.csd.auth.gr/systems/emerald/�

 12

Rule Responder EMERALD Use Case
In order to demonstrate the RR – EMERALD gateway, a new Symposium Planner
query is provided (Suggest Sponsoring Level [EMERALD/DR-DEVICE/Publicity Chair
Agent]).This query implements a part of the publicity chair PA. The query gives as
input the Sponsor name and the Amount of money that the users wants to sponsor
and the PA returns as a result the suggested sponsoring level, namely the largest
level that fits into the offered amount. It is important to mention that the answer is
provided by EMERALD and its DR-Reasoner (DR-DEVICE) in particular.

Explanation for the documents and program files involved in this Use
Case

DR-Reasoner
It is an EMERALD agent that provides the DR-Device functionality, for more details
see [1 , 2]. Note that it’s an update version, provided for RR. It is available at
http://lpis.csd.auth.gr/systems/EMERALDRR/rrGateway.html

dr-device-input.xslt: This file contains the essential XSL transformation rules in order
to transform the Reaction RuleML document that contains the initial query to an RDF
document, which is required as input data for the DR-Reasoner

http://lpis.csd.auth.gr/systems/EMERALDRR/rrGateway.html�

 13

Notice that this file is domain-dependent, so in a different use case must be changed
to reflect the class and properties of the input RDF facts for the defeasible logic rule
base.

dr-device-output.xslt: This file contains the essential XSL transformation rules in
order to transform the RDF document that contains the answer to an Reaction
Ruleml document, which will be sent back to Rule Responder.

Notice that this file is domain-dependent, so in a different use case must be changed
to reflect the class and properties of the input RDF facts for the defeasible logic rule
base.

 14

query.ruleml: This file contains the query (in Reaction RuleML) for requesting (from
the PublicityChair PA) the sponsoring level.

The answer to this query (in Reaction RuleML) is:

 15

Prova Rule Base
OA’s Prova rule base (available at: http://emerald.csd.auth.gr:8080/ruleSetsRuleML-

2010/RuleML-2010-Responder.prova) has also been modified.

The new query returns, from the PublicityChair PA, the largest level that fits into the

offered amount.

References
[1] Κ. Kravari, E. Kontopoulos, N. Bassiliades, “Trusted Reasoning Services for

Semantic Web Agents”, Informatica: International Journal of Computing and

Informatics, Slovenian Society Informatika, 34(4), pp. 429-440, 2010.

(available at: http://www.informatica.si/PDF/34-4/04_Kravari%20-

%20Trusted%20Reasoning%20Services%20for%20Semantic%20Web.pdf)
[2] K. Kravari, E. Kontopoulos, N. Bassiliades, “EMERALD: A Multi-Agent System for

Knowledge-based Reasoning Interoperability in the Semantic Web”, 6th Hellenic

Conference on Artificial Intelligence (SETN 2010), Springer Berlin / Heidelberg,

LNCS, Vol. 6040/2010, pp. 173-182, Athens, Greece, 4-7 May, 2010.

(available at: http://www.springerlink.com/content/1w3g635l4n1p152u/)

processMessage(XID,From,Primitive,suggested_sponsoring_level(Sponsor,Amount,Level)) :-

assigned(XID,Agent,ruleml2010_EMERALDSponsoring,ruleml2010_responsible),

sendMsg(XID,esb,Agent, "query",

suggested_sponsoring_level(Sponsor,Amount,Level)),

println(["sent message to: ",Agent]),

rcvMsg(XID,esb,Agent,"answer",

suggested_sponsoring_level(Sponsor2,Amount2,Level2)),

println(["message recevied: "]),

sendMsg(XID,esb,From, "answer",

suggested_sponsoring_level(Sponsor2,Amount2,Level2)),

println(["message sent to browser: ",From]).

http://emerald.csd.auth.gr:8080/ruleSetsRuleML-2010/RuleML-2010-Responder.prova�
http://emerald.csd.auth.gr:8080/ruleSetsRuleML-2010/RuleML-2010-Responder.prova�
http://www.informatica.si/PDF/34-4/04_Kravari%20-%20Trusted%20Reasoning%20Services%20for%20Semantic%20Web.pdf�
http://www.informatica.si/PDF/34-4/04_Kravari%20-%20Trusted%20Reasoning%20Services%20for%20Semantic%20Web.pdf�
http://www.springerlink.com/content/1w3g635l4n1p152u/�

	Introduction
	Conceptual Comparison between Rule Responder and EMERALD

	EMERALD Rule Responder Architecture
	EMERALD (Rule Responder Gateway
	EMERALD (Rule Responder Use Case
	Explanation for the documents and program files involved in this Use Case
	RRP (Rule Responder Proxy)
	Partner (EMERALD agent)
	Prova Rule Base
	POSL Rule Base

	Rule Responder (EMERALD Gateway
	Rule Responder (EMERALD Use Case
	Explanation for the documents and program files involved in this Use Case
	DR-Reasoner
	Prova Rule Base

	References

