

# BOnSAI: a Smart Building Ontology for Ambient Intelligence

Thanos G. Stavropoulos Dimitris Vrakas Danai Vlachava Nick Bassiliades











## Outline

#### Abstract

- 1. Background
- 2. Target
- 3. Related Work
- 4. BOnSAI
- 5. BOnSAI Usage
- 6. Future Work

#### Abstract

- BOnSAI: a Smart Building Ontology for Ambient Intelligence
- Includes concepts for
  - Functionality (Hardware, Services), Environment, QoS, Users, Context
  - Imports from existing ontologies
- Put in use
  - Smart Building at the International Hellenic University Smart IHU
  - Semantic Service description for Sensor Network Devices

# 1 Background

#### Ambient Intelligence (AmI)

- Derives from Ubiquitous, Pervasive Computing
- Users surrounded by embedded/wearable/portable computing devices

#### Web Services (Sensor Web)

- WSDL standard for syntactic interoperability
- Widely used in AmI
- Semantic Web Services
  - Various standards
  - OWL-S, WSMO (top-down)
  - SAWSDL, WSMOLite (bottom-up)
  - Confusion, Complexity, lack of universal solutions

## 2 Goal of BOnSAI

- To provide a simple yet powerful solution for the convergence of AmI, WS, SW
- Compatible with top-down descriptions (upper ontologies)
  - Interoperability with existing approaches
    Also to use as a knowledge base of services
- Can be used for bottom-up descriptions (e.g. SAWSDL)
  - Lightweight semantic descriptions
  - Even more universal



# 3 Related Work Context Ontology [1]

- ✓OWL-S extension
- Quite application specific
- Maamar et al: Towards an ontologybased approach for specifying and securing Web services(2006)



## 3 Related Work CoDAMoS [2]

2. Preuveneers et al. Automated context-driven composition of pervasive services to alleviate non-functional concerns

------



## 3 Related Work OntoAMI [3]

3. Santofimia et al. (2008) An agent-based approach towards automatic service composition in ambient intelligence

#### ✓Quite minimal

- But not general enough:
  - Device provides Service
  - Action on Object
    - BOnSAI is less restrictive
  - Event reifies Context
    - Leads to many instances



# 3 Related Work

DEHEMS [4]

4. Shah et al: Ontology for Home Energy Management Domain (2011)

- Energy Savings (FP7)
- ✓Knowledge Base
  - Various Household Appliances
  - Consumption measurements
  - Energy Classes
  - Reasoning on the above
- Does not model services / sensors
- Could not be found online

# **ENVISION Ontology**

A. Llaves, H. Michels, P. Maué M. Roth, Semantic Event Processing in ENVISION, WIMS 2012

- Event-based Sensor Service System
- Uses
  - W3C's Semantic Sensor Network ontology
  - SOA4All (WSML, IRIS Reasoner)
- Introduces
  - A Service Ontology (SOS)
  - POSM (Operations, Preconditions, Effects)



#### 4 BOnSAI

- Online at <u>http://lpis.csd.auth.gr/ontologies/bonsai/</u>
- Hardware (Devices)
  - Device Role
    - Sensor, Actuator, (MultiSensor, SensorActuator)
  - Device Communication protocol
    - Wired, Wireless (PLC, ZigBee, Z-Wave, RF etc.)
- Context
  - Location, Environment Parameters, Time
- Functionality of Services
  - Sensor Parameter readings (Environment and more)
  - Actuator Effects (Actions)

## 4 BOnSAI

#### Service

- Imports OWL-S (top-down)
- Service (I)nput (O)utput (P)reconditions (E)ffects
  - SAWSDL (bottom-up)

#### QoS

- Import from CoDAMoS:Resource
  - E.g. CPU speed, ...
- Define Communication Protocols

# **BOnSAI Class Diagram**





## 5 BOnSAI Usage

#### Smart IHU project

- Instantiation on Smart IHU (International Hellenic University) project
  - Smart Building AmI project that targets energy savings, automations and quality of life in a University
- Existing infrastructure
  - Sensors
    - Environmental (Humidity, Temperature, Luminance)
    - Motion detection (Camera, Infrared)
    - Power Consumption (Per Building, Per Appliance)
  - Actuators
    - Plugs (Switch Appliances)
    - IT Equipment management (Wake-On-Lan, Shutdown etc.)
- Devices and functions are exposed by developed Web Services
  - Syntactically described in WSDL

#### 5 BOnSAI Usage (cont'd) Smart IHU project



## 5 BOnSAI Usage (cont'd) Smart IHU project

- 1. BOnSAI instances (Specific vendor devices)
- Used as a knowledge base
  - Separate ontology file
  - Adds classes e.g. Smart Plug, Sensor Board
  - Inserts instances for all classes (Communication protocol, Location etc) and for all deployed devices
- Used as Semantic Description of Services
  - Adding Service properties
  - Operations, Preconditions, Effects
  - OWL-S Grounding, Process Model etc.

#### 5 BOnSAI Usage Smart IHU project

- 2. Used for WSDL annotation (SAWSDL lightweight descriptions)
  - sawsdl:modelReference
- Usage of lightweight annotations
  - In various applications
  - Currently used in an expert system
    - Knowledge acquisition (e.g. tell conditions from actions)
    - Identify range and source of rule parameters
    - Dynamically adding/removing services
    - Interoperable services
  - In the future will be used for matching, composition, etc.

#### 6 Future Work

- Extensive exploitation of semantic descriptions
  - Semantic Web Service discovery
    - Selection
    - Matching
    - Composition
  - Knowledge Base
  - Expert System
    - Save energy
    - Provide automations

#### References

- Maamar Z., Narendra N. C., Subramanian S.: Towards an ontology-based approach for specifying and securing Web services. Information & Software Technology 48(7): 441-455 (2006)
- 2. Preuveneers D, Berbers Y (2005) Automated context-driven composition of pervasive services to alleviate non-functional concerns. Int J Comput Inf Sci 3(2):19–28
- Santofimia MJ, Moya F, Villanueva FJ, Villa D, Lopez JC (2008) An agent-based approach towards automatic service composition in ambient intelligence. Artif Intell Rev 29(3– 4):265–276
- 4. Shah N., Chao K., Zlamaniec T., Matei A.: Ontology for Home Energy Management Domain. DICTAP (2) 2011: 337-347