© 2002 John Mylopoulos

Agent-Oriented Software
Development

John Mylopoulos
University of Toronto

SETN 2002, Thessaloniki,
April 11-12, 2002

Thessaloniki -- 1

What I1s Software?

BANn engineering artifact, designed, tested and
deployed using engineering methods, which
rely heavily on testing and inspection for
validation (Engineering perspective)

B A mathematical abstraction, a theory, which
can be analyzed for consistency and can be
refined Into a more specialized theory
(Mathematical perspective)

© 2002 John Mylopoulos Thessaloniki -- 2

...but more recently...

B A non-human agent, with its own personality
and behavior, defined by its past history and
structural makeup (CogSci perspective)

B A social structure of software agents, who
communicate, negotiate, collaborate and
cooperate to fulfil their goals (Social

perspective)

These perspectives
will grow In Importance
-- In practice, but also SE research!

© 2002 John Mylopoulos Thessaloniki -- 3

Why Agent-Oriented Software?

B Next generation software engineering will have to support
open, dynamic architectures where components can
accomplish tasks in a variety of operating environments.

B Consider application areas such as eBusiness, web
services, pervasive and/or P2P computing.

B These all call for software components that find and
compose services dynamically, establish/drop
partnerships with other components and operate under a
broad range of conditions.

B Learning, planning, communication, negotiation, and
exception handling become essential features for such
software components.

w... agents!

© 2002 John Mylopoulos Thessaloniki -- 4

Agent-Oriented Software
Engineering

B Many researchers working on it.
B Research on the topic generally comes in two flavours:

v Extend UML to support agent communication,
negotiation etc. (e.qg., [Bauer99, Odell00]);

v Extend current agent programming platforms (e.qg.,
JACK) to support not just programming but also
design activities [Jennings00].

B We propose to develop a methodological framework

for building agent-oriented software which supports
requirements analysis, as well as design.

© 2002 John Mylopoulos Thessaloniki -- 5

What is an Agent?

B A person, an organization, certain kinds of software.
B An agent has beliefs, goals (desires), intentions.
B Agents are situated, autonomous, flexible, and social.

B But note: human/organizational agents can't be
prescribed, they can only be partially described.

B Software agents, on the other hand, have to be
completely specified during implementation.

M Beliefs correspond to (object) state, intentions constitute
a run-time concept. For design-time, the interesting new
concept agents have that objects don’t have is...

w...goals!

© 2002 John Mylopoulos Thessaloniki -- 6

Why Worry About
Human/Organizational Agents?

B Because their goals lead to software requirements,
and these influence the design of a software system.

B Note the role of human/organizational agents in
OOA, e.g., use cases.

B Also note the role of agents in up-and-coming
requirements engineering techniques such as KAOS
[Dardenne93].

B In KAOS, requirements analysis begins with a set of
goals; these are analysed/decomposed to simpler
goals which eventually either lead to software
requirements, or are delegated to external agents.

© 2002 John Mylopoulos Thessaloniki -- 7

The Tropos Methodology

B We propose a set of primitive concepts and a
methodology for agent-oriented requirements analysis
and design. We adopt i* [Yu95] as a modeling framework.

B Actors = Agents U Positions U Roles.
B \We want to cover four phases of software development:

v Early requirements -- identifies stakeholders and
their goals;

v Late requirements -- introduce system as another
actor which can accommodate some of these goals;

v' Architectural design -- more system actors are
added and are assigned responsibilities;

v Detailed design -- completes the specification of
system actors.

© 2002 John Mylopoulos Thessaloniki -- 8

Early Requirements:
Actors and their Goals

A social setting consists of actors, each having goals
(and/or softgoals) to be fulfilled.

Low cost
schedul i ng

Partici pant-. Manager

%;)d

g;;;%ule meeting Productive SChedul e
meet i ng meet | ngs meet i ng

© 2002 John Mylopoulos Thessaloniki -- 9

Qual ity of

M ni mal schedul e GOaI
ef fort Degr ee of -
M ni mal partici pation /Q\r1fil)/55|55
confl i cts
_ Vet ehin . Schedul e
Col | ecti on /Lij;ort ¢ »? i meet i ng
ef fort

N _

D

' Choose
schedul e
4

Manual |y

A
+. Col | ect

By
per son

By
syst em

/N
V//
Have

updat ed

ti met abl es
© 2002 John Mylopoulos Thessaloniki -- 10

Aut omat i cal |y
By al
means By

emai |

‘V/ Col | ect
t hem

Actor Dependencies

Col | ect
t 1 met abl es

Schedul e

Thr ough
per sonal

Recept.i on cont act

Actor dependencies are intentional: One actor wants
something, another is willing and able to deliver.

© 2002 John Mylopoulos Thessaloniki -- 11

Actor Dependency Models

Contri buteToM g I nitiator
' " — \—)

Useful Mg

chedul eM g
Cal endar I nfo

Parti ci pant
AttendM g

Sui t abl eTi ne

© 2002 John Mylopoulos Thessaloniki -- 12

Using These Concepts

B During early requirements, these concepts are used to
model external stakeholders (people, organizations,
existing systems), their relevant goals and inter-
dependencies.

B During late requirements, the system-to-be enters the
picture as one or a few actors participating in I* models.

B During architectural design, the actors being modelled
are all system actors.

B During detailed design, we are not adding more actors
and/or dependencies; instead, we focus on fully
specifying all elements of the models we have
developed.

© 2002 John Mylopoulos Thessaloniki -- 13

Late Requirements with 1*

Cont ri but eToM g lL.ni ti at or
\;’\j ———

efulMg Schedul eM g

Cal endar | nfo System

Schedul er

| et abl\ e
L
nage

At t ndl\/t g dal endarl nfo

M gl nfo
\Rp)porter

Parti ci pa

Sui t abl eTi ne

© 2002 John Mylopoulos Thessaloniki -- 14

Software Architectures with 1*

System Ti net abl e
Col | ect manager

Parti ci pant Cal endar I nfo
Cal endarInfo //‘// Updat e
O——m /. .
| /Inf oGat h r

gl nfo
Retri ev

M gl nfo)
al er

Reporter

Up
< Prgss \f)
query Retriever

© 2002 John Mylopoulos Thessaloniki -- 15

What is Different?

B Goal refinement extends functional decomposition
techniques, in the sense that it explores alternatives.

B Actor dependency graphs extend object interaction
diagrams in that a dependency is intentional, needs
to be monitored, may be discarded, and can be
established at design- or run-time.

B In general, an actor architecture is open and dynamic;
evolves through negotiation, matchmaking and like-
minded mechanisms.

B The distinction between design and run-time s
blurred.

B So Is the boundary between a system and its
environment (software or otherwise.)

© 2002 John Mylopoulos Thessaloniki -- 16

Why is this Better (...Sometimes...)

B Traditionally, goals (and softgoals) are operationalized
and/or metricized before late requirements.

B This means that a solution to a goal is frozen into a
software design early on and the designer has to work
within the confines of that solution.

B This won’t do In situations where the operational
environment of a system, including its stakeholders,
keeps changing.

B This won't do either for software that needs to
accommodate a broad range of users, with different

cultural, educational and linguistic backgrounds, or
users with special needs.

© 2002 John Mylopoulos Thessaloniki -- 17

The Tale of Two Designs

Controller Controll er
Di spl ay(“ Pl ease see Conmmuni cat e
vy Smith tonorrow (nt g062)
norni ng at 9ant)
| nterface | nterface

__ -

© 2002 John Mylopoulos Thessaloniki -- 18

Formal Tropos

B Each concept in a Tropos diagram can be defined
formally, in terms of a temporal logic inspired by KAOS.

B Actors, goals, actions, entities, relationships are
described statically and dynamically.

Cl ai ms
payout |

Nnsur ance
prem um > ‘Conpany

nt
ustompal =

cove

© 2002 John Mylopoulos Thessaloniki -- 19

A Formal Tropos Example

Entity Caim

Has claimd: Nunber, 1nsP: InsPolicy,
clainmbDate, date: Date, details: Text

Necessary date before 1 nsP.expDate

Necessary ("x)(daimx) U e-Cdaimx) b
“RunsOK(x. 1 nsP. car))

end Cam

Acti on MakeRepair
Perf ornmed by BodyShop
Ref i nes Repali r Car
| nput cl : Caim
Pre GRunsOK(cl .1 nsP. car)
Post RunsCK(cl.insP.car)...

© 2002 John Mylopoulos Thessaloniki -- 20

A Goal Dependency Example

Goal Dependency Cover Repalrs
Mode Ful fil
Depender Cust omer
Dependee | nsuranceCo
Has cl: Claim

Defined /* the ampbunt paid out by the
| Nsurance conpany covers repair costs
*

end Repai rsCovered

© 2002 John Mylopoulos Thessaloniki -- 21

Analysing Models

B Models are used primarily for human communication

W But, this iIs not enough! Large models can be hard to
understand, or take seriously!

B We need analysis techniques which offer evidence that a
model makes sense:

v'Simulation through model checking, to explore the
properties of goals, entities, etc. over their lifetime;

v Goal analysis which determine the fulfillment of a
goal, given information about related goals;

v Social analysis which looks at viability, workability,...
for a configuraion of social dependencies.

© 2002 John Mylopoulos Thessaloniki -- 22

Model Checking for Tropos

B Goal: Apply model checking to richer models than
those that have been tried before.

B Approach

v Definition of an automatic translation from Formal
Tropos specifications to the input language of the
nuSMV model checker [Cimatti99].

v Verification of temporal properties of state
representations of finite Tropos models.

v Discovery of interesting scenarios that represent
counterexamples to properties not satisfied by the
specifications.

v Model simulation.

© 2002 John Mylopoulos Thessaloniki -- 23

Translation for CoverRepairs

VAR CoverRepairs : {no, created, fulfilled}
INIT CoverRepairs = no

TRANS CoverRepairs = no -> (next(CoverRepairs)=no |
next(CoverRepairs)=created)

TRANS CoverRepairs = created -> (next(CoverRepairs)=created |
next(CoverRepairs)=fulfilled)

TRANS CoverRepairs = fulfilled -> next(CoverRepairs) = fulfilled

TRANS CoverRepairs=no -> next(CoverRepairs = created ->
IRUNOK)

TRANS CoverRepairs = created -> next(CoverRepairs = fulfilled
-> DamageCosts = fulfilled)

TRANS CoverRepairs = created -> next(CoverRepairs = fulfilled
<-> RunsOK)

© 2002 John Mylopoulos Thessaloniki -- 24

Goal Analysis

B Need to formalize the different types of goal relationships
(AND, OR, +, -, etc.) and offer a (tractable) proof procedure.

B We use S(atisfied), D(enied) and don’t assume that they are
logically exclusive (remember, goals may be contradictory!)

B We offer several axioms for every goal relationship.

" 91,92, g3[AND({ g1, g2}, g3) P ((S(g1)US(g2))P S(g3))]
" 91,92, g3[OR({ g1, g2}, g3) b ((S(g1)US(g2))b S(g3))]
" g1, 92[++(9gl, g2) P (S(gl) P S(g2))]

" g1, 92[+(g1, g2) P $g[(g*g2Us(g) US(g1)) P S(g2)]]
...more axioms for predicate D, goal relationships --, -...

© 2002 John Mylopoulos Thessaloniki -- 25

Qual ity of

M ni mal schedul e GOaI
effort Degr ee of
M ni nmal parti ci pation Graph
conflicts
. Mat ¢hi n . Schedul e
Col | ecti on /Lij;ort ¢ »? i meet i ng
effort

N _

Choose
schedul e
4

Manual |y

A
+. Col | ect

By
per son

By
syst em

/N
V//
Have

updat ed

ti met abl es
© 2002 John Mylopoulos Thessaloniki -- 26

Aut omat i cal |y
By al
means By

emai |

‘V/ Col | ect
t hem

Goal Analysis (cont’d)

B Given a goal graph, we can instantiate these axioms into a
collection of propositional Horn clauses, e.g.,

" g1, 92, g3[AND({ g1, g2}, g3) P ((S(g1)US(g2))P S(g3))]
==> (S(col | ect Thl)US(chooseSchl))b S(schedul eM g)

B We are also given some S and D labels for some goals, e.g.,
S(haveUpdat edThbl)

m There is an O(N) proof procedure which will generate all
Inferences from these axioms. Our proof procedure works as a
label propagation algorithm.

B We are currently extending this algorithm to accommodate
probabilities and criticalities for goals.

© 2002 John Mylopoulos Thessaloniki -- 27

Tropos

B Project started in April 2000.
http://www.cs.toronto.edu/km/tropos
B The team of participating researchers includes

v UToronto (Canada): Fernandez Damian, Ariel
Fuxman, Daniel Gross, Manuel Kolp, Linda Liu,
Eric Yu;

v UTrento/IRST (ltaly): Paolo Bresciani, Paolo
Giorgini, Fausto Giunchiglia, Eleonora Nicchiarelli,
Anna Perini, Marco Pistore, Roberto Sebastiani,
Paolo Traverso;

v TUAachen (Germany): Matthias Jarke, Gerhard
Lakemeyer.

v FUPernambuco (Brazil): Jaelson Castro

© 2002 John Mylopoulos Thessaloniki -- 28

Conclusions

B \We have proposed a set of concepts and sketched a
methodology which can support this paradigm.

B Agent-Oriented software development is an up-and-
coming paradigm because of an ever-growing
demand for customizable, robust and open software
systems that truly meet the needs and intentions of
their stakeholders.

M This is a long-term project, and much remains to be
done.

© 2002 John Mylopoulos Thessaloniki -- 29

References

B [Bauer99] Bauer, B., Extending UML for the Specification of Agent
Interaction Protocols. OMG document ad/99-12-03.

B [Dardenne93] Dardenne, A., van Lamsweerde, A. and Fickas, S,
“Goal-directed Requirements Acquisition”, Science of Computer
Programming, 20, 1993.

B [lglesias98] Iglesias, C., Garrijo, M. and Gonzalez, J., “A Survey of Agent-
Oriented Methodologies”, Proceedings of the 5th International Workshop on
Intelligent Agents: Agent Theories, Architectures, and Languages (ATAL-
98), Paris, France, July 1998.

B [Jennings00] Jennings, N. R., “On Agent-Based Software Engineering”,
Artificial Intelligence, 117, 2000.

B [OdellO0] Odell, J., Van Dyke Parunak, H. and Bernhard, B., “Representing
Agent Interaction Protocols in UML”, Proceedings of the First International
Workshop on Agent-Oriented Software Engineering (AOSE-2000), Limerick,
June 2000.

B [Yu95] Yu, E., Modelling Strategic Relationships for Process Reengineering,
Ph.D. thesis, Department of Computer Science, University of Toronto, 1995.

© 2002 John Mylopoulos Thessaloniki -- 30

