
2002 John Mylopoulos Thessaloniki -- 1

Agent-Oriented Software
Development

John Mylopoulos
University of Toronto

SETN 2002, Thessaloniki,
April 11-12, 2002

2002 John Mylopoulos Thessaloniki -- 2

What is Software?

nAn engineering artifact, designed, tested and
deployed using engineering methods, which
rely heavily on testing and inspection for
validation (Engineering perspective)
nA mathematical abstraction, a theory, which

can be analyzed for consistency and can be
refined into a more specialized theory
(Mathematical perspective)

2002 John Mylopoulos Thessaloniki -- 3

n A non-human agent, with its own personality
and behavior, defined by its past history and
structural makeup (CogSci perspective)
n A social structure of software agents, who

communicate, negotiate, collaborate and
cooperate to fulfil their goals (Social
perspective)

These perspectives
will grow in importance

-- in practice, but also SE research!

...but more recently...

2002 John Mylopoulos Thessaloniki -- 4

Why Agent-Oriented Software?
n Next generation software engineering will have to support

open, dynamic architectures where components can
accomplish tasks in a variety of operating environments.

n Consider application areas such as eBusiness, web
services, pervasive and/or P2P computing.

n These all call for software components that find and
compose services dynamically, establish/drop
partnerships with other components and operate under a
broad range of conditions.

n Learning, planning, communication, negotiation, and
exception handling become essential features for such
software components.

*... agents!

2002 John Mylopoulos Thessaloniki -- 5

Agent-Oriented Software
Engineering

n Many researchers working on it.
n Research on the topic generally comes in two flavours:
üExtend UML to support agent communication,

negotiation etc. (e.g., [Bauer99, Odell00]);
üExtend current agent programming platforms (e.g.,

JACK) to support not just programming but also
design activities [Jennings00].

n We propose to develop a methodological framework
for building agent-oriented software which supports
requirements analysis, as well as design.

2002 John Mylopoulos Thessaloniki -- 6

What is an Agent?

n A person, an organization, certain kinds of software.
n An agent has beliefs, goals (desires), intentions.
n Agents are situated, autonomous, flexible, and social.
n But note: human/organizational agents can’t be

prescribed, they can only be partially described.

n Software agents, on the other hand, have to be
completely specified during implementation.

n Beliefs correspond to (object) state, intentions constitute
a run-time concept. For design-time, the interesting new
concept agents have that objects don’t have is...

*...goals!

2002 John Mylopoulos Thessaloniki -- 7

Why Worry About
Human/Organizational Agents?

n Because their goals lead to software requirements,
and these influence the design of a software system.

n Note the role of human/organizational agents in
OOA, e.g., use cases.

n Also note the role of agents in up-and-coming
requirements engineering techniques such as KAOS
[Dardenne93].

n In KAOS, requirements analysis begins with a set of
goals; these are analysed/decomposed to simpler
goals which eventually either lead to software
requirements, or are delegated to external agents.

2002 John Mylopoulos Thessaloniki -- 8

The Tropos Methodology

n We propose a set of primitive concepts and a
methodology for agent-oriented requirements analysis
and design. We adopt i* [Yu95] as a modeling framework.

n Actors = Agents Positions Roles.

n We want to cover four phases of software development:
üEarly requirements -- identifies stakeholders and

their goals;
üLate requirements -- introduce system as another

actor which can accommodate some of these goals;
üArchitectural design -- more system actors are

added and are assigned responsibilities;
üDetailed design -- completes the specification of

system actors.

2002 John Mylopoulos Thessaloniki -- 9

Early Requirements:
Actors and their Goals

A social setting consists of actors, each having goals
(and/or softgoals) to be fulfilled.

Participant Manager

Schedule
meeting

Productive
meetings

Schedule
meeting

Low cost
scheduling

Good
meeting

2002 John Mylopoulos Thessaloniki -- 10

Goal
Analysis

Schedule
meeting

By all
means By

email

-

- +

+
+

+

-

-

Collect
timetables

By
person

By
system

Have
updated
timetables

Collect
them

Choose
schedule

Manually

Automatically

Matching
effortCollection

effort

Minimal
conflicts

Degree of
participation

Quality of
scheduleMinimal

effort

2002 John Mylopoulos Thessaloniki -- 11

Actor Dependencies

Through
personal
 contact

By
email

Collect
timetables

Schedule
meeting

ScheduleSchedule
meetingmeeting

Reception

Actor dependencies are intentional: One actor wants
something, another is willing and able to deliver.

2002 John Mylopoulos Thessaloniki -- 12

Actor Dependency Models
InitiatorContributeToMtg

AttendMtg

UsefulMtg

CalendarInfo

SuitableTime

SchedulerParticipant

ScheduleMtg

2002 John Mylopoulos Thessaloniki -- 13

Using These Concepts

n During early requirements, these concepts are used to
model external stakeholders (people, organizations,
existing systems), their relevant goals and inter-
dependencies.

n During late requirements, the system-to-be enters the
picture as one or a few actors participating in i* models.

n During architectural design, the actors being modelled
are all system actors.

n During detailed design, we are not adding more actors
and/or dependencies; instead, we focus on fully
specifying all elements of the models we have
developed.

2002 John Mylopoulos Thessaloniki -- 14

Late Requirements with i*

AttendMtg

UsefulMtg

CalendarInfo

SuitableTime

SchedulerParticipant

ScheduleMtg
System

Timetable
manager

Reporter

Manage
CalendarInfo

MtgInfo

ContributeToMtg Initiator

2002 John Mylopoulos Thessaloniki -- 15

Software Architectures with i*

CalendarInfo

Timetable
manager

Reporter

Collect
CalendarInfo

Retrieve
MtgInfo

Update
MtgInfo

Process
query

Updater

Retriever

InfoGatherer

System

Participant

2002 John Mylopoulos Thessaloniki -- 16

What is Different?

n Goal refinement extends functional decomposition
techniques, in the sense that it explores alternatives.

n Actor dependency graphs extend object interaction
diagrams in that a dependency is intentional, needs
to be monitored, may be discarded, and can be
established at design- or run-time.

n In general, an actor architecture is open and dynamic;
evolves through negotiation, matchmaking and like-
minded mechanisms.

n The distinction between design and run-time is
blurred.

n So is the boundary between a system and its
environment (software or otherwise.)

2002 John Mylopoulos Thessaloniki -- 17

Why is this Better (…Sometimes…)

n Traditionally, goals (and softgoals) are operationalized
and/or metricized before late requirements.

n This means that a solution to a goal is frozen into a
software design early on and the designer has to work
within the confines of that solution.

n This won’t do in situations where the operational
environment of a system, including its stakeholders,
keeps changing.

n This won’t do either for software that needs to
accommodate a broad range of users, with different
cultural, educational and linguistic backgrounds, or
users with special needs.

2002 John Mylopoulos Thessaloniki -- 18

The Tale of Two Designs

Controller

Interface

Display(“Please see
 Smith tomorrow
morning at 9am”)

Communicate
(mtg062)

Interface

Controller

2002 John Mylopoulos Thessaloniki -- 19

Formal Tropos

n Each concept in a Tropos diagram can be defined
formally, in terms of a temporal logic inspired by KAOS.

n Actors, goals, actions, entities, relationships are
described statically and dynamically.

Customer

Insurance
CompanyPremium

payment

Repairs
covered

Claims
payout

2002 John Mylopoulos Thessaloniki -- 20

A Formal Tropos Example

Entity Claim
Has claimId: Number, insP: InsPolicy,
claimDate, date: Date, details: Text

Necessary date before insP.expDate
Necessary (∀x)(Claim(x) ∧ l¬Claim(x) ⇒
¬RunsOK(x.insP.car))

end Claim

Action MakeRepair
Performed by BodyShop
Refines RepairCar
Input cl : Claim
Pre ¬RunsOK(cl.insP.car)
Post RunsOK(cl.insP.car)...

2002 John Mylopoulos Thessaloniki -- 21

A Goal Dependency Example

GoalDependency CoverRepairs

 Mode Fulfil

 Depender Customer

 Dependee InsuranceCo

 Has cl: Claim

Defined /* the amount paid out by the
insurance company covers repair costs
*/

end RepairsCovered

2002 John Mylopoulos Thessaloniki -- 22

Analysing Models

n Models are used primarily for human communication
n But, this is not enough! Large models can be hard to

understand, or take seriously!
n We need analysis techniques which offer evidence that a

model makes sense:
üSimulation through model checking, to explore the

properties of goals, entities, etc. over their lifetime;
üGoal analysis which determine the fulfillment of a

goal, given information about related goals;
üSocial analysis which looks at viability, workability,…

for a configuraion of social dependencies.

2002 John Mylopoulos Thessaloniki -- 23

Model Checking for Tropos

n Goal: Apply model checking to richer models than
those that have been tried before.

n Approach
üDefinition of an automatic translation from Formal

Tropos specifications to the input language of the
nuSMV model checker [Cimatti99].
üVerification of temporal properties of state

representations of finite Tropos models.
üDiscovery of interesting scenarios that represent

counterexamples to properties not satisfied by the
specifications.
üModel simulation.

2002 John Mylopoulos Thessaloniki -- 24

Translation for CoverRepairs

VAR CoverRepairs : {no, created, fulfilled}
INIT CoverRepairs = no
TRANS CoverRepairs = no -> (next(CoverRepairs)=no |

next(CoverRepairs)=created)
TRANS CoverRepairs = created -> (next(CoverRepairs)=created |

next(CoverRepairs)=fulfilled)
TRANS CoverRepairs = fulfilled -> next(CoverRepairs) = fulfilled
TRANS CoverRepairs=no -> next(CoverRepairs = created ->

!RunOK)
TRANS CoverRepairs = created -> next(CoverRepairs = fulfilled

-> DamageCosts = fulfilled)
TRANS CoverRepairs = created -> next(CoverRepairs = fulfilled

<-> RunsOK)

2002 John Mylopoulos Thessaloniki -- 25

Goal Analysis

n Need to formalize the different types of goal relationships
(AND, OR, +, -, etc.) and offer a (tractable) proof procedure.

n We use S(atisfied), D(enied) and don’t assume that they are
logically exclusive (remember, goals may be contradictory!)

n We offer several axioms for every goal relationship.
∀g1,g2,g3[AND({g1,g2},g3) ⇒ ((S(g1)∧S(g2))⇒ S(g3))]
∀g1,g2,g3[OR({g1,g2},g3) ⇒ ((S(g1)∨S(g2))⇒ S(g3))]
∀g1,g2[++(g1,g2) ⇒ (S(g1) ⇒ S(g2))]
∀g1,g2[+(g1,g2) ⇒ ∃g[(g≠g2∧S(g)∧S(g1)) ⇒ S(g2)]]
...more axioms for predicate D, goal relationships --, -...

2002 John Mylopoulos Thessaloniki -- 26

Goal
Graph

Schedule
meeting

By all
means By

email

-

- +

+
+

+

-

-

Collect
timetables

By
person

By
system

Have
updated
timetables

Collect
them

Choose
schedule

Manually

Automatically

Matching
effortCollection

effort

Minimal
conflicts

Degree of
participation

Quality of
scheduleMinimal

effort

2002 John Mylopoulos Thessaloniki -- 27

Goal Analysis (cont’d)

n Given a goal graph, we can instantiate these axioms into a
collection of propositional Horn clauses, e.g.,

∀g1,g2,g3[AND({g1,g2},g3) ⇒ ((S(g1)∧S(g2))⇒ S(g3))]

==> (S(collectTbl)∧S(chooseSchl))⇒ S(scheduleMtg)

n We are also given some S and D labels for some goals, e.g.,
S(haveUpdatedTbl)

n There is an O(N) proof procedure which will generate all
inferences from these axioms. Our proof procedure works as a
label propagation algorithm.

n We are currently extending this algorithm to accommodate
probabilities and criticalities for goals.

2002 John Mylopoulos Thessaloniki -- 28

Tropos

n Project started in April 2000.

http://www.http://www.cscs..torontotoronto..eduedu/km//km/tropostropos
n The team of participating researchers includes
üUToronto (Canada): Fernandez Damian, Ariel

Fuxman, Daniel Gross, Manuel Kolp, Linda Liu,
Eric Yu;
üUTrento/IRST (Italy): Paolo Bresciani, Paolo

Giorgini, Fausto Giunchiglia, Eleonora Nicchiarelli,
Anna Perini, Marco Pistore, Roberto Sebastiani,
Paolo Traverso;
üTUAachen (Germany): Matthias Jarke, Gerhard

Lakemeyer.
üFUPernambuco (Brazil): Jaelson Castro

2002 John Mylopoulos Thessaloniki -- 29

Conclusions

n We have proposed a set of concepts and sketched a
methodology which can support this paradigm.

n Agent-Oriented software development is an up-and-
coming paradigm because of an ever-growing
demand for customizable, robust and open software
systems that truly meet the needs and intentions of
their stakeholders.

n This is a long-term project, and much remains to be
done.

2002 John Mylopoulos Thessaloniki -- 30

References

n [Bauer99] Bauer, B., Extending UML for the Specification of Agent
Interaction Protocols. OMG document ad/99-12-03.

n [Dardenne93] Dardenne, A., van Lamsweerde, A. and Fickas, S.,
“Goal–directed Requirements Acquisition”, Science of Computer
Programming, 20, 1993.

n [Iglesias98] Iglesias, C., Garrijo, M. and Gonzalez, J., “A Survey of Agent-
Oriented Methodologies”, Proceedings of the 5th International Workshop on
Intelligent Agents: Agent Theories, Architectures, and Languages (ATAL-
98), Paris, France, July 1998.

n [Jennings00] Jennings, N. R., “On Agent-Based Software Engineering”,
Artificial lntelligence, 117, 2000.

n [Odell00] Odell, J., Van Dyke Parunak, H. and Bernhard, B., “Representing
Agent Interaction Protocols in UML”, Proceedings of the First International
Workshop on Agent-Oriented Software Engineering (AOSE-2000), Limerick,
June 2000.

n [Yu95] Yu, E., Modelling Strategic Relationships for Process Reengineering,
Ph.D. thesis, Department of Computer Science, University of Toronto, 1995.

