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What is Software?

nAn engineering artifact, designed, tested and
deployed using engineering methods, which
rely heavily on testing and inspection for
validation (Engineering perspective)
nA mathematical abstraction, a theory, which

can be analyzed for consistency and can be
refined into a more specialized theory
(Mathematical perspective)
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n A non-human agent, with its own personality
and behavior, defined by its past history and
structural makeup (CogSci perspective)
n A social structure of software agents, who

communicate, negotiate, collaborate and
cooperate to fulfil their goals (Social
perspective)

These perspectives
will grow in importance

-- in practice, but also SE research!

...but more recently...
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Why Agent-Oriented Software?
n Next generation software engineering will have to support

open, dynamic architectures where  components can
accomplish tasks in a variety of operating environments.

n Consider application areas such as eBusiness, web
services, pervasive and/or P2P computing.

n These all call for software components that find and
compose services dynamically, establish/drop
partnerships with other components and operate under a
broad range of conditions.

n Learning, planning, communication, negotiation, and
exception handling become essential features for such
software components.

*... agents!
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Agent-Oriented Software
Engineering

n Many researchers working on it.
n Research on the topic generally comes in two flavours:
üExtend UML to support agent communication,

negotiation etc. (e.g., [Bauer99, Odell00]);
üExtend current agent programming platforms (e.g.,

JACK) to support not just programming but also
design activities [Jennings00].

n We propose to develop a methodological framework
for building agent-oriented software which supports
requirements analysis, as well as design.
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What is an Agent?

n A person, an organization, certain kinds of software.
n An agent has beliefs, goals (desires), intentions.
n Agents are situated, autonomous, flexible, and social.
n But note: human/organizational agents can’t be

prescribed, they can only be partially described.

n Software agents, on the other hand, have to be
completely specified during implementation.

n Beliefs correspond to (object) state, intentions constitute
a run-time concept. For design-time, the interesting new
concept agents have that objects don’t have is...

*...goals!
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Why Worry About
Human/Organizational Agents?

n Because their goals lead to software requirements,
and these influence the design of a software system.

n Note the role of human/organizational agents in
OOA, e.g., use cases.

n Also note the role of agents in up-and-coming
requirements engineering techniques such as KAOS
[Dardenne93].

n In KAOS, requirements analysis begins with a set of
goals; these are analysed/decomposed to simpler
goals which eventually either lead to software
requirements, or are delegated to external agents.
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The Tropos Methodology

n We propose a set of primitive concepts and a
methodology for agent-oriented requirements analysis
and design. We adopt i* [Yu95] as a modeling framework.

n Actors = Agents  Positions  Roles.

n We want to cover four phases of software development:
üEarly requirements -- identifies stakeholders and

their goals;
üLate requirements -- introduce system as another

actor which can accommodate some of these goals;
üArchitectural design -- more system actors are

added and are assigned responsibilities;
üDetailed design -- completes the specification of

system actors.
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Early Requirements:
Actors and their Goals

A social setting consists of actors, each having goals
(and/or softgoals) to be fulfilled.

Participant Manager

Schedule
meeting

Productive
meetings

Schedule
meeting

Low cost
scheduling

Good 
meeting
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Actor Dependencies

Through
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Actor dependencies are intentional: One actor wants
something, another is willing and able to deliver.
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Actor Dependency Models
InitiatorContributeToMtg
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SchedulerParticipant

ScheduleMtg
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Using These Concepts

n During early requirements, these concepts are used to
model external stakeholders (people, organizations,
existing systems), their relevant goals and inter-
dependencies.

n During late requirements, the system-to-be enters the
picture as one or a few actors participating in i* models.

n During architectural design, the actors being modelled
are all system actors.

n During detailed design, we are not adding more actors
and/or dependencies; instead, we focus on fully
specifying all elements of the models we have
developed.



2002  John Mylopoulos Thessaloniki  -- 14

Late Requirements with i*
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Software Architectures with i*
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What is Different?

n Goal refinement extends functional decomposition
techniques, in the sense that it explores alternatives.

n Actor dependency graphs extend object interaction
diagrams in that a dependency is intentional, needs
to be monitored, may be discarded, and can be
established at design- or run-time.

n In general, an actor architecture is open and dynamic;
evolves through negotiation, matchmaking and like-
minded mechanisms.

n The distinction between design and run-time is
blurred.

n So is the boundary between a system and its
environment (software or otherwise.)
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Why is this Better (…Sometimes…)

n Traditionally, goals (and softgoals) are operationalized
and/or metricized before late requirements.

n This means that a solution to a goal is frozen into a
software design early on and the designer has to work
within the confines of that solution.

n This won’t do in situations where the operational
environment of a system, including its stakeholders,
keeps changing.

n This won’t do either for software that needs to
accommodate a broad range of users, with different
cultural, educational and linguistic backgrounds, or
users with special needs.
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The Tale of Two Designs

Controller
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Formal Tropos

n Each concept in a Tropos diagram can be defined
formally, in terms of a temporal logic inspired by KAOS.

n Actors, goals, actions, entities, relationships are
described statically  and dynamically.

Customer

Insurance
CompanyPremium

payment

Repairs
covered

Claims
payout



2002  John Mylopoulos Thessaloniki  -- 20

A Formal Tropos Example

Entity Claim
Has claimId: Number, insP: InsPolicy,
claimDate, date: Date, details: Text

Necessary date before insP.expDate
Necessary (∀x)(Claim(x) ∧ l¬Claim(x) ⇒
¬RunsOK(x.insP.car))

end Claim

Action MakeRepair
Performed by BodyShop
Refines RepairCar
Input cl : Claim
Pre ¬RunsOK(cl.insP.car)
Post RunsOK(cl.insP.car)...
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A Goal Dependency Example

GoalDependency CoverRepairs

 Mode Fulfil

 Depender Customer

 Dependee InsuranceCo

 Has cl: Claim

Defined /* the amount paid out by the
insurance company covers repair costs
*/

end RepairsCovered
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Analysing Models

n Models are used primarily for human communication
n But, this is not enough! Large models can be hard to

understand, or take seriously!
n We need analysis techniques which offer evidence that a

model makes sense:
üSimulation through model checking, to explore the

properties of goals, entities, etc. over their lifetime;
üGoal analysis which determine the fulfillment of a

goal, given information about related goals;
üSocial analysis which looks at viability, workability,…

for a configuraion of social dependencies.
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Model Checking for Tropos

n Goal: Apply model checking to richer models than
those that have been tried before.

n Approach
üDefinition of an automatic translation from Formal

Tropos specifications to the input language of the
nuSMV model checker [Cimatti99].
üVerification of temporal properties of state

representations of finite Tropos models.
üDiscovery of interesting scenarios that represent

counterexamples to properties not satisfied by the
specifications.
üModel simulation.
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Translation for CoverRepairs

VAR  CoverRepairs : {no, created, fulfilled}
INIT  CoverRepairs = no
TRANS   CoverRepairs = no -> (next(CoverRepairs)=no |

next(CoverRepairs)=created)
TRANS   CoverRepairs = created -> (next(CoverRepairs)=created |

next(CoverRepairs)=fulfilled)
TRANS   CoverRepairs = fulfilled -> next(CoverRepairs) = fulfilled
TRANS    CoverRepairs=no -> next(CoverRepairs = created ->

!RunOK)
TRANS   CoverRepairs = created -> next(CoverRepairs = fulfilled

-> DamageCosts = fulfilled)
TRANS   CoverRepairs = created -> next(CoverRepairs = fulfilled

<-> RunsOK)
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Goal Analysis

n Need to formalize the different types of goal relationships
(AND, OR, +, -, etc.) and offer a (tractable) proof procedure.

n We use S(atisfied), D(enied) and don’t assume that they are
logically exclusive (remember, goals may be contradictory!)

n We offer several axioms for every goal relationship.
∀g1,g2,g3[AND({g1,g2},g3) ⇒   ((S(g1)∧S(g2))⇒  S(g3))]
∀g1,g2,g3[OR({g1,g2},g3) ⇒  ((S(g1)∨S(g2))⇒  S(g3))]
∀g1,g2[++(g1,g2) ⇒   (S(g1) ⇒  S(g2))]
∀g1,g2[+(g1,g2) ⇒  ∃g[(g≠g2∧S(g)∧S(g1)) ⇒  S(g2)]]
...more axioms for predicate D, goal relationships --, -...
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Goal Analysis (cont’d)

n Given a goal graph, we can instantiate these axioms into a
collection of propositional Horn clauses, e.g.,

∀g1,g2,g3[AND({g1,g2},g3) ⇒   ((S(g1)∧S(g2))⇒  S(g3))]

==> (S(collectTbl)∧S(chooseSchl))⇒  S(scheduleMtg)

n We are also given some S and D labels for some goals, e.g.,
S(haveUpdatedTbl)

n There is an O(N) proof procedure which will generate all
inferences from these axioms. Our proof procedure works as a
label propagation algorithm.

n We are currently extending this algorithm to accommodate
probabilities and criticalities for goals.
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Tropos

n Project started in April 2000.

http://www.http://www.cscs..torontotoronto..eduedu/km//km/tropostropos
n The team of participating researchers includes
üUToronto (Canada): Fernandez Damian, Ariel

Fuxman, Daniel Gross, Manuel Kolp, Linda Liu,
Eric Yu;
üUTrento/IRST (Italy): Paolo Bresciani, Paolo

Giorgini, Fausto Giunchiglia, Eleonora Nicchiarelli,
Anna Perini, Marco Pistore, Roberto Sebastiani,
Paolo Traverso;
üTUAachen (Germany): Matthias Jarke, Gerhard

Lakemeyer.
üFUPernambuco (Brazil): Jaelson Castro
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Conclusions

n We have proposed a set of concepts and sketched a
methodology which can support this paradigm.

n Agent-Oriented software development is an up-and-
coming paradigm because of an ever-growing
demand for customizable, robust and open software
systems that truly meet the needs and intentions of
their stakeholders.

n This is a long-term project, and much remains to be
done.
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