
Applying the Blackboard Model

in the Security Field

Simeon (simos) Xenitellis �

Information Security Group,
Royal Holloway University of London,

TW20 0EX United Kingdom
S.Xenitellis@rhul.ac.uk

Abstract. The blackboard model is a flexible problem-solving approach
that can be used in domains where the data and the knowledge rules are
strictly separated [7]. It is used in a variety of fields such as speech
recognition or optical character recognition. In this document we discuss
the use of the blackboard model in the security field and the automatic
detection of programming mistakes.

Keywords: artificial intelligence, blackboard model, software security, dataflow
analysis

1 Introduction

The blackboard model is a problem-solving approach that is well-suited in do-
mains where the data and the knowledge rules are strictly separated [7]. It was
first described by Newell in 1962 and became famous with the Hearsay II speech
recognition system [3].

The blackboard model has been applied in such diverse fields as the auto-
matic transcription of polyphonic music [8], parallel map recognition [16] and
the cryptanalysis of monoalphabetic substitution ciphers [1].

In the cryptanalysis of monoalphabetic substitution ciphers, specific knowl-
edge bases (KB) of the target language are constructed that can handle language
specific information. Such KBs handle frequences of individual letters, bigrams,
words of specific sizes and understand common prefixes, suffixes and syntactical
structure. A controlling mechanism asks in every round the KSs to provide an
estimation of the appropriateness of their best suggestion, based on the current
state of the solution. The most promising suggestion gets permission to update
the state of the solution. If a dead end is reached, the controlling mechanism
backtracks the last suggestions, trying alternative ones for each round.

Another field of computer security that can benefit from the blackboard
model is that of the vulnerability analysis of source code of software systems.
� The author’s studies are funded by the State’s Scholarship Foundation (SSF) of

Greece.



Currently, to detect security vulnerabilities in the source code, manual inspection
by a security specialist team appears to be the most successful solution [14].

In the case of automatic code inspection, an example of automated static
analysis is the Meta-level Compilation (MC) project [2]. The MC project uses
the GCC [6] suite of compilers to preprocess the source code into an intermediate
form and subsequently applies simple checker rules to detect common software
reliability vulnerabilities.

An extension to the current systematic approach of using flow analysis is
the addition of the blackboard model. The coupling of flow analysis with the
blackboard model is the contribution of this paper.

In section 2 we give a background of the vulnerabilities we try to tackle and
in section 3 we describe the related work. In the following section we describe
the process of security auditing that we will follow for the automated method
we present. In section 5 we present the blackboard application of automated
security auditing and we end with conclusions.

2 Background

There is a range of software reliability issues that can occur in applications that
are written in programming languages like the C programming language. One
cause of software reliability issues is the lack of a bounds checking mechanism
when accessing strings in memory. Although a change of programming language
can eliminate those vulnerabilities, this is not practical. A large number of soft-
ware applications are already written in the C programming language and there
are other features of the language that make it still worthy to use.

The C programming language does not provide built-in mechanisms to pro-
tect against buffer overruns for reasons of simplicity, speed and efficiency. Over-
running a buffer results in overwriting another area of memory that typically
holds important internal structures of the running application. Knowledge of
the internal structures can result in the exploitation of the buffer overrun and
the execution of malicious code.

Recently, a software vulnerability affecting a special structure of the C lan-
guage, the format strings, has been discovered [11, 12]. In this vulnerability,
manipulating the contents of the format string can also overwrite areas of the
internal memory of the running application, again with the potential to cause
the execution of malicious code.

In both of the above cases, the overwriting of internal memory of the run-
ning application makes the application to malfunction and subsequently crash or
hang [9, 5]. If this malfunction is caused due to crafted input by the attacker, it
can lead to loss of availability (denial of service) or even worse to the execution
of malicious code.



3 Related Work

There are several projects that aim in the detection of security vulnerabilities
using the source code. The majority of those use static analysis, the analysis of
problematic code structures in a flow-insensitive manner. Typically, such struc-
tures are specific function invocations or specific buffer operations.

The MC project [2] uses automated static analysis as part of the compilation
procedure and ITS4 [15] statically scans source code for security vulnerabilities
such as buffer overruns and race conditions. RATS [13] and flawfinder [17] are
open-source projects that check for security vulnerabilities by statically scanning
the source code for dangerous functions and trying to infer whether a buffer
overrun may occur.

Splint [4] uses static analysis to find buffer overrun and format string vulner-
abilities. Additionally, it performs a limited flow analysis.

4 Security auditing

Solving all types of software reliability problems using automated testing is ex-
tremely difficult [10]. However, focusing on a subset is more manageable. The
subset of software reliability problems we are dealing with are those that under-
mine the integrity of an application. In this setting, the attacker tries to access
without authorisation the assets of the system. The entrance for the attacker to
the system is any type of input that can be manipulated and subsequently be
exploited. The security vulnerabilities could be logical errors (when an empty
username and password grants access) or programming mistakes (when a buffer
os overflowed). In this paper we deal with the latter, assuming the former does
not take place.

Thus, in order to eliminate the programming mistakes that lead to security
vulnerabilities, the software security auditor should

– locate all inputs to the system that can be manipulated by an attacker,
– establish what input is legal and reject all others [18],
– follow the flow of the input data in the system,
– identify when a buffer overrun or format string mistake occurs,
– and finally fix the error.

5 The Blackboard Application

The blackboard application is composed of a set of knowledge sources that cap-
ture diverse knowledge domains, the blackboard that holds the current state of
analysis and a control mechanism that manages the interactions between the
previous two.



5.1 Knowledge Representation

The blackboard contains information about all possible entry points to the sys-
tem that the attacker has access to. Such entry points could be

– command-line parameters,
– environment variables,
– input files,
– inherited file descriptors,
– or data from a network connection

It is assumed that any sort of input value can enter through the entry points.
For example, a simple text editor may open binary files.

In a specific setting, different entry points may be considered to be available.
A word processor on a standalone workstation has no entry points while when
it is used to open documents downloaded from the Internet, the entry point is
the input file that was received.

Additionally, the blackboard contains tree structures where the roots repre-
sent the entry points of the input data and each node represents a change to
input data being passed to other variables. A node can have several subnodes,
depending on changes to the flow of execution, such as conditional cases and
function invocations.

5.2 Knowledge Sources

The knowledge sources are divided in the following groups, capturing different
domains of the process of identifying security vulnerabilities.

– Input Type Knowledge These knowledge sources parse the source code
in an attempt to identify if their input type is present. If it is present, they
make an entry to the blackboard.

– Flow Analysis Knowledge These knowledge sources follow the input data
while they are processed, during their whole lifetime until program termina-
tion.

– Data Manipulation Knowledge These knowledge sources can understand
different types of data manipulation that can occur to the input data, such
as the effect of library functions.

– Impact Assesment Knowledge These knowledge sources are called to
determine whether the input data that trigger the buffer overflow or any
other input related vulnerability, can be exploited to produce either a denial
of service or most importantly the execution of malicious code.

5.3 Control Mechanism

The control mechanism orchestrates the execution of the KSs in order to fill the
blackboard and represent all the input dataflow paths. The control mechanism is
independent of the individual KSs. Depending on the information needed on the



blackboard, the controlling mechanism triggers the KSs to provide estimations
of the appropriateness of their contribution. The most promising contribution
gets the chance to update the blackboard.

The controlling mechanism is KS-agnostic. This is an important feature that
ensures the efficiency of adding new knowledge material, as it gets discovered.

The goal of the controlling mechanism is to explore all dataflows of the input
data and check whether a security vulnerability arises. Once all dataflows have
been explored, the program is deemed secure for the specific set of knowledge
sources.

6 Conclusions

Currently there is enormous need for methods to ensure that software is delivered
without security vulnerabilities. Such an avenue appears to be the combination
of artificial intelligence with dataflow analysis of the source code. The promising
component of artificial intelligence that we propose is the blackboard model. In
this paper we described the knowledge domains, the blackboard structure and
the control mechanism of the blackboard application.

Acknowledgments

The author would like to thank Chris Mitchell for reviewing this paper.

References

[1] Grady Booch. Object-Oriented Analysis and Design with Applications. Object-
Oriented Software Engineering. Addison-Wesley Publishing Company, Rational,
Santa Clara, California, 2nd edition, 1994.

[2] Dawson Engler, et al. The Meta-level Compilation (MC) project.
http://hands.stanford.edu/, 2001.

[3] L. D. Erman, F. Hayes-Roth, V. R. Lesser, and D. R. Reddy. The hearsay-ii
speech-understanding system: Integrating knowledge to resolve uncertainty. In
B. L. Webber and N. J. Nilsson, editors, Readings in Artificial Intelligence, pages
349–389. Kaufmann, Los Altos, CA, 1981.

[4] David Evans and David Larochelle. Improving security using extensible
lightweight static analysis. IEEE Software, January/February 2002.

[5] Justin E. Forrester and Barton P. Miller. An Empirical Study of the Robustness
of Windows NT Applications Using Random Testing. 4th USENIX Windows
Systems Symposium, August 2000.

[6] GCC. GNU Compiler Collection. http://gcc.gnu.org/, 2002.
[7] Magnus Kempe. A Framework for The Blackboard Model.

ftp://lglftp.epfl.ch/pub/Papers/kempe-Blackboard-Overview.ps, 1995.
[8] Keith Martin. Automatic transcription of simple polyphonic music: Robust front

end processing. Technical Report 399, M.I.T. Media Lab, 1996.
[9] Barton P. Miller, Cjin Pheow Lee, Vivekananda Maganty, Ravi Murthy, Ajitkumar

Natarajan, and Jeff Steidl. Fuzz revisited: A re-examination of the reliability of
unix utilities and services. Technical report, Computer Sciences Department,
University of Wisconsin, 1995.



[10] Glenford J. Myers. The art of software testing. Business Data Processing. John
Wiley and Sons, Inc., 1979.

[11] Tim Newsham. Format string attacks. http://www.guardent.com/docs/
FormatString.PDF, September 2000. Guardent, Inc.

[12] scut. Exploiting format string vulnerabilities. http://teso.scene.at/articles/
formatstring/, September 2001. TESO.

[13] Secure Software Solutions. Rats - rough auditing tool for security.
http://www.securesw.com/rats/, 2001.

[14] Theo de Raadt et al. The OpenBSD free operating system.
http://www.openbsd.org, 2002.

[15] John Viega, J. T. Bloch, Tadayoshi Kohno, and Gary McGraw. ITS4: A static
vulnerability scanner for c and C++ code. In Proceedings of the Annual Computer
Security Applications Conference, December 2001.

[16] Li Wang. A Framework for Parallel Map Recognition Based on Blackboard Model.
citeseer.nj.nec.com/11673.html, 1996.

[17] David A. Wheeler. flawfinder. http://www.dwheeler.com/flawfinder/, 2001.
[18] David A. Wheeler. Secure Programming for Linux and Unix HOWTO.

http://www.dwheeler.com/secure-programs/, 2002.


	header: 2nd Hellenic Conf. on AI, SETN-2002, 11-12 April 2002, Thessaloniki, Greece, Proceedings, Companion Volume, pp. 531-536


