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Abstract: Use of distributed systems is spreading and relevant applications
become more demanding. To achieve the desirable level of integration of
distributed system components, experience from different knowledge domains
must be combined resulting in methods and techniques of increasing
complexity. Expert Systems may contribute to resolving such problems, as
most distributed system designers use empirical rules (rules of thumb) which
can be represented and exploited by symbolic calculus. We present an
Intelligent Distributed System Design tool, which facilitates the design and
evaluation of distributed systems architectures making extensive use of
artificial intelligence methodologies, mainly addressing the issue of
configuring distributed applications.
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1. Introduction

Distributed systems (DSs) can be described as sets of discrete components, such as
applications, files, processing nodes and computer networks. These are bound together
to interact and collaborate to achieve an overall objective. Applications operating in a
distributed environment are generally called distributed applications. Most are based on
the client-server model and its extensions, such as the two-tier, three-tier and multi-tier
models discussed in [1]. Distributed applications and the network infrastructure form a
distributed system ([2]). Most commercial information systems, such as banking and
flight control systems, e-mail and WWW applications, distant learning environments
and workflow management systems fall in this category. Development of standards,
such as CORBA, allowing the interaction between heterogeneous, autonomous
applications, and of programming languages, such as Java, providing native distributed
programming support, establish a well-defined platform for distributed application
development.



The efficient configuration of DS environments is based on the successful combination
of elementary components, also facing the internal complexity of these components. It
requires the complete and accurate description of user specifications and the integration
of knowledge from different areas. Among other factors, the large number of possible
architectural solutions and the variety of distributed applications impose the
development of software tools aiming at assisting experts during the construction,
modification or performance evaluation of distributed systems ([3],[4]).

Traditional methods, such as simulation, have extensively been used for the design and
performance evaluation of distributed systems and networks. Simulation tools often
explore data and resource allocation problems using mathematical models, simulation
techniques or, more often, a combination of both. Most tools aim at allowing experts to
investigate the behaviour of predefined algorithms for the placement of resources and
processes or estimating the performance characteristics of a given network architecture,
performing a “what-if” analysis. They do not make suggestions for the design or
redesign of the system architecture.

When designing complex systems, experts rely more on experience than on theory-
based calculations ([5], [6]). Several approaches to solve application placement and
network configuration problems appear in the literature. These approaches deal with
subproblems of limited scope and, in most cases, are not applicable in practice. Instead,
DS designers are driven by experimental rules of thumb that can easily be represented
by rule-based systems. Moreover, the distributed system configuration problem
requires solving several interrelated issues, that a heuristic approach can manage
efficiently. Issues, as process and file allocation, proved to be NP-complete. Dealing
with such problems requires methods that are more heuristic than algorithmic in nature.

Research in the expert system domain has often concentrated on the representation and
manipulation of heuristic knowledge and its use in decision making. Artificial
intelligent methods are widely applied for the effective exploration of network
configuration problems ([7], [8]). Most are built to explore specific design issues and
appear to have inherited the typical weaknesses of expert systems (inefficiency to
exploit large knowledge bases, integration with other systems, etc). Even though, some
tools include a special module for validating the proposed solution and guarantee that
the generated architecture is correct in terms of compatibility, they fail to ensure that
this is the most efficient solution, since they do not support performance evaluation of
the proposed solutions. Discrete event simulation has proved to be an efficient aid for
estimating performance characteristics of distributed systems and networks ([9], [10],

[11]).

The research presented in this paper is oriented towards the construction of the
Intelligent Distributed System Design tool, abbreviated to /DIS. IDIS makes extensive
use of Al techniques and propose alternatives for the distributed system architecture
according to the specifications provided by the user and the currently available
technology. Its contribution involves the employment of knowledge-based techniques
for the configuration of distributed applications and the description of problems
encountered and the solutions proposed. A simulation module is incorporated into IDIS



environment, in order to facilitate the performance evaluation of the proposed
distributed architecture and to guarantee the satisfaction of all user requirements.

The rest of the paper is organised as follows: In section 2 the distributed system
configuration problem is discussed. In section 3 IDIS architecture is described. In
section 4, we discuss knowledge representation issues in the context of distributed
system design and the techniques adopted for reducing the complexity of the
inferencing process. Conclusions reside in section 5.

2. Configuring Distributed System

Distributed systems are viewed as a combination of two discrete components: the
distributed applications to be supported and the underlying network platform. Both
application functionality and application requirements from the supporting network
must be in-depth modelled and analysed for the construction of a distributed system

([13D.

The configuration of distributed systems is performed based on the client-server model,
either two-tiered or multi-tiered. Systems based upon this architecture usually extend to
multiple sites and use a variety of local and wide area networks. Hardware architecture
is based to the workstation-server model: Users have their own workstation (diskless or
not) for executing client processes. Server processes are executed on dedicated servers.
All data used by applications are accessed through File Servers.

The network infrastructure consists of local networks interconnected via local and wide
area internetworks. Networks and internetworks are represented through the
corresponding protocol stacks, which are described according to the ISO/ OSI
reference model. All protocols selected are de yure and de facto standards and
considered to fulfill current and future communication needs.

Within IDIS framework, both distributed applications and network infrastructure
entities are described by elementary components ([1]). The network infrastructure
consists of nodes, either processing or relay, storage devices and communication
elements. Communication elements represent networks and the protocol stacks
supported by the corresponding nodes. For application description, two elementary
components are introduced: processes (clients, servers) and files, accessed through File
Servers. Users are described through user profiles. A typical DS architecture described
in terms of the elementary components mentioned above is depicted in figure 1.

Distributed architecture proposals should be oriented towards:

e placement of server processes and data operating in the distributed environment
to minimise network traffic and ensure the efficient operation of the DS

e design of the network infrastructure (network topology) to satisfy the
requirements imposed by distributed applications

To effectively determine DS architecture, the complete and accurate description of the
supported applications must be ensured. Furthermore, one should have the opportunity



to evaluate the performance of the proposed solutions and reconfigure the DS
architecture if user requirements are not fulfilled.
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Figure 1. A Typical DS Configuration

IDIS provides a semi-automated environment, guiding the user throughout the
configuration of distributed applications, which is accomplished in the following
steps:

e functional topology definition
e logical topology definition

e physical topology definition

2.1. Functional Topology

Functional topology definition concerns the functionality of the system. Distributed
applications are defined in terms of their operation and interaction with the network
infrastructure. At this stage, the user defines applications without system interference,
being responsible for the complete description of applications, while IDIS is
responsible for testing the correctness of this description. Applications are described
as sets of interacting processes activated by user profiles. More about the application
representation scheme is included in [13]. The files used by all processes are also
specified. There are two kind of files, data files and code files.

While interacting with the operator, access points of the DS called locations,
distributed applications and their functionality and user profiles are specified. The
operator also provides control information concerning specific conditions for the



performance evaluation of the proposed system. Definition of locations as well as
specification of their size is performed with respect to the user's view. Locations are
configurable and can be either different floors in a building, different buildings in the
same area, different areas, or even a combination of the above. If, for example, we
describe the sales database of a small firm, locations would most likely be different
floors corresponding to different departments in the firm. If the information system of
an industrial complex is described, locations could be floors in the corporate building,
buildings in the corporate park or remote branch offices at different cities, as shown in
figure 2. The Jocation entity can be refined into more elementary ones, allowing the
user to adjust the description of the system according to the application scale. This also
applies to other main entities, such as networks and internetworks, which are defined
during physical topology construction.
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Figure 2. Progressive Refinement of Location Definition

2.2. Logical Topology

Logical topology definition ensures providing the required functionality. Applications
requirements from the network infrastructure are described by parameters, such as the
necessary throughput, the application type (batch or interactive) etc. They are estimated
from their functionality description provided by the operator.

Allocation of processes and files is performed aiming at a. fulfilling application
requirements and b. minimising configuration cost. Minimising network traffic
especially on WAN connections and balancing the load is also taken into account.
While locating processes and files, different replication scenarios can be applied. When
dealing with the file allocation problem (FAP), i.e. the optimal allocation of file copies,
one must usually minimise the function describing the overall communication cost for
file access. This, as proved in [12], is considered to be NP-Complete. The same applies
for program allocation as well. For the solution of this kind of problems, heuristic or
similar techniques are introduced, ensuring that even if the optimal solution is not
reached, one very close to it will be found.



2.3. Physical Topology

At the stage of physical topology definition, the network topology is designed. The
network infrastructure consists of local networks interconnected via local and wide
area internetworks. Since the performance of distributed applications depends
critically on the performance of the network infrastructure, special attention is given to
the way locations are interconnected. The “best” solution to this problem is to
interconnect each location with all others communicating with it. Unfortunately this
solution is to costly to be supported. Graph processing techniques and heuristics are
introduced to indicate an “acceptable solutions” satisfying application requirements.
Networks, internetworks and resources characteristics must also be defined. IDIS
provides alternatives for process and file placement, network topology and network
configuration to ensure the desired performance, but does not indicate commercial
solutions

3. IDIS Architecture

IDIS is a knowledge-based system constructed according to the blackboard
architecture. Its knowledge base contains information concerning the supported
protocols and resources along with selection and combination rules and rules for
process and data placement. The blackboard model allows the structuration of the
knowledge base and the acceleration of the inference engine by dividing it into
independent subunits, called knowledge sources, that exchange information through
the working memory, referenced as blackboard. The use of blackboard architecture
facilitated the efficient incorporation of the simulation environment into IDIS
framework, as it permits the integration of subunits with different internal architecture,
provided that they are able to communicate using information in a predefined format.
The blackboard architecture is also used for the internal structuration of all subunits.
As Prolog programming language was used for implementation purposes, the input
and output of subunits are Prolog clauses. The knowledge sources forming IDIS
inference engine are supervised and directed by a control subunit, the Manager, as
shown in figure 3.

The functionality of main IDIS subunits is analytically presented in [14]. The User
Interface Module (UsIM) is responsible for the definition of the functional topology in
cooperation with the operator. UsiM is a graphical environment implemented using
Java Programming language. UsIM is also responsible to interact with the operator
during distributed application configuration and evaluation. The Topology Design
Module (ToDeM) is responsible for the definition of the logical topology, while the
Network Configuration Module (NeCoM) is responsible for the definition of the
physical topology. ToDeM functionality is defined by a set of rules consisting of
formal descriptions of experimental, mathematical and empirical techniques for data
and process placement, topology design and application requirement computation.
NeCoM functionality is defined by a set of rules concerning network design and
configuration. This knowledge is permanently stored in the Knowledge Base and can
be subjected to update by IDIS proper mechanisms.



The Performance Evaluation Module (PeM) is responsible for evaluating alternatives
solutions using discrete event simulation. MODSIM simulation language ([9]) was used
for simulation purposes. The simulation program is automatically constructed based on
object libraries. When its execution is completed, performance evaluation results are
stored in the corresponding knowledge base. The DS configuration constructed fulfils
all the desired performance characteristics (for example avg. or min. application
response time), while its cost is also taken into account.
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Figure 3. IDIS Architecture

The User Customisation Module (UCuM) facilitates the enrichment of IDIS knowledge
base. It allows the extension of the models used for application description, the addition
or re-organisation of process and file allocation policies and the modification of
network configuration policies. Extending IDIS knowledge base is not trivial, since it
may effect reasoning ([15]). For example, extension of application models may also
affect the algorithm computing network requirements. In order to avoid knowledge
inconsistency, the operator’s ability to add or modify knowledge is restricted. Thus,
UCuM functionality is constructed by meta-rules ensuring accuracy and consistency of
the added knowledge. For this purpose the structure of the added knowledge is
predefined.

Tasks accomplished by IDIS cannot be achieved by algorithms within acceptable
processing time or cost. Only partial answers may be given within an acceptable time
frame. Since the problem IDIS copes with is semi-structural, it can be resolved with
much simplicity when, at critical points of the inferencing process, an experienced
user interferes and reorients/guides the system. Thus, co-operation of an DS
configuration expert with IDIS is essential.

Critical points (Process Break Points) are the ones where IDIS must make a choice
according to specified criteria. The time required for the exhaustive combinatorial
examination of all alternatives can be drastically reduced by the operator. During
process placement, for instance, the number of alternative solutions can be reduced if
the operator excludes some remote locations from the system initial choices. The term



intervention denotes the provisional interruption of IDIS operation, the interactive
transformation of data by the operator and the reactivation of IDIS inference engine.
IDIS resumes its operation using the modified data. These interventions, even though
desirable, can also be fatal. Taking into account that the selection of each successive
task depends on the form of the data processed, data modification affects the control
itself. Allowing continuous and insufficiently controlled external data modification
could seriously disturb the system. To ensure IDIS efficient operation, Process Break
Points are strictly defined.

4. Knowledge Representation

The three classic formal descriptions of knowledge, i.e. frames, rules and semantic
networks, are used for knowledge representation. Frame-based reasoning is used for
entity generation, while rule-based reasoning is mainly used for algorithm
representation.

4.1 Frames

As frame-based reasoning simplifies configuration procedures, frames are used to
represent all entities describing DS components. Inheritance properties are extensively
supported. The frame structure introduced and examples of DS entity representation
are presented in figure 4.

/* Frame structure */
frame name (ID, Is A List, Slot List, Has A List)
where Slot List is Local Slots U Inherit Slots

/* rule structure for property initialisation */
find frame name (slot, value)

/* rule structure for entity initialisation */
find frame name has a(Frame)

/* sample frames representing Distributed Applications */
location(ID, [], [{Other Loc, Distance}], [Refined Locations]).
application(ID, [], [], [{process 1list}, {file list}]

process (ID, [process], [kind, response time], [{interface,
{operation scenario}]).

operationiscenario(ID, [ 1, [Interface name], [Process,
Action List])

request (ID, [ ], [Interface name, Server, Request size,
Amount size], [ ).

/* sample frames representing Network Infrastructure */
network (ID, [ ], [LocationList, type], [CommunicationElement]).

communicationElement (ID, [ ], [LocationList], [PeerComEl,
RoutingComEl]) .

processingNode (ID, [ ], [Location, ProcessList, ProcessingPower,
Number], [ 1).

Figure 4: DS Entity Representation



During applications description, UsIM is responsible not only for ensuring that the
information provided by the user conforms with the predefined structure and form, but
also for checking on potential contradictions and omissions (knowledge acquisition
control).

Normally, the operator does not change the chains of successive attributes which
describe a frame. However, if required, there is a mechanism which permits this type
of modification. Through UCuM, IDIS operator can adapt the description of the
entities to her/his model: attributes can be either added, modified or eliminated. These
changes result in updating the dictionary. Any modification in entity description is
followed by knowledge validation, which is performed by daemons before adding it to
the dictionary ([16]). Daemons can also be modified, but this "privilege" is granted
only to IDIS developers. The function of daemons is founded in the use of rules,
which are fired by changes in the frame structure.

Rules of knowledge integrity prohibit from significant changes in the continent of the
Knowledge Base. As a result, knowledge acquisition, validation and verification
procedures do not overcharge the system with exhaustive time-consuming checks. On
the other hand, experimental use of IDIS has shown that users usually wish for
insignificant modifications to the description of entities. As the domain of distributed
systems permits a quite complete and objective description of the knowledge
concerning DS entities, a detailed test of knowledge acquisition, validation and
verification made by complicated mechanisms, which permit radical changes of the
knowledge base status, is considered as unnecessary.

4.2 Rules

During IDIS operation, the operator instantiates frames corresponding to DS entities,
which instantiate other frames, etc. A subunit of the inference engine is activated,
when all necessary frames are instantiated and the corresponding set of rules (bank of
clauses) is loaded. The subunit checks on the compatibility of the instances, e.g. it
checks if certain values of instances exclude/impose some others and if the
excluded/imposed ones do not/do appear among the instances. The subunit also
provides a relatively "good" choice in case a frame can be instantiated in more than
one ways. If some combination of instances is considered to be better than the
combinations resulting from the user choices, the subunit updates a temporary bank of
clauses in which alternative scenarios are maintained. The system will consider these
scenarios in case of inability to provide a solution with respect to user choices and real
world constraints. The alternative scenarios are considered as part of the intermediate
results, which the system must keep in order to make new attempts in case of a failure.
They are not exactly what the user has asked for, but they are more "correct", in a
technical sense, so that they are considered as "legitimate by-passes" to intractable
difficulties. For example, during logical topology description, the user may choose to
place a server process replica in a location with many interactive applications to
increase their performance, and avoid placing it in the nearby location to increase the
overall system performance. Even if the user insists, IDIS must keep the alternative
scenario. The operation of rules is depicted in figure 5.
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Rule-base reasoning is used for algorithm representation. For example, during process
allocation different allocation scenarios must be represented. The most popular
algorithm for server placement is the one based on the avoidance of unnecessary data
transfer between WAN connections with no data replication support. The algorithm
does not support optimal performance solutions, since it only focuses on WAN traffic
and searches for a “relative good”, cost effective and simple (no data replication)
solution. The algorithm is executed in independent steps presented in the following:

SWp 1 For each server process, find the client process sets
that use shareable data.
Step 2 For each set, construct a different server process
replica. To place the replica:
I. Find the sets of locations that can be interconnected via
a LAN. (If a set contains only one location, the location

can not be interconnected via a LAN).

IT. Find the average network throughput caused by data
transfer, involving clients wusing shareable data, for
each location.

ITTI. Find the average network throughput caused in all
possible LAN internetworks.

Iv. Place the Server replica in the LAN internetwork that
causes the maximum network load.

Step 3 For each LAN internetwork with one or more server
replicas, place a server replica in the location that
causes the maximum load.

After the successful execution of each step, intermediate knowledge is kept to
effectively support backtracking. Alternative algorithms supporting different data
replication schemes and LAN traffic minimisation are also supported. Each supported
algorithm has an Activation Factor, indicating activation order. Most simple
algorithms, such as the one aforementioned, are first applied. If the proposed solution
does not satisfy application requirements, more complex algorithms are tested usually
resulting in more costly solutions. Activation Factor of each algorithm may be altered
by the operator.



4.3 Structural Knowledge Factorisation

Both locations used for distributed application description (functional topology) as
well as networks and internetworks used to describe the network infrastructure
(physical topology) are internally represented by semantic networks, which in turn are
represented as graphs. All locations defined by the user form a semantic network
containing information about the distance between locations. In the corresponding
graph, locations are viewed as nodes. An edge exists between two nodes if the
distance between the corresponding locations is less than 2 Km, meaning that they can
be interconnected within the same LAN. This information is used during server
process placement and network topology definition, where alternative scenarios for
location interconnection are examined. In this graph, all possible LAN internetworks
are represented as complete subgraphs (every node communicates with all others).

Graph complexity makes its manipulation laborious. To overcome this, information
contained in the graph is factorised. The objective of factorisation is to facilitate the
subunits of the inference engine by indicating where to look for specific information,
that is, to direct them to this part of the Knowledge Base where relevant information is
maintained. Factorisation of the knowledge fragments with respect to their meaning,
however advantageous, is rather difficult to achieve without the drawbacks that
exhaustive research imposes: the inference engine does not know if a fragment of
knowledge contains useful information before it examines it. The factorisation that has
been made is founded on structural criteria. To effectuate structural factorisation, the
corresponding graph is fragmented. The advantage of factorisation is that, in case of a
modification of the semantic network, the inference engine does not need to repeat the
whole process. Such a modification requires a minor restructure of the Knowledge
Base for the inference engine: a modification of the semantic network implies the
addition or the elimination of vertices or/end edges. Additions/eliminations of these
elements create/eliminate loops which could create/unify/eliminate strongly compound
components or complete subgraphs. Taking into account that users usually modify the
semantic network corresponding to the distributed system they wish to design (e.g.
addition of a new location), keeping changes as local as possible becomes vital.

The same techniques are also applied to the construction of simultaneous process sets,
which are used to estimate maximum application requirements from network
resources, and also during process placement.

5. Conclusions

IDIS has been developed to assist distributed system developers during the design of a
new system or during the improvement of an existing one and allows the exploration of
different options to increase distributed system performance. To support the design of
real scale distributed systems extending to multiple locations, the acquisition of a
dynamically increasing Knowledge Base is facilitated. Grouping the knowledge
provided by the operator according to specified criteria (e.g. find the groups of
simultaneous processes) and efficiently estimating the results of complex computations
(e.g. compute maximum requested throughput for each network) were thus critical.



Knowledge factorisation techniques were introduced to increase inference engine
performance and proved to be extremely useful, especially in avoiding inference engine
saturation due to a great number of backtracking points, as in graph compilation.
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