
SpiderServer : the MetaSearch Engine of WebNaut

Nick Zacharis and Themis Panayiotopoulos

Knowledge engineering Lab, Department of Informatics,
University of Piraeus, Piraeus, 185 34, Greece

nzach@unipi.gr, themisp@unipi.gr,

Abstract. Search engines on the Web are valuable tools for searching
information according to a user’s interests whether an individual or a software
agent. In the present article we describe the design and the operation mode of
SpiderServer, a metasearch engine used for the submission of a query followed
by the retrieving of results from five popular search engines. SpiderServer is the
metasearch engine of the WebNaut system but it can be easily used by any
other metasearch platform. There are two files for every search engine
describing the phases of query formation and filtering respectively. These files
contain directions on the way a query must be modified for a specific search
engine and on the methodology SpiderServer must follow in order to parse the
results from the specific search engine. The ultimate goal is to construct
platform independent meta-search engines, which can be easily programmed to
adapt to any search engine available on the WEB.

1 Introduction

Most users do not use the large quantity of information available on the web unless it
is indexed in one or most of the search engines available on the web. Through an
interface, users submit queries - usually a combination of keywords and logic
operators - to the search engine, which in turn, collects from the database all the urls
related to the specific query.

Web search technologies have been recently classified, [1,2], into six basic
categories : hyperlink exploration, information retrieval, metasearches, SQL
approaches, content-based multimedia searches, Artificial Intelligence based searches,
etc. There are many well known Web search systems, such as Altavista, Excite,
Hotbot, Lycos,Yahoo, [3-7] etc., each one of which uses various techniques, for
searching the web, [1,2].

However, it seems that none of the current search engines is capable of providing a
thorough Web coverage with full up-to-date Web information. Metasearch engines,
[8,9,10], have been developed to overcome this difficulty. Such engines conduct a
search by posting a query to other search engines, and receiving the best results,
which then present to the user.

The interfaces of the currently available search engines have not followed the
research towards the direction of standardization of internet retrievals and returns,
[11], and therefore the development of metasearch engines becomes a very difficult
task.

mailto:nzach@unipi.gr
mailto:themisp@unipi.gr

During the last two years we have developed a personalized software agent for the
retrieval of information available on the web in accordance with the user’s profile,
[12,13]. The Webnaut system learns the user’s interests and adapts appropriately as
these interests change over time. The learning process is driven by a metagenetic
algorithm along with the user feedback to an intelligent agent’s filtered selections.

2. The WebNaut System

Users provide examples of web pages which most appropriately describe their
interests and the WebNaut’s agents, after developing the user’s profile based on these
examples, tries to find other pages matching it.

WebNaut consists of a set of interconnected agents : ProxyServer agents,
SiteMirror agent, WWWserver agent, Metasearch agent, and a Learning agent. Each
agent has a specific job and contributes through a common interface to produce a
modular but integrated system, [12].

User profiling is performed by the Learning Agent of the WebNaut system, [13].
All the words included in a document collection are extracted to create a dictionary
vector. A weight is related to each word, indicating the number of documents that
contain the keyword. Moreover, the sum of keyword frequencies in all the texts it
appears is also computed. In this way, WebNaut maintains a Nx3 matrix Dictionary
with keywords, weights and frequencies, and uses this Dictionary as the user’s profile.
A two level genetic algorithm creates complex queries using words from the
dictionary and logical operators, which are send to the Metasearch engine.

The SpiderServer MetaSearch engine posts these queries to well known search
engines, takes their results and stores them in a response-list. Every new result is
compared to previous ones and if it has been already stored it is not inserted in the
list. In this way, the results from many search engines are gathered by WebNaut.

A similarity function is used to evaluate the similarity of a document to the profile.
This means that no classification takes place, as WebNaut is more of a personal
intelligent assistant and not a document classifier. Documents are evaluated towards
the interests of the user, and not towards a concept hierarchy scheme.

Finally, the most fitting documents and presented to the user. The user evaluates
them further, and the learning agent updates the users’ profile. In this way, the
learning agent can create complex representative structures of the users’ long term
interests.

Webnaut was initially developed by using a single search engine for the
information collection task, and the whole process of forming a query, requesting the
relevant information and parsing the results of the search engine, were encoded inside
the program.

When in time the program ceased to offer results – because the search engine’s
administrator changed the HTML form, as well as the format of the results- it became
clear that we had to choose another way of coding. At the same time, the following
questions came to the fore:

a) is a single search engine able to cover all areas? Should we use more than one
search engines?

b) how can a software agent draw information from a search engine or a database
for which, apart from its url, it does not have any other information?

All the above problems and questions motivated us to become more involved in the
issue and develop a meta-search engine, the SpiderServer. During the design process
we discovered that the specific combination of describing the features of a database,
as well as the way of collecting information from the results produced by the
database, could be used in other domains related to the collection of information from
the web; for instance, in electronic auctions, on-line shopping etc. In the present
article we will describe the design and operation of this meta-search engine and will
of course discuss its advantages and disadvantages.

3. Transaction between a web-browser and a search engine

The transaction between a user’s web-browser and the Web Server of a search engine
is based on the HTTP, [3], request/response model. The client sends its request to the
server and waits for the server’s response. Generally, during the communication of a
client-server most requests refer to static HTML files in the server’s hard disk.
However, in many web applications as well as in the case of a search engine, there are
no static files but dynamic web pages generated on the fly. The submission of a
request to the server is accomplished through an HTML form, [4], using one of the
two methods of submission, GET or POST.

Fig. 1. The search interface of AltaVista search engine.

Figure 1 shows the interface of the popular search engine AltaVista, [5]. Users type
the keywords for the subject of their interest i.e. intelligent agents, in the Search for
text box. Then by pressing Search button the browser carries out the submission of
the HTML form to the server and more specifically to the URL indicated by the
ACTION parameter within the <FORM> statement. A few lines of HTML code used
by AltaVista for the collection of the user's input is shown in Figure 2. As we can see
in the code, Alta Vista’s engine provides the opportunity to search and translate in a
specific language. The options offered by search engines vary, but this issue will be
discussed later in this article.

To simplify but without loosing sight of the issue, we will consider that the server
undertakes all the above operations whereas in reality the server executes a CGI script
which in its turn, after receiving the request’s parameters, follows the necessary
processing. AltaVista’s server, after working through the request, responds with a list
of results as the ones shown in figure 3.

In receiving the request, the server will do the following tasks: a) parsing the user’s
input b) process the request; this stage can be fairly complicated, including
communication with other servers, databases etc. c) formatting and sending the results
to the client.

<form action="/cgi-bin/query" name=mfrm>
<input type=text name=q size=35 maxlength=800 value="">
<SELECT NAME=kl>
<OPTION VALUE=XX SELECTED>any language
...
<OPTION VALUE=el>Greek
<OPTION VALUE=he>Hebrew
...
</SELECT>
<input type=image name=search src= src=http://a12.g.akamai.net/7/search.gif" alt="Search">
<INPUT TYPE=hidden NAME=pg VALUE=q>
<INPUT TYPE=hidden NAME=Translate VALUE=on>
</form>

Fig. 2. The HTML source that was used to generate the AltaVista's query form

For every result we use the term result record wishing in this way to define a set of
information made up of the following elements: an url, a description title and a
summary. More specifically, in figure 3 the first result record is defined as follows:

Url : http://www.bottechnology.com/
Description : BotTechnology.com - Bots and Intelligent Agents Designers, Developers
 and Cons
Summary : Creators and Developers of Bots and Intelligent Agents for the Internet,
 Intranets and Extranets. Let BotTechnology.com, Inc. consult and/or build,

Fig. 3. Sample response of AltaVista for the query 'intelligent agents'

..............
<b class=txt2>1.

BotTechnology.com - Bots and Intelligent
Agents Designers, Developers and Cons
<dd>
Creators and Developers of Bots and Intelligent Agents for the Internet, Intranets and
Extranets. Let BotTechnology.com, Inc. consult and/or build ...

 URL: www.bottechnology.com/

..............
<b class=txt2>2.

Intelligent
Agents
<dd>
...... 1 .. 26. Intelligent Agents ...

 URL: www.cs.nccu.edu.tw/~jsliu/courses/ai/ch2/sld001.htm

..............

Fig. 4. The HTML source of the AltaVista's response for the query 'intelligent agents'.

Figure 4 illustrates only the code referring to the result records 1 and 2. If an
application was going to extract and use only the information appearing in the result
records, it would have to ignore all the html tags and irrelevant information (i.e.
advertisements, help icons etc.) during the parsing stage and keep only the
information referring to the fields of result record.

Meta-search engines belong to this type of applications that do not maintain any
local database but operate entirely by using the index of other search engines through
a common interface. Meta-search engines attempt to solve the problems of a single
search service, such as the outdated index, limited coverage etc.

The user submits a query to the meta-search engine and that in its turn promotes
the query to the search engines; either to one after the other, or to all at the same time.
Results from each search engine are collected by the meta-search engine and merged
in one file either according to their list appearance (e.g. the first result from each
search engine then the second one and so-on) or all the results per search engine.

4. Implementation

4.1 The SpiderServer Architecture

From the previous section it became clear that search engines differentiate themselves
in both, the level of encoding HTML form, meaning that every search engine uses a
different method to collect user's input, different FORM tags etc., and in relation to
the choices offered i.e. the opportunity to translate, to use boolean expressions etc. In
addition, search engines differentiate themselves in another level, that of result page
presentation requiring the use of a specific script for the parsing of results for each
search engine. Thus, we could divide the implementation of a meta-search engine in
two phases as they appear in Figure 5.

Phase 1: We could name this the query phase, as during its operation the user’s
question will be formed according to the standards of every search engine. In
addition, during this phase the submission of the query to the specific search engine
will be accomplished. The first stage of the first phase will be the analysis of the
user’s query. During this stage, all data from the user's request are collected and in
case of invalid or missing data, the user is redirected to an error page. The applicable
error message informs the user the reason for the disclaimer of the request's
fulfillment.

During the Query Construction stage, the user's query is transformed to a query
with logic operators, which is acceptable by the search engine used. For instance,
some search engines accept the word AND for the conjunction of keywords whereas
others accept the symbol +. In our implementation, we support the following
operators “AND”, “OR”, “NOT”, “EXACT”, “EXACT NOT”, when of course they
are supported by the respective search engine.

The last stage of the first stage is the Query Submission stage where the metasearch
engine enhances the query with specific FORM tags and by using the indicated

FORM method, forwards the query to the script indicated by the ACTION parameter
within the <FORM> statement.

Fig. 5. The architecture of SpiderServer

Phase 2: This phase follows the previous one and we could name it parser phase.
During the second phase we will collect the results from every search engine. Since
every search engine uses a different way of result presentation, a different script must
be used for the extraction of result records.

Similar to the first phase, this one is also divided in three stages. The Result
Retrieval stage involves fetching the result pages of each search engine for
processing. During the next stage the result records are parsed from the result pages.
Finally, the Document Generation stage, involves organizing and presenting the
results that each search engine provides in one of the available formats. In current
implementation the default presentation format is <title><url><description>. Also,
during this stage the results that have the same title or/and URL are removed, if of
course the user wishes it.

Figure 5 also shows the whole operation where the user addresses queries through
an interface. Aiming to avoid direct access to the implementation code for the support
of future changes by the search engine administrator, we thought of using two
template files for the description of every search engine, Option.txt - which describes
general elements for every search engine as well as its available options - and
Parser.txt – which describes the way we will achieve parsing the result records from
the specific search engine. These two files will be used by the metasearch engine in
order to form and submit the user’s or the agent’s query, to the specific search engine
and then, for the analysis of its results.

In the following paragraphs we will discuss the interface of the implementation as
well as the template files and their use. The interface of this specific application is a
rather important factor for the success or not of the whole implementation as it should
not restrain the user and should be as flexible as possible so as to allow the
incorporation of new services provided by the search engines. Furthermore, the
presentation of interface is valuable for two more reasons: a) It allows the user of the
implementation to describe the query in a general format which will be then adapted
to the requirements of every search engine and b) it allows the presentation of the
code used in the various stages of the implementation to become more explicable.

4.2. The SpiderServer Interface

Current implementation offers a common query interface to five popular web search
services, AltaVista [5], Excite [6], Hotbot [7], Lycos [8], Yahoo [9]. The query
interface supports basic logic operators such as AND, OR, NOT as well as advanced
operators such as 'EXACT' and 'EXACT NOT' phrase. Figure 6 shows the public
query interface for the SpiderServer, where the users can choose which search service
to run, how many hits to retrieve, the appearance of the results and so on.

The interface of SpiderServer is based on HTML frames and forms, as shown in
Figure 6. Frames allow us to split the browser view into multiple windows and to
display a separate html document in each window. Moreover, actions and scripts in
one frame can be programmed to control and update the content of adjacent frames.
Frames are popular with Web page designers because of their properties, offering new
possibilities in information presentation as well as site navigation.
The following piece of HTML code implements the desirable frame based interface
on client's browser and allows queries to be submitted and answered on the same
page, with one frame called "QUERY" holding the query form, and the other called
"RESULTS" presenting the results of the query form, when it is submitted to the
SpiderServer.

<html>
<frameset rows="10%,*" border=0>
 <frame src="Logo.html" name="LOGO" SCROLLING="no" NORESIZE>
 <frameset cols="33%,*" border=0>
 <frame src="Query.html" name="QUERY" SCROLLING="auto" NORESIZE>
 <frame src="Results.html" name="RESULTS" SCROLLING="auto" NORESIZE>
 </frameset>
</frameset>
</html>

The third frame called "LOGO" is a constant size region and contains elements that
the user must always see, such as application logos, links to help pages, etc. This
static frame is placed on the top of the page above of the other two frames. In the
query form - see figure 6 -, the user has selected items so as to formulate a query, in
order to find web documents that must contain the phrase "intelligent agents" and also
these documents must contain the words "information" and "filtering" but not the
words "genetic" and "algorithms".

Fig. 6. The interface of SpiderServer

Query: "intelligent agents" AND (information, filtering) NOT (genetic, algorithms)

This query is sent as a POST request by the web browser to the SpiderServer, which
will respond with results that will be displayed in the RESULTS window.

Figure 6 show that the user of the application has in his/her disposal 3 textboxes in
order to describe his/her query. The processing of a request by the server will begin
with the reading of number of all the text boxes within the form and is described in
the hidden input tag with the name noQuery. Then, an iteration will work through all
textboxes, as the name of each of them is a combination of the word QUERY and the
corresponding iteration number, e.g <INPUT NAME="QUERY1" SIZE="22"
VALUE="">. In the same iteration, we will also interpret the logic operator
connecting the words in the respective text field. The logical operator is described in a
SELECT box whose name is a combination of the word MATCH and the
corresponding iteration number, e.g. <SELECT NAME="MATCH1">.

4.3. The Configuration file

All available options of a search engine are described in a text file named Options.txt.
Figure 7 shows the configuration file for the search engine AltaVista.

In this initial implementation, the configuration file includes the information of a
search engine related to its name (WEBNAME), URL (WEBHOST), the request
method (WEBMETHOD), the script (WEBLINK), the tag for the query keywords

(WEBQUERY), other tags (WEBTAGS), the boolean expressions (WEBAND,
WEBOR, WEBNOT) as well as the way to submit an exact phrase query
(WEBEXACT), and finally the number of results that will be returned by the search
engine (WEB10, WEB25, WEB50). For every search engine known to the server,
exists a respective configuration file. Most search engines on the Web support the
above options.

TAG CODE
WEBNAME ALTAVISTA
WEBHOST www.altavista.com
WEBLINK /cgi-bin/query
WEBPORT 80
WEBMETHOD GET
WEBQUERY q
WEBTAGS pg=aq&kl=XX&d0=&d1=&search=Search&r=
WEBAND AND
WEBOR OR
WEBNOT AND NOT
WEBEXACT "QUERY"
WEBNOTEXACT AND NOT "QUERY"
WEB10 nbq=10
WEB25 nbq=30
WEB50 nbq=50

Fig. 7. The configuration file for the AltaVista

Now after the encoding of request to the search engine we then submit the data
according to the method of data submission (GET or POST). When the submission of
data is completed, we can then read the complete response by the search engine
through an iteration. Finally, since we have the search engine’s complete response in
Text we can proceed with the parsing of the result records.

4.4. The parser file

From the moment the search engine returns the results we will have to analyze them
as easier and faster as possible. In addition, a visual description of a result record
would be desirable. It is evident from Figure 4 that the script of Alta Vista uses an
iteration for the formation of the results, something, which is true for most, if not all
search engines. Thus, we will have to find a way of describing a result record -
something like a pattern - and then to repeat the process of matching the pattern to the
result page, which is saved in Text.

In addition, by using the following tags we will be able to parse all the result
records.

• str (start): Moves indicator to string (or character) that describes the code field.
Basically, we place the indicator at the beginning of result record. If there is no
code string, this means that the process of result parsing is completed.

• mch (match): the following characters will have to be a number, which will be
followed by the string (or character) describing the corresponding code field.
Basically, it is used as a guard statement for the search engines which use
numbering during the presentation of their results.

• Ign (ignore): Move indicator to string (or character) describing the code field.
• Lnk (link): The url of result record is all the characters from the point of the

indicator to that of the string (or character) describing the corresponding code
field. Move indicator to code field.

• Dsc (description): The description title of the result record is all the characters
from the point of the indicator to that of the string (or character) describing the
corresponding code field. Move indicator to code field.

• Sum (summary): The summary of the result record is all the characters from the
point of the indicator to that of the string (or character) describing the
corresponding code field. Move indicator to code field.

• End (end): Match the string (or character) describing the corresponding code
field. In addition, it is used to establish that the procedure for the extraction of the
fields of a result record is completed and that the parser must continue with the
str tag.

• Brk (break): It is used to establish that the procedure for the extraction of the
fields of a result record is completed and that the parser will have to proceed with
the next result record, that is, from the str tag. Basically, it is used as an exit and
continue statement because there is no code field for this tag.

TAG CODE TYPE
str [txt2>] s
mch [.] ec
ign [="] s
lnk [">] s
dsc [] s
ign [<dd>] s
sum [<br] s
brk []

Fig. 8. The parser file for the AltaVista's result page

When the process is completed the whole operation is repeated until the indicator
reaches the end of the result page or when it cannot match the corresponding code
string of the str tag.

5. Conclusion

Our primary goal was to develop a metasearch engine flexible enough to be used by
an ordinary user without special knowledge in programming. After studying the
operation and presentation of results offered by existing search engines we developed
SpiderServer. What we believe to be of considerable interest is that the entire
operation of the implementation is controlled through two template files.

The advantages of an approach as such would be numerous, as users would always
use the same interface –that offered by the browser- to address their queries, as they
would not any longer need to learn any other combination of keywords with logic
operators or learn how to compose complicated commands in order to form their
queries. After that, by enquiring the two template files, they will be in a position to
address queries and withdraw information from anywhere on the web.

Compared to other metasearch engines, for which the developers have published
some research work, there is no similar approach, to our knowledge, that
parameterises in such a way the interface to various search engines. In fact, the
SpiderServer approach can be easily integrated to Agent Communication Languages,
to serve as interfaces to various web search engine. In this way, when a software
agent is searching for some information on the web from a specific search engine, it
can request for the options.txt and parser.txt, and after retrieving them it can easily
use them to access the desired information.

REFERENCES
[1] Wen-Chen Hu, "An overview of the World Wide Web search technologies," In the

proceedings of 5 th World Multi-conference on System, Cybernetics and Informatics,
SCI2001, Orlando, Florida, July 22-25, 2001.

[2] Wen-Chen Hu, ‘World Wide Web Search Technologies’, chapter of the book, Shi Nansi
(Ed.), ‘Architectural Issues of Web-Enabled Eloctronic Business’, Idea Group Publishing,

[3] Altavista: http://www.altavista.com
[4] Excite: http://www.excite.com
[5] Hotbot: http://www.hotbot.com
[6] Lycos: http://www.lycos.com
[7] Yahoo: http://www.yahoo.com
[8] D. Dreilinger, A.E. Howe, "Experiences with selecting search engines using metasearch",

ACM Transactions on Information Systems, 15(3):195-222, July 1997.
[9] D. Dreilinger, A.E. Howe, "A meta-search engine that learns which search engines to query

", AI Magazine, 18(2), 1997.
[10] E. Selberg, O. Etzioni, "The MetaCrawler architecture for resource aggregation on the

Web ", IEEE Expert, 12(1):8-14, January/February 1997.
[11] L. Gravano, K. Chang, H. Garcia-Molina, C. Lagoze, A. Paepcke, "STARTS :

Stanford protocol proposal for internet retrieval and search", Proceedings of the ACM
SIGMOD International Conference on Management of Data, 1997.

[12] Ν. Z. Zacharis and T. Panayiotopoulos, ‘Web Search Using a Genetic Algorithm’,
ΙΕΕΕ Internet Computing, 5(2), 18-26, (2001)

[13] N.Z. Zacharis and T. Panayiotopoulos, "A metagenetic algorithm for information
filtering and collection from the World Wide Web", Expert systems – The International
Journal of Knowledge Engineering, Vol. 18, No 2, pp.99-108, May 2001.

[14] HyperText Transfer Protocol (ver 1.0) : http://www.ietf.org/rfc/rfc2616.txt
[15] HTML FORMS: http://www.w3.org/TR/html4/interact/forms.html

http://www.yahoo.com/

	header: 2nd Hellenic Conf. on AI, SETN-2002, 11-12 April 2002, Thessaloniki, Greece, Proceedings, Companion Volume, pp. 475-486

