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Abstract. Intelligent agent engineering has proved to be a difficult task
due to the inherent complexity of agent systems. Although many practi-
cal implementations of agent systems exist, their development was hardly
based on methods that can prove their validity. Model checking is a for-
mal verification technique which determines whether certain properties
are satisfied by a system model. Prerequisites for applying model check-
ing are (i) to view the agent as a Finite State Machine, and (ii) to be
able to express the properties in a powerful specification formalism, such
as Temporal Logic. Finite State Machines are too simple to capture the
modelling needs of agents that normally require non-trivial data struc-
tures as well as complex control over these data structures and over
the states in which agents can exist. X-Machines is a formal method
that satisfies these requirements by introducing memory structure into
finite state machines as well as computable functions between states of
a model. With existing logics it is obscure how one can describe proper-
ties that refer to the memory data structure of an agent model. Thus, a
new approach to model checking of agent systems should be introduced.
This paper defines the syntax and the semantics of a new logic, namely
XmCTL, which extends temporal logic with memory quantifiers, thus
facilitating model checking targeted to agent models. The use of Xm-
CTL and the importance of verification in agent system development
are demonstrated through a simple example.
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1 Introduction

An agent is an encapsulated computer system that is situated in some environ-
ment and is capable of flexible, autonomous action in that environment in order
to meet its design objectives [Jen00]. Although agent-oriented software engineer-
ing aims to manage the inherent complexity of software systems [WoCi01], there
is still no evidence to suggest that any methodology proposed leads towards “cor-
rect” systems. In agent oriented engineering, there have been several attempts
to use formal methods, each one focusing on different aspects of agent systems



development [AtHa97,BDJT95]. So far, little attention has been paid in formal
methods that could facilitate all crucial stages of “correct” system development;
modelling, verification and testing.

X-machines is a formal method which closely suits the needs of agent de-
velopment, offering an intuitive and practical way of modelling [HoIp98] and at
the same time a formal testing strategy to test the implementation against the
X-machine model [IpHo97].

Having designed a model for an agent and before starting implementing this
model, it would be desirable to verify whether it corresponds to the requirements,
i.e. at all circumstances during the existence of the agent modelled in some way,
its required properties are true in that model. Model Checking [CGP99] is a
formal verification technique which is based on the exhaustive exploration of
a given state space trying to determine whether a given property is satisfied
by a system. A model checker takes a model and a property as inputs and
outputs either a claim that the property is true or a counterexample falsifying
the property. In early 80s two different teams by Quielle and Sifakis [QuSi81]
and by Clarke and Emerson [CIEm81], working in parallel, proposed temporal
logic model checking algorithms. In Temporal Logic Model Checking [CES86)
a property is expressed as a formula in a certain temporal logic, usually the
Computation Tree Logic (CTL). In this context the most usual definition of a
model is as a labelled state transition graph, also called Kripke structure K =
(Q, R, L) [Kri63] where: i) @) is a non-empty set of states, ii) R is a binary relation
on @, i.e. R C @ x @, which shows which states are related to other states, iii)
L:Q — 2P797 i5 a truth assignment function that shows which propositions are
true in each state, where Prop is the set of atomic propositions. The semantics
of CTL are defined with respect to a Kripke structure KX [EmHa86).

Temporal Logic (TL) is an extension of logic through operators that handle
the notion of time. Using these operators TL gives the ability to argue about
“when” logical expressions are true. In CTL [CES86] each of the temporal oper-
ators must be preceded by either A (for all paths) or E (there exists path) path
quantifiers. The five basic temporal operators of CTL are:

— X (next time) requires that a property holds at the following state,

— F (in the Future, eventually) a property will hold at some state on a path,

— G (Globally, always) a property holds at every state on a path,

— U (Until) combines two properties, and p U ¢ holds in the model if there is a
state in a path that the second property (¢) holds and also the first property
(p) holds in every preceding state on the path, thus p holds in a path until
q holds,

— R (Release) also requires two properties and is the dual operator of U .
p R ¢ holds in the model if the second property (g) holds along a path up
to and including the initial state where the first property (p) holds, however
without requiring p to hold eventually.

CTL facilitates model checking in formal models that resemble a Kripke
structure, like the Finite State Machines (FSM). However, CTL is not expressive
enough to facilitate model checking of FSM extended with memory.



In this paper, we argue that there is a need for appropriate extensions of CTL
so that temporal logic formulae are able to describe specifications suitable to refer
to the memory structure of the model. A X-machine is a general computational
machine that is like a FSM extended with a memory structure which models the
data of a system. Unlike FSM, in a X-machine transitions are not labeled with
simple inputs but with functions that operate on inputs and memory, allowing
the machine to be more expressive and flexible than the FSM and able to model
both the control and the data part of a system [HoIp98]. Thus we will introduce
an extension of temporal logic that will facilitate the verification of X-machine
models. With the use of an agent example we will demonstrate the feasibility of
verifying agent models expressed as X-machines.

2 Modelling agents as FSM extended with memory

Many biological processes seem to behave like agents, e.g. a colony of ants. Com-
plex optimisation problems have been solved based on such behaviour [DoDi99].
For example an ant has the important task to find food and carry it to its
nest. This can be accomplished by searching for food at random or by following
pheromone trails. Once food is found the ant should leave a pheromone trail
while travelling back to its nest, thus communicating to other ants the destina-
tion of a source where food may be found. When the nest is found the ant drops
the food. While moving the ant should avoid obstacles. Thus the ant receives
input from the environment and acts upon these inputs according to the “state”
in which the ant is in. Clearly this is the behaviour of a reactive agent. Such re-
active agents can be fairly easily modelled by a FSM in a rather straightforward
way by specifying the states and the inputs to be used for state transitions.
The FSM lacks the ability to model any non-trivial data structures. In more
complex tasks, one can imagine that the actions of the agents will also be deter-
mined by the values stored in its memory. For example, an agent may know its
position, remember the position of the food source or the position of obstacles,
thus building a map of the environment in order to make the task eventually
more efficient. Using FSM or variants of it [Bro86,RoKa95| for such agents is
rather complicated since the number of states increases in combinatorial fash-
ion to the possible values of the memory structure. X-machines can facilitate
modelling of agents that demand remembering as well as reactiveness [GHKO01].
X-machine is a formal method introduced by Eilenberg [Eil74], which is capa-
ble of modelling both the data and the control of a system. X-machines employ
a diagrammatic approach of modelling the control by extending the expres-
sive power of FSM. Transitions between states are no longer performed through
simple input symbols but through the application of functions. In contrast to
FSM, X-machines are capable of modelling non-trivial data structures by em-
ploying a memory, which is attached to the X-machine. Functions receive input
symbols and memory values, and produce output while modifying the memory
values. Holcombe proposed X-machines as a basis for a possible specification
language [Hol88]. With the development of a formal testing strategy and a veri-



fication technique over the last years, a formal framework for the development of

more reliable systems was proposed in [Ele01]. Stream X-machines are defined

as X-machines with input and output sets of streams of symbols [HoIp98].
A stream X-machine is an 8-tuple M = (X, I Q, M, ®, F, qo, o) where:
— X, I' is the input and output finite alphabet respectively,

@ is the finite set of states,

M is the (possibly) infinite set called memory,

— @ is the type of the machine M, a finite set of partial functions ¢ that
map an input and a memory state to an output and a new memory state,
¢: X xXM—>IxM

— F' is the next state partial function that given a state and a function from
the type @, denotes the next state. F' is often described as a transition state
diagram. F': Q x & — @

— qo and myg are the initial state and memory respectively.

The formal model, as a X-machine, of an ant that searches for food, but also
remembers food positions in order to set up its next goals is defined in table 1.
The behaviour of obstacle avoidance is omitted for simplicity. Fig. 1 shows the
state transition diagram, where the transitions are labeled with functions.
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Fig.1. An ant X-machine model



Table 1: Formal model of an ant

The X-machine is defined as an 8-tuple M = (X, I',Q, M, ®, F, qo, mg) where:

Input set X

Y = ({space,nest} U FOOD) x COORD x COORD

Output set I"

I' = { “moving freely”, “moving to nest”, “dropping food”,

)

Set of states @

Q = { At Nest, Moving Freely, At Food, Going Back To
Nest, Looking for Food}

Memory M

M = (FOOD U {none}) x (COORD x COORD) x
seq(COORD x COORD)

Initial state qo

qo = “At Nest”

Initial memory myo

mo = (none, (0,0), nil)

Next state function F'

F:@Q x ® — @Q shown diagrammatically in figure 1

Type @ of the machine is
the set of functions

¢p: X xM—>IxM

The functions are defined
next using the notation:

plo,m) = (v,m')
if condition

move( (space,zs,ys), (none, (z,y), nil) ) —
(“moving freely”, (none,(zs,ys),nil) )
if next(z,y,xs,ys)
move-to-food( (space,zs,ys), (none, (r,y),
<(foz,fpy)::rest>) ) —
( “moving to food”, (none,(nz,ny), <(fpz,fpy)::rest>) )

if next(z,y,xs,ys) N closer-to-food(fpz,fpy,xs,ys)
move-to-nest( (space,zs,ys), (food, (z,y), foodlist) ) —

(“moving to nest”, (food,(nz,ny),foodlist) )
if food € FOOD A next(z,y,zs,ys) N closer-to-nest(s,ys)
lift-food( (f,z,y), (none, (z,y), foodlist) ) —
(“lifting food”, (f, (z,y), <(=,y)::foodlist> ) )
if f€ FOOD A (z,y) & foodlist
lift-food( (f,z,y), (none, (z,y), foodlist) ) —
(“lifting food”, (f, (z,y), foodlist ) )
if f€ FOOD A (z,y) € foodlist
finc-food{ (o foy), (foods (5,3), foodlist) ) -
(“more food”, (food, (z,y), <(fpz,fpy)::foodlist> ) )
if f€ FOOD A f¢ foodlist
drop-food( (nest,0,0), (food, (z,y), foodlist) ) —
(“droping food”, (none, (0,0), foodlist ) )
find-nest( (nest,0,0), (none, (z,y), foodlist) ) —
(“found nest again”, (none, (0,0), foodlist ) )
got-lost (" (space.fpz,fpy), (none, (x,y), <(fpz.fpy)>) ) —
(“got lost”, (none, (z,y), nil ) )
if next(z,y,xs,ys)
got-lost (" (space.fpz,fpy), (none, (x,y), <(fpz.fpy)>) ) —
(“got lost”, (none, (z,y), nil ) )
if f€ FOOD

where the functions next, closer-to-nest and closer-to-food are considered

as external functions, i.e.

themselves):

functions defined elsewhere (possibly as X-machines

next: COORD x COORD x COORD x COORD — BOOLEAN
closer-to-nest: COORD x COORD — BOOLEAN
closer-to-food: COORD x COORD x COORD x COORD — BOOLEAN




3 Model checking agent models

Having defined the formal model of the agent it would be desirable to have a
mechanism to check if the proposed model has all the desired properties. For
example in the formal model of the ant presented in section 2 we would like
to prove that whenever the ant will pickup food it will eventually drop the
food. Having the formal model, there has to be a way to express properties
like the one stated before in a mathematical language in order to enable the
use of an automated and formal verification. Model checking demonstrated to
be a powerful, automated formal verification technique. Temporal logic model
checking is using mostly CTL which is a variation of temporal logic appropriate
to express properties on models expressed formally as Kripke structures.

In X-machines, the search of some properties P of the model being true or
false cannot be applied in a straightforward manner, since these properties are
implicitly expressed in the X-machine memory values. Thus, checking whether a
property p € P is valid in some states of the X-machine means whether there are
some states in which some memory values satisfy the property p. For example,
in order to verify that a memory variable will never exceed a maximum value
in any of the states, a model checker needs to search through all possible states
as well as all possible instances of memory. Therefore, the appropriate model
that facilitates model checking (@, R, L) should include: i) @ is the set of all
possible states of the X-machine combined with all possible instances of memory
in each state, ii) R is the set of transitions between states in @), iii) L is the truth
assignment function, i.e. given a member in () shows which properties are true
depending on the values of this memory instance.

Bearing the above, model checking a X-machine for specific properties can be
achieved through the transformation of the X-machine into the form (Q, R, L).
The resulting state space (@, R) resembles a FSM (X, I, Q fsm, T, o fsm) Where:
i) X is a finite set that is called the input alphabet. ii) I" is a finite set that
is called the output alphabet. iii) Qfsn, is the finite set of states. iv) T is the
(partial) transition function, T : Qfsm X X = Qfsm x I, (T is a labelled R). v)
Gofsm is an initial state, that encapsulates memory values which correspond to
properties in each of its states. Thus with the use of CTL formulas to express a
desired specification the above Kripke structure could be verified [EIKe01]. But
although this process demonstrates the feasibility of model checking X-machine
models, it creates two problems; i) the loss of expressiveness that the X-machine
possesses, e.g., CTL is not expressive enough to describe that a properly p holds
in some but not all memory instances of all states of the X-machine, and ii) the
combinatorial explosion.

In order to overcome the lack of expressiveness, there is a need for an appro-
priate formalism for expressing properties of state transition systems extended
with memory. The proposed logic (XmCTL) is an extension of CTL that will
facilitate effective model checking of X-machines through the use of operators
that quantify memory instances within a single state. Thus having the X-machine
model of the agent it will be easier and more intuitive to write the formula that
expresses the desired property in XmCTL.



4 XmCTL

4.1 Definitions

Definition 1. M Prop is the set of all predicates composed of instances of mem-
ory variables and/or atoms.

Definition 2. A state q of the X-machine M is called z-state.

Definition 3. The set of all memory instances of all z-states q is denoted as
Qrsm and it is the set of states of the equivalent finite state machine derived
from the exhaustive refinement of the X-machine M. A memory instance of a
z-state is denoted as gm (qm € Q¢sm ). The notation qm' is also used to denote
the i-th memory instance of the q x-state.

Definition 4. 7 : Qfsm — 2MP7P s the truth assignment function that given
a z-state memory instance gm’®, returns a set of all the propositions p € M Prop
that are true in the specific x-state q for the specific i-th memory instance.

Definition 5. A z-path m in a X-machine M is defined as an infinite sequence
of states of M, ™ = qo,q1,... such that for every i > 0,3¢ € ¢ : (qi, P, qi+1) €
F (an infinite branch in the corresponding to M computation tree). Also the
notation w is used to denote the suffix of ® starting at state g;.

4.2 Syntax

In this section the syntax of XmCTL formulas is defined. The temporal oper-
ators used in XmCTL are the operators of CTL described in section 1 with
the addition of two new memory quantifiers: My and my. My (for all memory
instances) requires that a property holds at all possible memory instances of a
x-state. my (there exists memory instance) requires that a property holds at
some memory instances of a x-state. A class of x-state memory formulas (XSM),
x-state formulas (XS) and x-path formulas (XP) are defined inductively:

XSM1. if p e MProp, then p is a x-state memory formula,
XSM2. if aand b are x-state memory formulas, then —a, aVb, aAb, are z-state
memory formulas,

XS1. if a is x-state memory formula, then Mxa and mya are z-state for-
mulas,

XS2. if fi and fy are x-state formulas, then —f1, fi V f2, f1 A fa, are z-state
formulas,

XP1. if fi and fo are x-state formulas, then X f,, Ffi, Gfi, fi U f,, and
fi1 R fy are z-path formulas.
XS3. if g is a x-path formula, then Ag, Eg are z-state formulas,

A valid XmCTL formula is any x-state formula.



4.3 Semantics

In CTL, the semantics are defined with respect to a Kripke structure. Here, the
semantics of XmCTL will be defined with respect to the X-machine model.

Definition 6. The notation M,q |= f, means that f (which is a z-state for-
mula) holds at z-state q in the model M. If p is a z-state memory formula, then
the notation M,qm' = p means that p holds in the z-state memory instance
gm! in the model M. In the case that g is a path formula, then the notation
M, = g means that g holds along path 7 in the model M. Usually if the X-
machine structure M is clear from the context, it is omitted. Assuming that a,
b are z-state memory formulas, f, f1 and fo are z-state formulas, and g, and
g2 are z-path formulas, the relation |= is defined inductively below:
XSM1. M, qm”: Epepe T(qmi), where p € M Prop
XSM2. M,qgm' |= —a & M, qgm® [~ a,
M,qgmi=aAbs M,qgm! = a and M,qm’ = b,
M,qgmi=aVbe M, qgm'|=aor M,qm’ = b,
M,q = Mya & for alli >0, M,qgm' E a,
M, q |= mya & there exists i > 0, M,qm' |= a,
X82. M,ql=~f e Mqltf,
Maq |: fl /\fZ ®Maq |: fl and Maq ': f27
M,q= fiV oo Mg fior M,q E fo,
XP1. M, 1= Xf e M, first(rt) E f,
M,m EFf e M, first(z’) | f , there exists i > 0,
M, 1= Gf & M, first(r?) = f, for all i > 0,
M, 7= f1 U fo & there exists k > 0: M, first(7*) |= fo and for all
0<j<kM,first(r) & fi, '
M,mE fi R fo & forall j >0, if for every i < j M, first(z®) & fi
then M, first(n’) = fa,
XS3. M,q=Ag & M, 7 = g for all x-paths 7 with first(n) = q,
M,q = Eg & there exists x-path « with first(m) = ¢ such that
M,mE=g.

XS1.

4.4 Using XmCTL

The resulting logic XmCTL can verify agent models expressed as X-machine
against the requirements, since it can prove that certain properties, which im-
plicitly reside on the memory of X-machine are true [EIKe01]. For example, in
an agent whose task is to carry food to its nest as in example of Fig. 1, model
checking can verify whether eventually food will be dropped in the nest by the
formula:

AG[M(m; # none) V EFMy(my = none)]

where m indicates the first element of the memory tuple. The formula states
that, in all states of the X-machine, and for all memory instances of each state,
it is true that either the ant does not hold any food or there exists a path after
that state where eventually the ant is in a state where for all memory instances,
it does not hold any food. Another example is the formula:



E[My(m; = none) U My (m; # none)]

i.e., there exists a path in which the ant eventually holds food and in all previous
states the ant holds nothing. Also, another useful property to be checked is:

—EFmy[(m; # none) A (ms = nil)]

i.e., if the ant holds something then the food list is not empty.

5 Discussion and conclusions

The syntax and semantics of XmCTL are defined in order to improve expressive-
ness with respect to agent systems which are modelled as X-machines. Model
checking algorithms for XmCTL have been devised [EKS02] and a model checker
is under development. However, efficiency in model checking a X-machine is still
an issue under consideration due to the state explosion if exhaustive refinement
to a “flat” FSM is applied. Efficiency may be substantially improved depending
on the number of properties involved. For example, if the properties in the Xm-
CTL formula refer to the whole memory tuple then the X-machine should be
exhaustively refined into a FSM. This is inevitable, but it would have happened
anyway if the system was modelled as a FSM from scratch. But if some of the el-
ements in the memory tuple do not correspond to a given property in a XmCTL
formula then the memory values of this element should not participate in the re-
finement of the X-machine. Thus, selective refinement can be performed [E1Ke01]
which will reduce the number of states in it and therefore the refined X-machine
will contain exactly the necessary states for the model checking process.

X-machines are able to model both the control and the data part of a sys-
tem and therefore it possesses valuable characteristics that are desirable to
software engineering of agent systems. A framework for formal development
of systems proposed in [Ele01] uses X-machines as a formal modelling lan-
guage [KEKO00Q], a testing strategy to check the implementation against the X-
machine model [IpHo97] and a verification technique to prove the validity of the
model [ElKe00]. By applying this framework to agent systems it is possible to
assure that all “desired” properties of an agent hold in the final product. The
proposed logic has been specifically designed for the X-machine formalism and
demonstrates the feasibility of verification in agent models. Having set up the
theoretical framework, future work needs to be done on implememnting a model
checker, which provided an agent model and XmCTL formulas will prove the
validity of this model.
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