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Abstract. A difficult class of signal detection problems is detecting a non-
stationary signal in a non-stationary environment with unknown statistics. One 
of the most interesting approaches considers the use of a neural network to 
compute the likelihood ratio of the received signal, by training it on different 
realizations of the received signal. The signal detection problem is then trans-
formed to a pattern classification problem. It is still difficult though to deter-
mine the optimum internal structure of the neural network used, in order to 
achieve maximum performance of the receiver with less complexity of the net-
work. In this paper, we demonstrate the use of self-organizing neural network. 
This network optimizes performance by re-configuring its internal structure re-
garding on whether the generalization results are satisfactory or not. The use of 
this network structure in the receiver architecture is also compared to a classic 
neural network approach of the signal detection problem. 

1   Introduction 

The Time Division Multiple Access (TDMA) modulation used in the Global System 
for Mobile communications (GSM) network requires the transmission of a training 
sequence consisting of 26 bits every 116 information bits, which represents wastage 
of about 23% throughput. Single efforts have been made to avoid use of such training 
sets, with the use of fixed multi-layer neural network architectures. In this paper we 
propose a self-organized multi-layer architecture for the design of receivers for 
TDMA wireless communications. 

The new receiver architecture is based on the transformation of the detection prob-
lem into an adaptive pattern classification problem. This transformation enables a 
neural network to function as a powerful tool, which learns the underlying dynamics 
of a time-varying multi-path environment from data representative of that environ-
ment. This technique, originally proposed by Haykin et al. [1] can be altered in order 



to achieve better performance than conventional Minimum Shift Keying (MSK) re-
ceivers for a Rayleigh fading multi-path channel, without the regular transmission of 
a training sequence. 

Neural networks architectures most referenced in pattern recognition literature [4] 
are three: the multi-layer perceptron, the Kohonen associative memory and the Car-
penter-Grossberg ART network. These networks implement algorithms of the major 
pattern classification paradigms: the multi-layer perceptron runs a supervised, pa-
rameter-learning algorithm the asymptotic behavior of which is that of an optimal 
Bayesian classifier; the Kohonen network performs vector quantization, mapping 
reference data onto a set of patterns representative of pattern category; the Carpenter-
Grossberg network is motivated by biological relevance and brought to bear on com-
puter-based pattern recognition, running an unsupervised algorithm that has similari-
ties to leader clustering. 

We are mainly focusing on the architecture proposed in [1] and enhancing it, by 
proposing an evolutionary adaptive receiver, based on a self-organizing multi-layered 
neural network. This architecture is different from those found in the associated lit-
erature [1], [2], [4], as it is based on a self-organized network architecture [5]. This 
architecture proves to provide better generalization results in pattern classification 
problems, compared to similar adaptive architectures. 

2  Simulation Parameters 

A simplified mobile communication system can be modeled with the use of a digital 
source, a modulator, the multi-path channel and the receiver under test. The receiver 
design basically involves three functional blocks: time-frequency analysis, data re-
duction or feature extraction and pattern recognition.  

The desire in simulating the signal waveform for testing is to model the important 
elements of a signal, without unnecessary complications due to a particular protocol. 
The digital modulation system under study is a form of Frequency Shift Keying 
(FSK) called Minimum Shift Keying (MSK). The simulation signal parameters are 
representative of those in the GSM standard (Gaussian shaped pre-filtered MSK). The 
channel used here is in accordance with the GSM channel model. In particular, the 
multi-path channel is characterized by a time-varying impulse response h(τ,t) given 
by 
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where βi(t) and θi(t) are time-varying amplitude and phase if the ith path arriving at 
delay τi(t). Notice that βi(t), θi(t), τi(t) are in general random variables. However, in 
order to allow practical simulation, the path number is set to be finite in each of GSM 
channel models (rural area, hilly terrain and urban area) thereby allowing a tapped-
delay line implementation. More specifically, the channel model consists of L taps 
(typically L=12), each of which is determined by a prescribed time delay τi(t), average 



power Pi, and Rayleigh distributed amplitude varying according to a Doppler spec-
trum S(f). Throughout this paper, we will use the urban area GSM model parameters. 

The channel output is corrupted by additive noise that is assumed to be Gaussian, 
with zero-mean and variance σ2. The received signal is then led into the receiver 
whose function is to detect the transmitted signal ak which is multi-path (frequency 
selective) faded and noise corrupted. 

Since the GSM channel model tap delays are multiples of 0.1 µs, a sample rate of 
10MHz (100 ns sampling period) was used in the simulation. Taking 36 samples per 
bit yielded a bit period of 3.6 µs, thus a bit rate of about 278 KHz, representative of 
the GSM bit rate. The GSM system uses a training sequence to characterize the chan-
nel impulse response for a Viterbi receiver that considers a group of 5 consecutive 
bits at a time. Similarly, the receiver described in this paper operated on a sliding 
window block of 5 consecutive bits. 

3  Signal Transformation 

A noisy received signal can be represented in such a way that the signal components 
belonging to different classes (e.g. symbol 1 or symbol 0) have as more distinct rep-
resentations as possible. Transforming the one-dimensional received signal into a 
two-dimensional image with time and frequency as coordinates is the idea used in this 
simulation. Since we are considering an FSK signal, the information is conveyed by a 
change in instantaneous frequency with time, so it is natural to examine time-
frequency analysis methods for this transformation. From the two methods that were 
studied, that is Wigner-Ville transformation and wavelet analysis, the latter was cho-
sen since it produced better receiver performance. 

The wavelet used in the receiver is the Morlet wavelet, whose computation was 
carried out using the fast Fourier transform (FFT) algorithm. The squared amplitude 
of the Morlet wavelet, known as a scalogram, was used as the overall output of the 
time-frequency analyzer. 

Since the wavelet image is highly redundant and considerably large, it is necessary 
to compress the image so that the design of the pattern classifier can be eased. How-
ever, we must ensure that the significant features contained in the image are ex-
tracted. Although principal components analysis (PCA) is widely used as a tool for 
feature extraction, it is proved that it cannot be satisfactorily used for the task at hand, 
since it is not particularly sensitive in changes in the instantaneous frequency, which 
is a major characteristic of the GMSK (Gauusian MSK) signal. Instead, a similar 
method is used, referred to as the energy profile. This method computes the energy 
values for a set of frequencies within the duration of one bit. Specifically, 5 scalo-
gram values corresponding to scale bin 3 to 7, for each time index n, were used in 
computing the energy profile. Each bit’s duration is divided into 4 segments, with 
each segment being associated with 9 samples. Then, with 5 bits, 4 time segments per 
bit and 5 frequency bins per bit, we have a total of 5x4x5=100 energy values, with 
each one being the result of adding 9 pertinent scalogram values. The motivation 
behind the use of multiple scalograms in computing the energy profile is to exploit 
the contextual information contained in a corresponding number of adjacent data bits. 



4  The Network Receiver Architecture 

The purpose of pattern classification is to recognize binary symbols 1 ad 0 by classi-
fying the patterns in the respective wavelet images. In previous approaches [1], neural 
networks were used, consisting of multi-layer perceptrons trained with the back-
propagation algorithm. Most of these approaches used static combinations of multi-
layer perceptrons. In order to improve the generalization capability of the pattern 
classifier, we propose a self-organizing, multi-layer neural network, capable of adapt-
ing to the nature of the problem. 

Reformulation of the signal detection problem as an adaptive pattern classification 
problem provides improved detection of a non-stationary target signal embedded in a 
non-stationary background. Pattern classification deals with assigning an unknown 
input pattern using supervised learning to one of several pre-specified classes, based 
on one or more properties that characterize the given class, as they were defined in 
the previous paragraph. 

4.1    Network structure 

The neural network used is a growing multi-layered perceptron, which begins from a 
basic structure of one node and one hidden layer and is then self-altering until it 
reaches the optimum structure for the given problem. The self-organization process 
consists of two phases: a growing one and a shrinking one (Figure 1). In the growing 
phase of self-optimization, two basic principles must always be valid: 
 

- Every hidden layer has the same number of hidden nodes as the rest of the 
hidden layers. 

- There are two ways of growing: horizontal (by incrementing the number of 
hidden layers) or vertical (by incrementing the number of hidden nodes). 

 
The growth rule of the network is the optimization of the generalization error. At 
every step of the algorithm of growth, the following potential steps must be exam-
ined: 
 
1. Calculate generalization error, using the current structure. 
2. Calculate generalization error, after horizontal growth. 
3. Calculate generalization error, after vertical growth. 
 
Then the following conditions are examined: 
 

- If horizontal growth is proven better than the vertical growth and the current 
structure, grow horizontally and return to the beginning. 

- If vertical growth is proven better than the horizontal growth and the current 
structure, grow vertically and return to the beginning. 

- If the current structure is proven better than the vertical growth and the hori-
zontal growth, optimization stops. 



 
 

Starting Network Best Symentric Network Final Best Network

 
Fig. 1. A 2x4 network is first growing and then pruning in order to end up to the best possible 
architecture. 

This is the growing algorithm that starts from the simple one node, one hidden 
layer perceptron and ends in a MLP network that gives optimum generalization. After 
the network structure is chosen, then pruning techniques are used in order to deduct 
certain nodes from this structure, with minimization of the generalization error. In our 
application we have used Optimal Brain Damage (OBD) as a pruning technique, but 
it is obvious that the growing phase of the algorithm does not depend on the chosen 
pruning algorithm. 

4.2    Training algorithm 

 
The network is consisted of neurons, which have an activation function of the form 

, and locating the values of the elements of the network requires 

employing the back-propagation algorithm.  
)tan()( bUaU =Φ

The feed-forward error back-propagation (BP) learning algorithm is the most fa-
mous procedure for training artificial neural networks (ANNs). BP is based on 
searching an error surface (error as a function of ANN weights) using gradient de-
scent for point(s) with minimum error. Each iteration in BP constitutes two sweeps: 
forward activation to produce a solution, and a backward propagation of the com-
puted error to modify the weights. 

There has been much research on improving BP’s performance. The Extended 
Delta-Bar-Delta (EDBD) variation of BP attempts to escape local minima by auto-
matically adjusting step sizes and momentum rates with the use of momentum con-
stants. To reduce the possibility of trapping into a local minimum even more, we use 
an extension of EDBD, which assumes that every node has a different activation 
function and every synaptic weight has its own learning rate. So we consider the 
following quantities as free parameters in each neuron: 

- w: weight of every synaptic connection, 
- a, b: activation function parameters, 
- rwi: learning rate of wi, 
- ra: learning rate of a, 



- rb: learning rate of b. 
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Fig. 2. Model for Neuron j 

In order to avoid trapping into a local minimum, we adopted a momentum constant 
equal with (1-rx) for every x free parameter of the network. The corrections of free 
parameters for epoch n become so:  
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where  is the learning rate parameter of 
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Backpropagation is applied on the training set, with cost function the average 
square error, which must be minimized. As a training stopping criterion we use the 
generalization error. The average squared error (for minimization) can be calculated 
from: 
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where: 
- T is the total number of examples in the training set 
- C is the set of all the neurons in the output layer 



- M is the number of outputs. 

Parameter values and learning rates for Node[0,0] of Best Network (Eb/No=15)
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Fig. 3. Parameters and learning rates for the proposed structure, Node [0,0]. 
 

Every adjustable network parameter (free) of the cost function has its own learning 
rate parameter, given by: 
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Rule 1. (  then increase r)0()0 )()1( >>+ nn RandR x ( rx = rx + 0.001 ) 

Rule 2. ( )0()0 )()1( <<+ nn RandR  then decrease rx ( rx = rx - 0.001 ) 

 
As an initial value for every rx we define 0.5. This is a value that can be changed as 
epochs pass, for each adjustable parameter. In Figure 3, some network parameters of 
a specific node and their corresponding learning rates are presented. 

4.3    Initial data processing 

Input data should be initially processed, in three stages (Figure 4): 
 
1. Mean removal: mean values for each input node is removed, in order to centralize 

the original data values. 
2. Decorrelation: the training set input data should be uncorrelated, so we use Princi-

pal Components Analysis at this stage. 
3.  Scaling: normalization is carried out in order to make covariances of the decorre-

lated input variables approximately equal. 
 



 

 
 

Fig. 4. Input data at the initial conditions and the three following stages of Mean 
Removal, Decorrelation and Scaling. 

 
Splitting the training data set into estimation and validation subsets is originally such 
that 70% corresponds to training data and 30% to validation data. Since the growth 
algorithm is executed, an optimal network structure is chosen, where each hidden 
layer contains the same number of nodes with all the others. It is possible so to calcu-
late the number W of the free parameters and re-define the validation subset accord-
ing to the following formula:  
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where V is the validation set and Tf the full set of the training data. It is only after 
this split that we apply the pruning techniques, in order to increase generalization in 
this new validation set. 
 

4.4    Initialization 
 
The synaptic weights wji for neuron j are drawn from a uniformly distributed set of 

numbers with mean: 0=wµ  and variance: 
mw
1

=σ , for all (j,i) pairs, where m 

is the number of synaptic connections of neuron j. Other initial values are learning 
rate: , for every adjustable network parameter x, parameter a: 

 and parameter b: 

5.0=xr

7159.1=ja
3
2

=jb , for every node j. 



Performance for several networks
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Fig. 5. The bit-error rate for several network structures with different number of hidden layers. 
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Fig. 6. Transforming the initial network to the best network found throughout several itera-

tions. 

Performance of KaraNetwork in PMSK Receivers
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Fig. 7. Proposed Network (Nnet), Haykin et al. (Haykin) and PMSK receiver performance. 



5  Results 

We evaluated the architecture based on the proposed structure for the receiver, com-
pared to the original neural network receiver structure tested by Haykin et al. in [1]. 
In Figure 5, the performance for several different cases of hidden-layers is shown, 
measured in bit-error rate. Figure 6 depicts the bit-error rate for the best network, 
according to the number of iterations of the training process of the specific network. 
In Figure 7 the bit-error rate for different values of Eb/No is presented, as far the 
Haykin et al. network and the proposed structure are concerned, for the classic PMSK 
receiver. It is clear that the use of the proposed network architecture enhances the 
receiver structure originally proposed by Haykin et al. [1] by substantially improving 
its performance. Moreover, it is clear in Figure 7 that when the value of Eb/No ex-
ceeds the value 25, performance can be compared even to that of the conventional 
PMSK receiver. 

6  Conclusions 

The transformation of a signal detection problem to a pattern classification problem is 
a technique found often in the literature, also providing very good results. In this 
paper we studied the neural network based receiver structure proposed by Haykin et 
al. and then substituted the classic MLP architecture with a specially designed adap-
tive architecture [5]. Results have proven that this self-organizing architecture greatly 
improves performance in such cases of pattern classification problems, and especially 
in the case of classification of respective wavelet images. Future research concerns 
dealing other pattern classification problems with the proposed architecture and ex-
tending it to other fields of practice that neural networks are used, as time-series pre-
diction. 
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