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Abstract. The problem of cell nucleus classification from microscopic
images of gastric cytological specimens is considered in this paper. Sev-
eral variations of the learning vector quantizer (LVQ) are used to perform
discrimination into two classes: benign and malignant. Classification is
based on morphometric features extracted by a prototype image analysis
system (IAS) that was developed specially for cytological laboratories.
The presented IAS is used for the image acquisition, segmentation and
measurement. The various classifiers are benchmarked and conclusions
concerning their behaviour are presented.

The presented feature extraction and classification system can be useful
during everyday cytological practice, and also for the treatment of similar
cytological problems from various human organs.

KEYWORDS: Neural networks, Learning Vector Quantizer, Image Analy-
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1 Introduction

During the last decade several efforts to evaluate the capability of Artificial Neu-
ral Networks (ANNs), in diagnostic cytology have been made [1],[2],[3]. Classifi-
cation, pattern recognition and decision support are some of the most important
and emerging applications of neural nets in the field of cytology. These tech-
niques have not yet attained a wide spread use in cytology for many reasons, the
lack of standardization in the specimen preparation and measurements being one
of them. Moreover cytologists follow different diagnostic procedures depending
on the type of the speciment and the preparation technique. Up to now neural
nets and expert systems have been succesfully applied for the mass screening
of gynaecological cytology samples [4], for the diagnosis and prognosis of breast
lesions [5], urinary lesions [6], gastric lesions [7], and thyroid nodules [3].



The primary cytological diagnostic problem is the discrimination of benign
or malignant nature of the nuclei present in the microscopic field of view. The
routine procedure includes the following steps: a)sample extraction, b) sample
preparation (staining, fixation and in some cases formation of nuclei in a single
layer), c) screening, i.e. examination of the sample through microscope and d)
decision (i.e. diagnosis).

In the case of gastric samples, cytology has not reached wide acceptance
because of the difficulties in the discrimination of benign lesions with severe
regenerative alterations from well differentiated cancer cells [8]. Statistical eval-
uation of morphometric data either at patient level or at the cellular level has
not been very successful. The use of neural networks in the above classification
problems is very promising. An extension of the system described in this paper
could be usefull to the medical society, as in the every day practice of cytological
laboratories, are not used similar tools that provide diagnostic consultation. To-
day cytological laboratories use morphometric and ploidy analysis systems that
provide results evaluated by human experts.

2 The Nucleus Measurement System

The complete expert system used during this study appears in fig 1. The im-
age acquisition module acquires microscopic images and transforms them to
electrical signals. The image sampling and quantization module translates the
electrical signals to digits. The image segmentation subsystem isolates objects
(i.e. cell nuclei) on the images. Each object is represented by a vector via the
feature extraction subsystem which implements several measurements. Finally
each vectorial representation of the nucleus is processed by a group of classifiers
that assigns the corresponding nuclei into two categories (benign and malignant).
For the specific cytological application the above image processing system was
implemented as follows:
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Fig. 1. Components of the nucleus measurement imaging system.

The image acquisition subsystem consists of a color CCD camera attached to
the top of a microscope. The camera employs a 756 x 581 CCD sensor. The image
sampling and quantization subsystem was implemented by a frame grabber, with
512 x 512 samples per image and a uniform quantization of 8 bits (i.e. 256 gray
levels). The remaining subsystems are implemented by software.

The image segmentation subsystem detects the cell nuclei. The variety of im-
age types make segmentation a difficult task. A mix of manual and completely
automated segmentation techniques have been developed, depending on image
type and quality of the resulting outcome. Fully automated algorithms are based



on equalization filters and detection of local minima of the image histogram [9].
Automatic segmentation gives satisfactory results if the images do not contain
artifacts and the nuclei have similar gray level. Semiautomatic segmentation is
based on the histogram’s minima at the neighbourhood of the nucleus. When
the user points to the center of nucleus, a circular neighborhoud of prespecified
radius dictated by everyday practice average nucleus size, is selected. Subse-
quentlly the region’s histogram is extracted, and the minimum is located and
used as a threshold to segment the image and extract the selected nucleus. This
semiautomatic technique is suitable for nuclei that have relatively uniform dis-
tribution of gray level. If the previous algorithms does not give good results, the
user has to draw the nucleus boundary by a pointing device such as a mouse.
Factors that affect the image segmentation are the specimen staining procedure
that affecs the color and thus the gray values of nuclei, the clumping of cells
and some diseases that cause alteration of the nucleus characteristics making
the detection difficult.

A variety of features are extracted by the system. These are based on fac-
tors that affect the decision during screening: a) the size of cell nucleus b) the
shape c¢) the texture d) the color e) the homogeneity of nuclei characteristics
at the specimen and f) contextual characteristics. For the presented study, the
data set can be downloaded from the following URL: http://www.di.uoa.gr/ ~
makis/projects/CCS/CCS.html.

Table 1 summarizes the features generated by the extraction system for each
nucleus based on standard cytological practice. Features are grouped accord-
ing to nucleus characteristics into geometric and densitometric. Densitometric
features are mainly associated with texture.

— The histogram h(k),k = 1...N shows the number of pixels with intensity k,
inside the Region Of Interest (ROT).

— The optical density z(i, j) denotes the gray level of pixel (i, j), L defines the
ROI, and N is the number of pixels in the ROI. Note that the opical density
is equal to the mean value of the histogram

— The histogram of diferences: d = (d;, dz) is a displacement vector in the 2D
space, dif f = |z(i,j) —x(i — d1, j — d2)| is the diference between the pixel at
(i, 7) with value z(i, j) and the pixel at distance d from (i, j). The histogram
of diferences h4(k),k = 1...N is calculated in two steps: 1) calculation of the
diference for all pixels that belong to the object for the specific displacement
vector and 2) calculation of the histogram of the differences found in step 1.

— Co-occurrence matrix: C(i,7) with dimensions N x N.

— Run Length Matrix: R(i,7), M x K with K = /L?+ M? for images of
dimensions L x N with M gray levels.

The geometric features are calculated via the boundary of a nucleus. They
describe properties relevant to size (for example area, perimeter, diameter) and
shape (eg. FormAR, FormPE, circularity). A detailed description of the compu-
tational methods employed to determine geometric characteristics is supplied in
[10] and [11].



Table 1. Nucleus features

measured by the TAS.

Geometric features

Area
Perimeter
Major axis
Minor axis

Diameter

Circularity
Roundness factor

Contour ratio

Contour index

Form area (FormAR)
Form perimeter (FormPE)
Mean Radius of nucleus
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Textural features

Optical density
Standard deviation of histogram

Variance of histogram

Short run of run length matrix
Long run of run length matrix
Grey level of run length matrix

Distribution of run length matrix

Maximum of co-occurrence matrix
Inertia of co-occurrence matrix
Entropy of co-occurrence matrix
Contrast of differences histogram

Mean value of differences histogram
Standard deviation of differences histogram

Entropy of differences histogram
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Densitometric features are relevant to the values of the pixels inside the
nucleus region and are relevant to texture caused by the nucleus chromatin.
From the various methods proposed in the literature for textural descriptors
(see [9] and [12]), four models have been applied, based on: a) histogram b)
differences histogram c) run length matrix and d) co-occurrence matrix. The
first two models are computationally simple but texture discrimination is poor.
The other two models are more compex but give better information about the
texture structure [9]. A detailed description of the computational methods of
textural features is provided by Pitas in [9].

3 Classification and data set description

Bipartite classification into benign and malignant nuclei is considered. Three
variants of the LVQ algorithm [13],[14] were evaluated. Kohonen et. al. [15] have
developed a program package to implement the three variations [16] of the LVQ
algorithm (LVQ1, LVQ2.1, and Optimized LVQ1 "OLVQ1”) .

The data set (see table 2) includes 120 patient cases. The number of vectors
for each case ranges 35 to 183 with a mean value of 120. Five pathological
categories are studied: ulcer, gastritis, inflamatory displasia, cancer and true
displasia. The data set is divided into the training set (30% of the data set)
and the test set. The corresponding distribution of the training set reflects the
distribution of the test set (see table 2). The assignment of a vector into the
training or test set is random. However 30% of vectors from each case are used
in the training set.

To assess the robustness of the algorithms with respect to the training set
selection, ten different training and test sets were used by random assignment.

The displasia types constitute the most difficult cases for cytological diagno-
sis. In practice these are diagnosed after further examinations.

The classification schemes assign vectors into two classes: benign (cancer and
true displasia) and malignant (gastritis, ulcer and inflamatory displasia).

Table 2. Data set description

Class Cases|Measured nuclei|Training vectors|Test vectors
cancer 25 2920 876 2044
true displasia 5 370 111 259
gastritis 25 3150 945 2205
ulcer 60 6550 1965 4585
inflamatory displasia| 5 310 93 257
total 120 13300 3990 9310




3.1 Training of the LVQ networks

The main parameter for configuring the LVQ arcitecture is the number of code-
vectors. This is determined by simulation and computer search. A steady linear
increase was noticed once the number of codevectors exceeds 500. Note that
for the test set, the class +1 (malignant) accuracy is considerably less than the
accuracy for class —1 (benign). LVQ1 and LVQ2.1 algorithms exhibit similar
behavior.

In the sequel we explored the behaviour of the classifiers on the training and
test set when using different codevectors. We notice almost linear increase on
the test set when the accuracy increases on the training set. Similar behaviour
is noticed also for the LVQ1 and LVQ2 algorithms, a fact indicating that there
was no over-training. This result justifies the selection of the network that will
be finally employed, as the one that has the better accuracy on the training set,
as it is expected that the same network will give better accuracy on the test set.

The comparison of the performance of the three algorithms indicates that
OLVQ1 provides superior overall accuracy both for the training and the test set.

In a previous work of the same authors [7], there were obtained results using
the back propagation algorithm on a subset of this dataset. The results of that
method were similar to the ones obtained here (95.7% — 97.3% accuracy on
the test set). However training of neural networks using the back propagation
algorithm requires exhausting experiments to obtain the best classifier and fine
tune it’s parameters, training of each classifier requires much more computational
power than each LVQ type architecture.

Finally in order to test the robustness of each one of the LVQ1, LVQ2.1
and OLVQL algorithms we construct the confusion matrices based on the ten
different training and test sets. The confusion matrices for the training and test
sets for the three algorithms appear in tables 3, 4 and 5.

Table 3. Confusion matrices of LVQ1 classifier for the training and test set. Mean
Overall Accuracy 94.97 £ 0.29% and 93.03 £ 0.22% respectivelly

Training set Test set

Benign
Malignant

Benign

Malignant

Benign

Malignant

95.20 £ 0.34
5.72 £0.22

4.80 +0.34
94.28 £0.22

93.88 £+ 0.40
9.58 £ 0.82

6.12 +0.40
90.42 +£0.82

Table 4. Confusion matrices of LVQ2.1 classifier for the training and test set. Mean
Overall Accuracy 94.91 £ 0.30% and 93.01 + 0.22% respectivelly.

Training set Test set

Benign
Malignant

Benign

Malignant

Benign

Malignant

95.14 £0.32
5.78 £ 0.32

4.86 +0.32
94.22 £0.28

93.85 £ 0.41
9.56 £ 0.80

6.15+0.41
90.44 +£0.80




Table 5. Confusion matrices of OLVQL classifier for the training and test set. Mean
Overall Accuracy 95.36 £ 0.42% and 93.15 + 0.19% respectivelly.

Training set Test set

Benign
Malignant

Benign

Malignant

Benign

Malignant

95.68 +0.44
5.62 £ 0.44

4.32+£0.44
94.38 £ 0.49

94.09 +£0.38
9.71 £0.87

5.91 +£0.38
90.29 £ 0.87

4 Conclusions

The main conclusions derived are: The majority of misclassified nuclei (about
90%) are extracted from specific patient cases (17.5% of the cases). This fact may
be attributed to (a) inherent case misclassification in the human classification
phase by the cytologists or (b) the majority of the nuclei measured for these cases
have peculiar characteristics that forces assignment to the wrong class. Figure 2
shows several misclassified nuclei, their appearance concerning the geometric
characteristics and especially the textural characteristics are quite similar, a
fact that confirms that there is an overlap in the feature space. Moreover most
nuclei are from displasia cases. It is worth noting that two cases in the data
set were given as uncorfimed true displasias, but finally and after these results,
these cases were assigned as inflammatory displasias. By further analysis there
were discovered 11 cases that have numerous misclassified nuclei. Out of these
cases, 4 are displasias (i.e. 36%). However the displasias in the complete data
set are 10 in 120 (i.e. 8%). This indicates that the open cytological problem of
classifying displasias, remains for the other classification methods. This fact does
not limit the merits of the proposed method, as the obtained overall accuracy
is significantly better than standard cytological screening. Moreover it does not
require an additional examination to clarify displasias.

Fig. 2. Misclassified nuclei. Left: false positive, right: false negative.



By the various confusion matrices produced, and by the training/testing
procedure many observations may be done:

— LVQ classifiers yield better accuracy on the training set than on the test set.

— The LVQ classifiers have better accuracy on data extracted from malignant
nuclei than back propagation [7].

— Training of the LVQ classifiers, requires seconds or minutes, in contrast train-
ing of other algorithms such as the back propagation requires more training
time.

— Robustness tests of classification accuracy, indicates that LVQ classifiers
yield very low standard deviation.

The statistics of the best classifier for nucleus classification are as follows:
Specificity=94.23%, Sensitivity=89.51%, Predicted Value of Positive Result=83.59%,
Predicted Value of Negative Result=96.47%, Overall Accuracy=93.06%. The cal-
culations are based on classification results for the entire data set.

5 Discussion

Cytology has not reached wide acceptance in the investigation of gastric lesions
because of the high rate of false positive and negative results. Neural networks
as shown in this paper have the potential for changing this attitude. The gener-
alization at the individual patient level either via a majority logic technique or
by directly applying NNs to statistical quantities of measures obtained by nuclei
from a single patient case, are both very promissing for classification purposes.

In summary: The use of morphometry to measure size, shape and texture
characteristics of cell nucleus during microscopic screening, enables us to quan-
tify the characteristics that during routine laboratory work are subjectively ex-
amined. NNs give excellent results in most cases at the nuclear level. Integration
of conventional cytological screening with measurement-classification processes
seem to increase the quality of today cytological laboratory.

Extensions if this paper should focus on exhausting tests and validation on
very large data sets so as to assure the robustness of the method, usage of
contextual features (e.g. nuclei density within a predefined area of the specimen),
and improvement of the segmentation methods towards an automated nuclei
detection system.
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