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Abstract. Automatic face detection in digital video is becoming a very 
important research topic, due to its wide range of applications, such as security 
access control, model-based video coding or content-based video indexing. In 
this paper, we present a connectionist approach for detecting and precisely 
localizing semi-frontal human faces in complex images, making no assumption 
on the content or the lighting conditions of the scene, neither on the size, the 
orientation, and the appearance of the faces. Unlike other systems depending on 
a hand-crafted feature detection stage, followed by a feature classification stage, 
we propose a convolutional neural network architecture designed to recognize 
strongly variable face patterns directly from pixel images with no 
preprocessing, by automatically synthesizing its own set of feature extractors 
from a large training set of faces. Moreover, the use of receptive fields, shared 
weights and spatial subsampling in such a neural model provides some degrees 
of invariance to translation, rotation, scale, and deformation of the face patterns. 
We present in details the optimized design of our architecture and our learning 
strategy. Then, we present the process of face detection using this architecture. 
Finally, we provide experimental results to demonstrate the robustness of our 
approach and its capability to precisely detect extremely variable faces in 
uncontrolled environment. 

1 Introduction 

Human face processing is becoming a very important research topic, due to its wide 
range of applications, like security access control, model-based video coding or 
content-based video indexing. Face recognition and expression analysis algorithms 
have received most of the attention in the academic literature in comparison to face 
detection. In recent years, considerable progress has been made on the problem of 
face recognition, especially under stable conditions such as small variations in 
lighting, facial expression and pose. An interesting survey may be found in [1]. Most 
automatic face recognition and expression analysis algorithms have either assumed 
that the face have been cropped from the image or used "mugshot" images with 
uniform background so that the face is detected in a trivial way. However, the task of 
face detection is not trivial in complex scenes. Face patterns can present significant 
variations due to differences in facial appearance, expression and orientation.  



 

 

Some techniques have been developed recently for detecting faces in “non-
mugshot" images. These methods can be roughly divided into three broad categories: 
local facial features detection, template matching and image invariants. In the first 
case, low level computer vision algorithms are used to detect facial features such as 
eyes, mouth, nose and chin and statistical models of human face are used like in [3, 7, 
13] among others. In the second case, several correlation templates are used to detect 
local sub-features. These features can be considered as rigid in appearance (view-
based eigenspaces [8]) or deformable (deformable templates [12, 5]). The main 
drawback of these approaches is that either little global constraints are applied on the 
face template or extracted features are strongly influenced by noise or change in face 
expression or viewpoint. In the last case, image-invariant schemes assume that there 
are certain spatial image relationships, like brightness distribution, common and 
possibly unique to all face patterns, even under different imaging conditions [10]. 
They proved not to be robust in non-constrained scenes.  

The use of skin color information can be an important cue for constraining the 
search space. In [4], Garcia and Tziritas proposed a fast method for detecting faces 
using skin color filtering and probabilistic classification of face texture based on 
statistical measures extracted from a wavelet packet decomposition. In [5], Garcia at 
al. extended this method for precise localization of facial feature by using a 
deformable face template. 

In the general case of gray-level images, instead of detecting faces by following a 
set of human-designed rules, approaches based on neural networks like in [11, 9] have 
proven to give the best results. In this paper, we present a novel neural network based 
approach for detecting and precisely localizing semi-frontal human faces in complex 
images, making no assumption on the content or the lighting conditions of the scene, 
neither on the size, the orientation, and the appearance of the faces. 

Unlike other systems depending on a hand-crafted feature detection stage, followed 
by a feature classification stage, we propose a convolutional neural network 
architecture designed to recognize strongly variable face patterns directly from pixel 
images with no preprocessing, by automatically synthesizing its own set of feature 
extractors from a large training set of faces. The use of receptive fields, shared 
weights and spatial subsampling in such a neural model provides some degrees of 
invariance to translation, rotation, scale, and deformation of the face patterns.   

We first present the optimized design of our architecture and our learning strategy. 
Then, we present the process of face detection using this architecture. Finally, we 
provide experimental results and a comparison to the methods we described in [5] to 
demonstrate the robustness of our approach and its capability to precisely detect 
extremely variable faces in uncontrolled environment. 

2 The Proposed Approach 

2.1 Neural Network Architecture 

The problem of finding face patterns is very difficult due to the large variety of 
distortions we have to take into account. These distortions include different facial 



 

 

expressions, environmental conditions, perspective of view etc. After any trial of 
manually enumerating every possible situation, we can easily conclude that this 
procedure is endless. Therefore, we need a machine-learning approach such as a 
neural network system. The standard, unstructured, fully connected topologies have 
the disadvantage of requiring a large amount of training data because they do not have 
any other way of encoding all the possible variations of the pattern. Instead of this, we 
can encode prior knowledge about the nature of the problem directly to the structure 
of the network. Such knowledge is relevant to the locality of the features, the 
invariance to translation, orientation, distortions, etc. One class of neural networks 
that are able to encode these notions are the convolutional neural networks [6]. 

The convolutional neural network we use is shown in Fig.1. The network consists 
of six layers, the first four of them acting as so-called feature maps [6]. Layer C1 
performs a convolution on the input image with an adaptive mask, followed by an 
additive bias. Note that the receptive fields of neighboring neurons overlap, as in a 
pure convolutional procedure. This mask (weights) is shared through all the neurons 
of the same feature map, so there are actually only four neurons in this layer. These 
neurons extract the same kind of features, independently of their precise location. The 
size of the masks we use is 5x5, so the network has a total of 104 weights in the first 
layer. The size of the feature maps of this layer is 28 columns x 32 lines, supposing 
that the input dimensionality is 32x36. 

Layer S2 performs local subsampling of the corresponding outputs of the previous 
layer. More precisely, a local averaging over four outputs is performed followed by a 
multiplication by a trainable coefficient and an addition with a trainable bias. In this 
way, we reduce the dimensionality of the feature maps by a factor of four. Finally, the 
linear output of this procedure is passed through a sigmoid function (in our case, the 
hyperbolic tangent function). After subsampling, the exact location and specific 
condition of every feature becomes less important, which gives a strong degree of 
robustness to our network. The size of these feature maps is 14x16 while the number 
of weights used in this layer is 8. 

Layers S1 and C2 are partially connected, as described in table 1. In this way, the 
ability to combine different kinds of features so as to compose new ones is added to 
the network. The procedure on the layers C2 and S2 is exactly the same as on the 
layers C1 and S1, with the exception that in layer C2 we use a 3x3 mask for 
convolution. There are 14 feature maps in these layers with a total of 168 weights and 
output dimensionality 6x7 each, on the S2 layer. 

Table 1. Each column corresponds to one feature map of the C2 layer and each row to one 
feature map of the S1 layer. The connections are marked with an X. 

 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 X X    X X X    
2  X X     X   X X  
3     X X    X  X  X 
4       X X   X  X X 

 



 

 

In the N1 and N2 layers, the actual classification is performed, after feature 
extraction and input dimensionality reduction is done. In layer N1, we have 14 
neurons, each of them connected only to the corresponding feature map of the S2 
layer. The single neuron of the output layer N2 is fully connected to all the neurons of 
layer N1. These final layers contain a total of 617 weights. 

 

Fig. 1. The structure of the network we use. The contents of the feature maps show the different 
kind of features that have been actually detected from a real world example 

 
Consequently, the proposed topology results in a global sum of only 897 trainable 

parameters, despite the 127,093 connections it uses. This structured topology is very 
promising to solve two problems at once: the problem of robustness, due to its nature, 



 

 

and the problem of good generalization, due to the relatively small amount of weights 
it uses. 

2.2 Training Methodology 

As a training set we use a large collection of images obtained from various sources 
over the Internet. This collection resulted in a database containing highly variable 
examples, which is not the usual case for the majority of the face databases we 
checked. As input dimensionality most of the neural network based approaches in the 
literature [11, 9] use as input a 20x20 window considering that it is the minimal 
resolution that can be used without loosing critical information from the face pattern. 
Usually, this window is the very central part of the face, excluding the border of the 
face and any background information. In our approach, we preferred to add to the 
input window the border of the face and some portions of the background. This is due 
to the way convolutional neural networks operate: they need the critical mass of 
information to be in the center of the input plane. On the other hand, by adding the 
border and some background, we give the network some additional information, 
which can help in classifying the face pattern more effectively. Note that the borders 
and the background must have a great variation, thus not introducing a serious bias to 
the network (for example, the background must not be always black). The final choice 
for the input size is 32x36 in order to roughly preserve the original aspect ratio of the 
pattern. 

During the extraction of the faces, we did not perform any normalization, such as 
histogram equalization or brightness correction [11, 9]. In addition, we did not 
normalize the face examples so that the eyes, the mouth and other parts of the faces 
always remain exactly on the same position [11, 9]. Technically, this cannot be done 
without loosing the original aspect ratio of the face, which will introduce a bias to the 
network (all the examples will be size-normalized in this way). In addition, we 
mentioned that this network topology is quite robust to varying scale and position, so 
we need to boost this robustness by giving examples that are not normalized. Fig. 2 
presents some of the examples we use. 

 

 
Fig. 2. Some examples of the extracted 2146 faces. In the second line there are some examples 
of the rotation and the contrast reduction transformation. 

Rotation and gray level variance in real-world faces are taken into consideration by 
applying rotations (±20 degrees) and, then, contrast reduction to all the examples 
(including the rotated ones). The latter is important for obtaining better performance 
in bad-quality images, due to the fact that most of the original training examples are 
of very good quality. Another solution to this problem could be to normalize the gray 
levels of the test images, applying histogram equalization. This may be dangerous as 



 

 

it may introduce unexpected false alarms from textured surfaces. Some examples of 
transformations are shown in Fig. 2. Finally, after applying the transformations, the 
size of the training set reached the number of 12,876 examples. 

For training the network, we used the backpropagation algorithm modified for use 
on convolutional networks as described in [6]. Desired responses are set to –1 for 
non-faces and to +1 for faces. Randomly cropped stimuli from images not containing 
faces could be used as false (non-face) examples. In general, we believe that this 
method is not the optimal one because false examples as close as possible to the 
boundary of the target class are needed. As an alternative solution, we trained the 
network using such false examples, just for getting the false alarms it produces. Next, 
the randomly selected false examples were replaced by the false alarms for the actual 
training of the network. In addition, we applied to the new set of false examples all 
the transformations we discussed above, for avoiding any bias that could be 
introduced. As a result, we produced approximately 6,000 false examples. 

For producing more false examples, close to the class boundaries, we followed a 
bootstrapping procedure. Bootstrapping is a widely used solution for such 
classification problems due to the inability to predict all the possible false examples 
that a machine-learning algorithm may need. Note that, during the bootstrapping 
procedure, we were gradually decreasing the threshold values for grabbing false 
alarms. In this way, only the most suitable and helping false alarms were used. Also 
note that in every bootstrapping iteration the same network is re-trained, instead of 
building a new one. The false alarms we get from one network are not likely to occur 
again on a second network (without the same initialization).  

In Table 2 the results of the training procedure are reported. For the state of the art 
the results of a minimized architecture with only one layer of feature maps (4 feature 
maps followed by 4 partially connected neurons and finally one output neuron) are 
also presented. As it is expected, the minimized topology produces much more false 
alarms (the training set size in the second case is much larger). The errors on the two 
validation sets, which are used to stop the training at the best-performing point, show 
that it is better to use the network having two layers of feature maps. 

Table 2. The errors of the two network topologies on the training and on the validation set, 
after learning. An error is encountered when the answer has not the same sign with the desired 
output value. 

 Training set Validation set 

Network of Fig. 1 900/27997 (3.21%) 17/800 (2.12%) 

Minimized topology 1475/42770 (3.44%) 46/800 (5.75%) 



 

 

2.3 Finding Faces Using the Neural Filter 

Our system acts like a filter receiving a 32x36 image and generates an output ranging 
from -1 to 1, signifying the presence or absence of a face, respectively. In order to 
detect faces of different sizes, the input image is repeatedly subsampled via a factor of 
1.2, resulting in a pyramid of images. Each image of the pyramid is filtered by the 
convolutional neural network with the fixed input size 32x36. In [11, 9], the filter is 
applied at every pixel of each image of the pyramid, given that it has very small 
invariance in position and scale.  

In our case, a better invariance in position and scale allows us to filter the input 
with a step of 4 in both directions, resulting in speeding up the process significantly. 
This search may be seen as a rough localization, where the positive answers of the 
network correspond to candidate faces. First, candidate faces in each scale are 
mapped back to the input image scale. They are then iteratively grouped according to 
their proximity in image and scale spaces. More precisely, every candidate face i is 
represented by a vector (xi, yi, hi, wi, oi) where (xi,yi) is the face center coordinate, 
(hi,wi) are the height and width of the face and oi is the network answer. The 
candidate faces are stored in a list sorted in a decreasing order according to the scores 
oi.  The grouping algorithm is described in Table 3. 

After applying this grouping algorithm, the N found clusters correspond to N face 
candidates (Xn,Yn,Wn,Hn,On) which will serve as a basis for the next stage of the 
algorithm for face localization and false alarm dismissal. 

Table 3. The grouping algorithm. 

for each not yet assigned list element i with score oi 
n=n+1 
Assign list element i to a new cluster Cn with center  (Xn,Yn,Wn,Hn,On)= 
 (xi,yi,wi,hi,oi) 
for each not yet assigned list element j 
 if list element j is such that (xj,yj) belongs to 
       the rectangle which top left and bottom right points are respectively 
      [Xn-Wn/4, Yn-Hn/4] and  [Xn+Wn/4, Yn+Hn/4] 
 assign list element j to cluster Cn and update cluster center: 

Xn=Σk in cluster ok xk / Σk in cluster ok 

Yn=Σk in cluster ok yk / Σk in cluster ok 

  Hn=Σk in cluster ok hk / Σk in cluster ok  

  Wn=Σk in cluster ok wk / Σk in cluster ok 
  On=MAXk in cluster ok  
 end if 
end for 

end for      
N=n 
 



 

 

A fine search is performed in an area around each rough face candidate center in 
image-scale space.  A search space centered around the face candidate position is 
defined in image-scale space for precise localization of the candidate face. It 
corresponds to a small pyramid centered at the face candidate position covering 6 
scales varying from 0.7 to 1.3 of the scale corresponding to the face candidate. For 
every scale, the presence of a face is evaluated on a grid of 6 pixels around the 
corresponding rough face candidate center position. Usually true faces will give high 
responses in 2 or 3 consecutive scales, but non-faces not so often. According to this 
phenomenon, we count the number of filter responses greater than a threshold in the 
fine search space. The selection among the candidate faces is performed according to 
the decision parameters THR_FACE and NOK, the threshold for a good response and 
the threshold for a sufficient number of good responses, respectively. One example 
illustrating the different phases of the face detection process is shown in Fig. 3. 

 

 
Fig. 3. An example of the face detection process. Each image presents the different steps of the 
algorithm. The first image shows the candidate faces detected in the rough search phase. The 
second image shows the candidate face clusters. The third image shows the candidate faces 
found in the fine search and the last image shows the final results with NOK=4 and 
THR_FACE=0.25. 

3 Experimental Results 

The proposed method has been evaluated using the same test data set as in [1]. This 
test data set contains images that have been extracted as key-frames from various 
MPEG videos and especially from the test videos used in the DiVAN project 
evaluation phase [11]. The video material has been kindly provided by the Institut 
National Audiovisuel, France and by ERT Television, Greece. The test data set 
contains 100 images, most of them being extracted from advertisements, news, 
movies and external shots. This set of 100 images contains 124 faces (minimal size 



 

 

being 24x20 pixels) and ten images which do not contain faces. They cover most of 
the cases that the algorithm has to deal with, i.e., large variability in size, illumination, 
facial expression and orientation. Moreover, most of the backgrounds are extremely 
textured. The faces contain in this test set are independent from the one contained in 
the training set.  

In Fig. 4., we present some results of the proposed face detection scheme for 15 
images of the test data set. These examples include images with multiple faces of 
different sizes and different poses. Some false alarms are presented as well.  

 

 

 

 

 

 
Fig. 4.  Some results of the proposed method. 
 



 

 

On this test set we obtained a good detection rate of 95.1% with 3 false alarms for 
NOK=4 and THR_FACE=0.25. It should be noted that the number of false alarms is 
very small even for a small value of THR_FACE. This may illustrate the capacities of 
the convolutional network architecture to highly separate face examples from non-
face examples.  As a comparison, the approach proposed in [4] gave 94.23% of good 
detection rate with 20 false alarms when 104 faces (of size greater than 80x48 pixels 
which is the minimal size for this approach) are considered. Considering this subset of 
104 faces, the approach proposed in this paper gave 99.0% (one missed face) of good 
detection rate and one false alarm. The system in [9] resulted in 85.57% of good 
detection and 15 false alarms. An interactive demonstration of our system is available 
on the Web at http://csd.uoc.gr/~cgarcia/FaceDetectDemo, allowing anyone to submit 
images and to see the detection results for pictures submitted by other people. 

4 Conclusions 

Our experiments have shown that using convolutional neural networks for face 
detection is a very promising approach. The robustness of the system to varying 
poses, lighting conditions, facial expressions and image qualities was evaluated using 
a large set of non-trivial images. In addition, stability of responses in consecutive 
scales and a precise localization of faces were noticed. Using this network and the 
grouping strategy, we are allowed to quickly scan the input image and then to reject 
the small number of sparse false alarms. This is an advantage of our system, 
compared to other connectionist approaches, which require a dense scanning of the 
input image in all scales and positions [11, 9]. Finally, the relatively small number of 
training examples we used proves that our topology generalizes in a fine way and can 
be scaled easily to a greater training set, if needed. 

As an extension of this work, we believe that the face detector should handle 
higher-level semantic information about facial features in order to solve some 
problems of occlusions, non-trivial poses etc. Another interesting point could be the 
use of video image sequences instead of still images for training. In such an 
environment, the fact that a face is a 3D object projected to the 2D space could be 
learned and help the network to be more robust in varying pose. 
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