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Abstract: An automated lineament detection method based on a modified 
Hough transform is presented. The method first performs an efficient data 
clustering using Kohonen’s self-organizing maps then binarizes the 
classification result and finally applies the modified Hough transform in order 
to identify lineaments. The capabilities of the method are described using 
Landsat TM satellite data from the Vermion area in Greece. The results of the 
automated analysis show major geological faults in the selected area. 

 
 
1   Introduction 
 
Lineaments are line features or patterns on earth’s surface which reflect geological 
structure. Detection and mapping of lineaments is an important operation in the 
exploration for mineral deposits, in the investigation of active fault patterns, water 
resources, etc. On satellite images, lineaments usually appear as lines or linear 
formations whose pixels are either lighter or darker (or have a different color) than the 
background pixels. 

Most lineament mapping is done visually using enhanced images. However, visual 
analysis is time consuming and subjective. As an aid to save time and improve 
objectivity of lineament analysis we developed a novel method based on self-
organizing maps for fast and efficient unsupervised classification followed by a 
modified implementation of the Hough transform for lineament detection. The whole 
procedure for the delineation of lineaments is outlined in Fig. 1. The major steps of 
this approach are analyzed in the subsequent sections. 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.  Procedure for the delineation of lineaments. 
 
 

Previous work [1] has shown that the above technique can successfully been 
applied to the delineation of lineaments from airborne geophysical data such as grid 
measurements of magnetic and electromagnetic fields. However, since airborne data 
are much more costly than satellite images, this paper aims at showing that significant 
results can be obtained from multispectral satellite images as well. 
 
 
2   Unsupervised Classification Using Self-organizing Maps 
 
A time and memory saving methodology for efficient clustering and automatic 
classification of images or grided spatial data has been presented in [2],[3]. Significant 
clustering and classification speedup was achieved with no significant loss in terms of 
final performance by: a) using a self-organizing map (SOM) for quantizing the input 
space, b) clustering the neurons of the map instead of the pixels of the original image 
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and c) using fast indexing techniques for efficient generation of the classification 
result. 

In the sequel, we assume MxN multispectral satellite images of n channels (bands). 
The input space Rn is used to represent the image as a set of MxN points (also called 
spectral signatures) whose coordinates are the gray levels of each band (see Fig. 2 for 
an explanation). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Representation of multispectral satellite images of MxN pixels and n bands. The spectral 
signature of a pixel is represented by a point (g1, g2, …, gn) ∈ Rn where gi is to the gray level of 
the ith spectral band, i = 1, 2, …, n. 

 
 
The first stage of the proposed methodology involves vector quantization of the 

input space using a 2-D lattice of neurons trained with Kohonen’s SOM algorithm. 
Following a random presentation of the n-dimensional points, the result is to obtain a 
catalogue of prototypes (the asymptotic weights of the neurons) that quantize the 
satellite image.  

Next, we use indexing techniques for mapping the pixels of the original image to 
their corresponding prototypes. To this end, a MxN index table is constructed to store 
pointers from pixels to their closest prototypes as shown in Fig. 3. The replacement of 
the original image with the catalogue of prototypes and the index table constitutes the 
indexed representation of the multispectral satellite image and results in both: a) data 
compression, and b) significant speedup during clustering and classification. 

In general, as the number of neurons of the map grows larger, the approximation of 
the original data space will be more accurate due to the smaller quantization distortion 
(provided that the map self-organizes). However, according to experience, map sizes 
of no more than 16x16 neurons should suffice in most applications. In the case of 
large volumes of multispectral data from n bands with 8 bits/gray, compression ratios 
of approximately n:1, when 256 prototypes are used, are readily attainable. 

Typically, automatic classification involves clustering of the data space followed 
by label assignment. However, due to the large number of data points, clustering 
performed on the original image data is both memory and time inefficient.  On the 
other hand, if clustering is performed on neuron prototypes, a speedup of several 
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orders of magnitude can be achieved allowing even the use of the most 
computationally complex clustering algorithms. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Representation of multispectral satellite images by the index table and SOM prototypes. 
The index table stores pointers from pixels to their nearest protoypes. 
 
 
Next, labels are assigned to each cluster. These clusters along with their labels 
represent the automatic classification categories (see Fig. 4). 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Creation of the catalogue of labels. 
 
 

The final classification result is obtained by: a) classifying the prototypes to obtain 
a corresponding catalogue of labels (as in Fig. 4) and, b) fast indirect addressing 
through the index table, since its pointers to the prototypes also point to their labels, as 
shown in Fig. 5. As was observed, by selecting the number of classification categories 
similar to the number of possible land cover and lithological classes, most of the linear 
formations present in Lansat TM satellite images were preserved. On the other hand, if 
one uses SAR (Synthetic Apperture Radar) images, the number of categories should 
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be similar to the lithological classes since, as is well known, radar penetrates 
vegetation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Fast indexed classification using the index table and the catalogue of labels. 
 
 
3   Lineament Extraction Using Pattern Recognition Techniques 
 
In order to apply the pattern recognition techniques described in this section we first 
need to convert the classification result to a binary image. Binarization is performed 
interactively as follows: from the available categories (gray levels) of the 
classification result the user selects those that will be considered as foreground with 
the remaining categories considered as background. At this stage, usually many linear 
formations are present, along with regions that do not correspond to linear formations. 
 
 
3.1 Connected Region Identification and Shape Descriptor Evaluation 
 
The connected regions of the binary image were specified by using the fast (one pass) 
label assignment procedure outlined in [4] (p. 198), whereby a linked list is 
constructed for storing simultaneously: a) labels belonging to different regions using 
vertical pointers, and b) equivalence classes using horizontal pointers. 

For each connected region we then calculate three shape descriptors, all of which 
can be evaluated in terms of the central moments mij of the region: 

 
a) the area  A = m00, 
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b) the angle φ  = (1/2) tan-1 [2 m11/(m20 - m02)] of the principal axis relative to the 
x-axis, and, 

 
c) the elongation ε = | Imax/Imin |1/2 of the region by finding the ellipse that best fits 

the region (in the sense that it has the same moments of inertia). The elongation 
is defined as the ratio of major to minor axis length (so that ε > 1) where  Imin = 
m20sin2φ + m02cos2φ - m11sin2φ  and  Imax = m20cos2φ + m02sin2φ + m11 sin2φ. 

 
 
3.2 Modified Hough Transform 
 
The Hough transform is a popular and powerful method for detecting parametrically 
described shapes in images. However, even in its simplest application, which is the 
detection of straight lines, the original Hough transform is susceptible to the presence 
of both random and correlated noise that may give rise to spurious maxima in the 
accumulator array [5]. Variants of Hough transform have been applied with some 
success to the delineation of lineaments [6],[7]. However, we noted that in most data 
sets, interference from unwanted pixels was very prominent. 

It is thus highly desirable to have methods of hindering irrelevant pixels from 
contributing to the accumulator array. One such method has been recently presented 
by the authors [8] in order to prevent the foreground pixels to contribute the same 
amount to all accumulator array points that correspond to lines passing through them. 
This is achieved by allowing preferential weighting of certain pixels through an 
appropriate voting kernel that depends on the shape descriptors of the connected 
regions of the image described in the previous section. 

Given a binary image, we are interested in the detection of straight lines whose 
points (x, y) are parameterized by  r = x cosθ + y sinθ, where r is the distance of the 
origin from a particular line and θ is the angle formed by the normal to the line and the 
x-axis, as shown in Fig. 6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. The Hough transform parameterization of lines (r = x cosθ + y sinθ). 
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For each connected region, we consider its geometrical center and increment for 
various values of θ the corresponding cells in the accumulator array. To evaluate the 
contribution of each region to various cells in the accumulator array we utilize its 
related shape descriptors and express the dependence formally by introducing a voting 
kernel. 

The voting kernel is a continuous function of the shape descriptors and is 
constructed by taking into account the following considerations. The presence of an 
elongated region is taken as strong evidence for the existence of a line parallel to the 
principal axis of the region. Thus, the contribution to the accumulator array should 
increase with ε. Moreover, for a given ε, this contribution should be maximum for φ = 
θ and drop with increasing |φ - θ |. The rate of change with increasing |φ - θ | should 
clearly depend on ε. For very elongated regions, only the direction φ = θ should be 
incremented. On the other hand, nearly circular regions (ε ≈ 1) should be allowed to 
vote equally for all directions. Finally, a dependence of the kernel on the area A 
should be introduced in order to minimize interference effects and avoid spurious 
accumulator array maxima. Contributions from regions of large A and relatively small 
ε should be suppressed. These regions are a major source of correlated noise, because 
spurious lines can be formed from points lying in their interior. At the other extreme, 
regions of very small A should also be discarded as random noise. In-between these 
extreme cases, regions of small ε whose area is comparable to a characteristic 
intermediate area scale A0 may be part of a chain of regions contributing to a disrupted 
linear structure and should be taken into account. 

A function used for modeling the above desired properties is the following: 
 

f  = ε exp[– (ε – 1) (φ – θ )2 ]  A exp[– (Α – Α0)/(Α0 ε2)] 
 
where A0 can be chosen as the average area of regions whose elongation exceeds a 
predefined threshold. However, our simulations have shown that the method is robust, 
exhibiting stable performance for a wide range of values for A0. 
 
 
4   Experimental Results and Discussion 
 
The automatic lineament detection method has been applied with success using bands 
7, 4 and 3 of a multispectral LandSat TM satellite image of Vermion area in Greece. 
A visual lineament identification was carried out by an expert photo-interpreter on the 
satellite image and the output was superimposed and digitized as shown in Fig. 7. 

Automatic classification in 10 categories was performed by first quantizing the 
space using a 16x16 self-organizing map (i.e., with 256 prototypes) and then 
clustering the neurons of the map using the Fuzzy Isodata algorithm [9]. Fig. 8 shows 
the map in 3D space. 

 Following unsupervised classification, the categories containing most information 
regarding lineaments were selected through visual inspection of the classification 
result. Binarization was then performed by setting all pixels to background except for 
those of the selected categories. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7.  LandSat image with photo-interpreted lineaments superimposed. 



 
 

Fig. 8.  Asymptotic weights of the self-organizing map of 16x16 neurons. 
 
 

The 8-neighbors connected regions along with the area, principal axis angle and 
elongation shape descriptors of each region were then computed according to Sec. 3. 
Finally, the lineaments were found using the proposed modified Hough transform and 
are shown superimposed on the classification result in Fig. 9.  

As it is displayed in Fig. 9, several of the interpreted lineaments (see Fig. 7) have 
been also detected using the automatic detection method. This is quite obvious for the 
lineaments of NE direction. On the other hand lineaments of NW direction have not 
been traced using the automatic lineament detection technique. This is partly due to 
the high relief of the area that enhances features that are on a vertical direction to sun 
illumination. The degree of “sinuosity” of lineaments seems also to play an important 
role for not detecting some of the features. However, the process has proved effective 
on detecting “straight” lineaments.  

In short, we believe that our proposed method for automatic lineament detection 
can prove a useful tool to geologists and geophysicists who would like to have a first 
glance on a digital lineament map without significant time investment. Such a map can 
then serve as the starting map of a series of improved lineament maps produced within 
a GIS, whereby, existing lineaments can be modified, new ones added and wrong ones 
 



 
 

Fig. 9.  Automatic lineament detection super-imposed on the classification result. 
 



removed, by the use of pointing devices, incorporating additional geological and/or 
geophysical information. 
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