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Abstract: In this paper a new morphological technique for size and shape 
analysis of color granular images is presented. The method is based on the 
sieving model reported by Matheron. According to this model, granular images 
can be characterised by means of the manner in which they are sieved through 
various size and shape sieves. The morphological operations that are used in this 
analysis are defined by means of a new ordering of vectors (colors) of the HSV 
color space. Minimum and maximum operators are defined, and the fundamental 
morphological operations are extracted. The proposed method was tested with a 
variety of images and such experimental results are provided. 

 
 
1 Introduction 
 
Granulometries are parameterised families of morphological openings that are used 
for pattern and texture classification and for granular filtering. The most basic class of 
binary granulometries is composed of unions of openings by structuring elements that 
are scaled by a single parameter. Matheron [1] developed a morphological method for 
characterising granular images based on sieving. In this sieving model, granular 
images are sieved through various size and shape sieves [2]. If an image is considered 
as a collection of grains, then whether or not an individual grain will pass through the 
sieve depends on its size and shape relative to the mesh of the sieve. If we keep the 
basic shape and we increase the size of the mesh, more and more of the image will 
pass through, the eventual result being that no more grains remain. This model serves 
as a means to approach the removal of nonconforming image structure. Additionally, 
it can be further developed to obtain image signatures based on the rate of sieving. 
 In this paper a new granulometric technique suitable for size and shape analysis of 
color granular images is introduced. The proposed method uses vector morphological 
operations to extend the classical sieving model in order to accommodate color 
images. Initially, the basic concepts of granulometries are briefly reviewed. 
Subsequently, the vector ordering that is used for the definitions of the morphological 
operations is introduced. By means of this ordering, minimum and maximum 
operators are presented and the definitions of the vector morphological operations that 
are used for the granulometric analysis of color images are derived. The proposed 
morphological operators are vector preserving and possess the same basic properties 
with their gray-scale counterparts. Illustrative examples of the application of the 
method in color granular images are provided. 
 



  

 
2 Granulometries 
 
The basic type of granulometries are the Euclidean granulometries which can be 
defined as follows [1]. If we consider t > 0 as a variable, the class of images {A ο tB}, 
where ο denotes the opening operation, is called a granulometry and the primitive B is 
said to be a generator of the granulometry. If Ω(t) is the area of A ο tB, with Ω(0) 
being the area of A itself, then Ω(t) is a decreasing function of t and is called a size 
distribution. A normalised size distribution is defined by: 
 
   Φ(t) =1 -  Ω(t)/ Ω(0) .  (1) 

   

Φ(t) increases from 0 to 1 and can be shown to be a probability distribution 
function. Thus, its derivative dΦ(t) is a probability density. In the terminology of 
Matheron, both Φ and dΦ are known as granulometric size distributions. More 
recently, they have come to be known as the pattern spectrum of the image relative to 
the granulometry (or, relative to the generator). The moments of dΦ can be employed 
as image signatures. 

This method can be generalized in order to be applicable to digital images in the 
following way: we consider a sequence {Ek}, k = 1, 2,…, of structuring elements of 
increasing size, where Ek+1  is Ek – open for all k. Owing to the latter requirement, if S 
is any image, then S ο Ek+1  is a subimage of  S ο Ek . Consequently, opening in turn 
by the structuring elements yields a decreasing sequence of images. Let Ω(k) be the 
number of pixels in S ο Ek . Then, Ω(k) is a decreasing function of k  and, assuming 
that E1 consists of a single pixel, Ω(1) gives the original pixel count in S. In a similar 
way, the normalized size distribution Φ(k) is defined by: 

 
  Φ(k) =1 -  Ω(k)/ Ω(1) . (2) 

 
 This is a probability distribution function and its derivative, dΦ(k) = Φ(k + 1) – 
Φ(k), is a probability density. Again, the density is called a granulometric size 
distribution or pattern spectrum, and its moments can be employed as image 
signatures. 
 
 
3 Vector Ordering in the HSV Color Space 
 
The extension of the concepts of gray-scale morphology to color images implies the 
definition of an appropriate ordering of vectors (colors) in a concrete color space [3, 
4, 5]. The HSV color space has been chosen since it is closely related to the way in 
which humans perceive color. In this color space each color is a vector with three 
components: h (Hue), s (Saturation), v (Value), with h ∈ [0,360), s ∈ [0,1], v ∈ [0,1].  
 The proposed vector ordering scheme is as follows [6]: 



  

(i) Initially, vectors are ordered with respect to the third component v. More 
specifically, they are sorted from vectors with the smallest  v to vectors with 
the greatest  v. 

(ii) Vectors  having the same value of  v  are ordered with respect to the second  
component s. Particularly, they are sorted from vectors with the greatest s to 
vectors with the smallest s.  

(iii) Finally, vectors that have the same values of s and v are ordered with respect to 
the h component. More specifically, they are sorted from vectors with the 
smallest  h  to vectors with the greatest  h. 

 
 Let Sn be a subset of the HSV space, which includes n vectors x1(h1,s1,v1), 
x2(h2,s2,v2),…, xn(hn,sn,vn). Using the previously vector ordering procedure, we define 
the  ∧ minimum operator in Sn as follows: 
 

∧ Sn  =  ∧ { x1(h1,s1,v1),  x2(h2,s2,v2),…, xn(hn,sn,vn) } = 
 

 
 
 
 
 
 
 
 
with 1≤ k ≤ n, 1≤ i, j ≤ n.  
In a similar way we define the ∨ maximum operator in Sn as follows: 
 

∨ Sn = ∨ { x1(h1,s1,v1),  x2(h2,s2,v2),…, xn(hn,sn,vn) } = 
 
 
 
 
 
 
 
 
 
 
 
 

with 1≤ k ≤ n, 1≤ i, j ≤ n.  
 It is important to notice that the proposed operators are vector preserving since no 
vector (color), which is not present in the input data, is generated  [5].     
 

= xk(hk,sk,vk ):                               

vk= min {v1,v2,…,vn} if ∃ i ≠ j : vi=vj=min {v1,v2,…,vn} 
or 

vk = vi = v j= min {v1,v2,…,vn} and sk = max {si,sj} 
if ∃ i ≠ j : vi=vj=min {v1,v2,…,vn} 

or 
vk = vi = v j= min {v1,v2,…,vn} and sk=si=sj 
 and hk = min {hi,hj}  if ∃ i ≠ j : vi=vj=min {v1,v2,…,vn} 
 and si=sj 

 

(3) 

= xk(hk,sk,vk ):   (4) 

vk= max {v1,v2,…,vn} if ∃ i ≠ j : vi=vj=max {v1,v2,…,vn} 
or 

vk = vi = v j= max {v1,v2,…,vn} and sk = min {si,sj} 
if ∃ i ≠ j : vi=vj=max {v1,v2,…,vn} 

or 
vk = vi = v j= max {v1,v2,…,vn} and sk=si=sj 
 and hk = max {hi,hj}  if ∃ i ≠ j : vi=vj=max {v1,v2,…,vn} 
 and si=sj 

 

 



  

4 Morphological Operators for Color Images 
 
4.1 Vector Erosion 
 
Let us consider the set f  to  be  a color image with pixel values in the HSV color 
space and the set g to be the structuring element for the vector morphological 
operations that will be described here [6].   
We define vector erosion of  f  by  g  at a point x as follows: 
 
 (fΘg)(x)=∧{f(z)–gx(z)}, for z ∈ D[ f ] ∩ D [ gx] .  (5)  
 
 As a result of the previous definition, in order to perform the vector erosion of an 
input image f  by the structuring element g at a point x: 
(i) First, we translate spatially g by x, so that its origin is located at point x. 
(ii) We find all differences between colors of  the points of f  with the colors of the 

corresponding points of the translated g, ∀ z ∈ D[f] ∩ D[gx], where D[f] is the 
finite domain of f. 

(iii) The result of the previous step is a set of colors. We find the minimum of these 
colors using the new minimum operator that was defined previously. This 
minimum color is the color of the eroded image at the point x. 

 
4.2  Vector Dilation 
 
We define vector dilation of  f  by  g  at a point x as follows: 

 
 ( f ⊕ g )(x) =  ∨ {f (z) + g-x (-z)}, for z ∈ D [ f ] ∩ D [ g′-x] . (6)  
 
 Vector dilation is performed in a similar way to vector erosion, according to 
equation (6). We should notice that the operations of opening and closing are defined 
in the same way as their gray scale counterparts. Thus, the opening operation is 
defined as an erosion followed by a dilation and the closing operation as a dilation 
followed by an erosion.  

 
 

5  Experimental Results 
 
We have carried out a number of experiments in order to assess the performance of 
the new morphological technique for size and shape analysis of color granular images, 
using the proposed vector morphological operators. The results of these experiments 
for two typical color images are demonstrated below. 
 Let us consider Fig. 1(a), in which circles of four different sizes and of three 
different colors are randomly dispersed about the image. The generating sequence 
{Ek} consists of circles of increasing size (the first being a single pixel). In Fig. 1(b), 
1(c) and 1(d) the sieving process is clearly depicted. As larger circles are employed 
for the opening structuring elements, the circles in the image are successively sieved 
from the image. As the structuring element sequence passes each of the four sizes of 



  

the circles, the corresponding circles are sieved from the image, the result being the 
unnormalized size distribution Ω(k) in Fig. 2(a). The normalized size distribution Φ(k) 
and its derivative, the granulometric size distribution (or pattern spectrum) dΦ(k), are 
also depicted in Fig. 2(b) and 2(c), respectively. We should notice that the 
granulometric size distribution consists of four impulses that correspond to the four 
circle sizes and their heights correspond to the relative image areas sieved at the four 
stages of the granulometry in which they were eliminated. Furthermore, the 
representation of the image in the HSV color space allows us to discriminate circles 
with different hues. In Fig. 3(a), 3(b), 3(c) and 3(d) the sieving process for the red 
circles is demonstrated.   
 
 
 

 

 
Fig. 1. (a) Color image  “circles”, (b) Opening for k=5, (c) Opening for k=9 and (d) Opening 
for k=16 
 

(a) (b)

(c) (d)



  

 
Fig. 2. (a) Unnormalized size distribution Ω(k) for color image  “circles”, (b) Normalized size 
distribution Φ(k) and (c) Granulometric size distribution dΦ(k) 
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Fig. 3. (a) Red “circles”, (b) Opening for k=5, (c) Opening for k=9 and (d) Opening for k=16 
 
 
 In Fig. 4(a) rectangles of four different sizes and of four different colors are 
randomly dispersed about the image, on a colored background. This is another 
interesting case of a granular image. The advantage of the use of morphological 
operators is clear. The rectangle shaped sieve can be constructed simply with the use 
of an appropriate structuring element. In a similar way, the sieving process for this 
case is demonstrated in Fig. 4(b), 4(c) and 4(d). As larger rectangles are employed for 
the opening structuring elements, the rectangles in the image are successively sieved 
from the image.  
 
 
 
 
 

(a) (b)

(c) (d)



  

 

 
 

 
 
Fig. 4. (a) Color image  “rectangles”, (b) Opening for k=4, (c) Opening for k=7 and (d) 
Opening for k=12 
 
 
 The unnormalized size distribution Ω(k) for this example is depicted in Fig. 5(a). 
The normalized size distribution Φ(k) and the granulometric size distribution dΦ(k), 
are also depicted in Fig. 5(b) and 5(c), respectively. Again, we  notice that the 
granulometric size distribution consists of four impulses that correspond to the four 
rectangle sizes, and their heights correspond to the relative image areas sieved at the 
four stages of the granulometry in which they were eliminated. 
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Fig. 5.  (a) Unnormalized size distribution Ω(k) for color image  “rectangles”, (b) Normalized 
size distribution Φ(k) and (c) Granulometric size distribution dΦ(k) 
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6  Conclusions 
 
 We have presented a new technique for the analysis of color granular images, based 
on the morphological characterization of sieving. We have defined the basic 
morphological operations of erosion, dilation, opening and closing. Finally, we have 
provided experimental results that illustrate the granular analysis for color images 
with the corresponding size distributions and pattern spectrums. Besides application 
to grains and particles, the method is also effective for texture and shape analysis.  
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