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Abstract. This paper examines the ability of neural based structures to
model the logistic equation. This modelling includes not only the gener-
ation of the logistic curve, but also the time series that are generated by
the logistic neural model. This study concerns all main regions of the lo-
gistic equation: the region of convergence for parameter values less than
3, the periodic region for parameter values in the interval [3, 3.57], and
the chaotic region for values in the interval [3.57, 4]. For each region, the
fixed points of the logistic map are calculated and compared to the cor-
responding theoretical points, followed by an analysis of the distribution
of the absolute mean error between the theoretical and the experimental
curves. Finally, the Lyapunov exponent and the fractal dimensions for
both the theoretical and the neural based attractor are estimated.

1 INTRODUCTION

The logistic map is one of the most interesting chaotic systems, and the study of
its behavior is a powerful tool for the understanding of their main features. These
features include sensitivity to the initial conditions, and a positive Lyapunov
exponent as it is calculated by the chaotic time series emerging from the time
evolution of the chaotic system. The transition from determinism to chaos evolves
through a period doubling mechanism, in which, for specific parameter values,
the number of the fixed periodic points is doubled. The mathematical equation
that describes the logistic map, has the form

xn+1 = λxn(1 − xn) (1)

Models for the logistic map can be developed in a variety of ways. In this paper
we restrict ourselves to the neural based models, which are implemented by
means of neural network structures. There are two main reasons that justify the
usage of such models [1]. The first reason is the capability of neural networks to
simulate nonlinear mappings, and the second reason is their ability to process
unknown input values that do not belong to the training set. This property
of neural networks is known as generalization and allows the estimation of an
output for an unknown input, using interpolation techniques. Since the logistic
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map is an example of nonlinear mapping, neural network structures are the most
appropriate structures for the implementation of logistic map simulation models.

The main advantage of creating such models is the fact that we can use
these models to generate artificially created chaotic time series, in the same way
that they are generated from the theoretical model. This allows us to study the
ability of artificial models to generate chaotic data that can be used in many
applications such as chaos control.

2 OVERVIEW OF THE CURRENT WORK

This research examines several structures for the neural models. The best one,
in terms of accuracy, was selected to simulate the behavior of the logistic map,
for certain λ values. These values belong to the three regions of the logistic map,
that is, the region of convergence, the periodic region, and the chaotic region.
For the region of convergence, we model the logistic map for λ equal to 2.50 and
3.00. For the periodic region, these values are 3.10 (2-period trajectory) and 3.50
(4-period trajectory). For the chaotic region we restrict ourselves to the values
3.90, 3.93 and 3.96.

For each case, the logistic curve is reconstructed by means of the neural
network, and the absolute mean error between the theoretical and the neural
based logistic curve, is calculated. In order to characterize the accuracy of this
reconstruction, the distribution of the absolute mean error, i.e. the percentage of
data points for which the calculated error belongs to specific intervals, is used.
In most cases, the 50% of the data points gave an error less than 0.001, while
a percentage equal to 80% gave an error less than 0.002. Besides this logistic
curve reconstruction, another characteristic taken into account was the creation
of the time series from the logistic map neural model. The procedure that gives
these time series is the same as in the theoretical model. Starting from a specific
initial condition, the neural network generates an experimental time series using
a feedback technique - this means that the nth output of the networks is used
as input in order to generate the (n + 1)th output. This procedure is described
in Figure 2.

The study of the features associated with this experimental time series is
the second task performed in this research. For each λ value, the time evolu-
tion of the experimental time series must be the same, as in the theoretical case.
This similarity includes the same periodicity, the same value for the fixed points,
and the same Lyapunov exponent and fractal dimensions. So, for each experi-
mental time series, the time evolution of the series is studied, and the values
of the experimental fixed points and the experimental Lyapunov exponent are
calculated. This calculation is also performed for the values of the capacity, in-
formation, and correlation dimension associated with the logistic map chaotic
attractor. The comparison between the theoretical and the experimental values
is used to justify the accuracy and the quality of the logistic map neural model.



Fig. 1. Time series generation from the logistic map neural model

3 NEURAL NETWORK ARCHITECTURE

The neural network used for the modelling of the logistic equation is a three
layered feed forward neural network trained through the back propagation al-
gorithm [3]. The network structure includes one input neuron, three hidden
neurons, and one output neuron [2] as shown in Figure 2. In the input layer
there are four additional functional link neurons [4], with an output of the form
sin(kpx) where x is the output of the input neuron, and the parameter k gets the
values 1,2,3 and 4. The network is a fully interconnected neural network and all
the neurons, except those of the input layer, get an additional input from a bias
unit with a fixed value equal to -1. This allows the usage of a variable thresh-
old for these neurons. The activation function for all neurons was the sigmoidal
function, with a sigmoidal slope equal to 1. The optimum parameter values for
the back propagation training were found to be 0.9 for the learning rate, and
0.4 for the momentum. In some cases, we tried to use variable learning rate but
the results were not very different - so, the learning rate has a fixed value. Re-
garding the number of training circles, it was between 50000 and 350000, with a
mean value equal to 100000 iterations. Finally, the training mode used was the
online training. Thus, the update of the synapse weights was performed after
the processing of every training pattern.

The training set that the neural network had to learn included 1000 pairs in
the form (x, y), where the x values were uniformly distributed in the interval [0,
1], while the y values, were calculated by the equation y = λx(1−x). Initially, the
network was trained using 500 data pairs, but later on, the training procedure
was repeated, using an 1000-point training set. This decision was based on the
fact, that the denser the x points, the more accurate the neural based y points.
As a result, a data set of 1000 data pairs was used in all cases.

The recall procedure included the recall of the above 1000 points, for the λ
value for which the network was trained, and for other λ values close to that.
More specifically, for each λ value for which a neural model was constructed, the
recall procedure performed for values belonging to the interval [λ− 0.5, λ + 0.5].



Fig. 2. The selected neural network structure

4 NEURAL MODELS FOR THE REGION OF
CONVERGENCE

When the λ parameter gets values less than 3, the time series generated by
applying the recursive equation (1), converges to a single fixed point. The larger
the value of λ parameter, the larger the value of the fixed point and the number of
iterations needed to reach it. In the special case for which λ = 3, the fixed point
has the value 0.6666667 and the theoretical time series converges to it, after many
millions of iterations. However the neural based model could not behave in this
way - since it is only an approximation of the real system - so, the experimental
time series converges to the corresponding experimental fixed point, after a few
thousands of iterations. It should be noted that due to being a special case, there
is a large difference between the experimental and the theoretical fixed points,
for λ = 3. Table 1 contains the theoretical and the experimental fixed points,
both with the number of iterations needed in order to reach them, for the λ
values 2.50 and 3.00. In all cases the theoretical and experimental time series,
are produced using an initial condition equal to 0.1

From the above description, it can be seen that the experimental time series
generated by the neural model, behaves in the same way as in the theoretical case,
in the sense that it is characterized by the same time evolution and converges
to the experimental fixed points, which are very close to the theoretical points.
Another interesting feature of these neural models is the distribution of the



Table 1. Theoretical and experimental fixed points for the region of convergence

λ Theoretical Experimental Iterations for Iterations for
Value Fixed Point Fixed Point Theoretical Experimental Fixed

Point Point

2.50 0.600000 0.599853 19 29
3.00 0.666666 0.646801 > 5000000 1372

absolute mean error between the theoretical and the experimental logistic curves.
Table 2 includes this distribution for each neural model of the logistic function.

Table 2. Absolute mean error distribution between the theoretical and the neural
based curve for the region of convergence

Error Points % Points %
Intervals λ = 2.50 λ = 3.00

< 0.001 778 77.8 830 83.0

0.001 0.002 167 16.7 128 12.8

0.002 0.003 038 03.8 017 01.7

0.003 0.004 005 0.50 010 01.0

0.004 0.005 002 0.20 009 0.90

> 0.005 010 01.0 006 0.60

Table 3 contains the absolute mean error between the theoretical and the
recalled logistic curves, for λ values close to the value λtrained for which the
neural model had been created. These values belong to the interval [λtrained-0.5,
λtrained+0.5].

5 NEURAL MODELS FOR THE PERIODIC REGION

When the λ parameter gets values in the interval [3, 3.57], the generated time
series is a periodic one, with the number of points in each period, depending on
the value of λ. Two cases are examined here, corresponding to λ values that lead
to period doubling. These values are 3.10 (2-period orbit) and 3.50 (4-period
orbit). As in the previous cases, the calculation includes an estimation of the
experimental periodic points for each case, the absolute mean error distribution,
and the accuracy of the logistic curve recall, for λ values close to λtrained. These
results are represented in the Tables 4, 5 and 6.



Table 3. Absolute mean error distribution between the theoretical and the neural
based curve for the region of convergence and for λ close to λtrained

λtrained = 2.50 λtrained = 2.50

λ Value Error λ Value Error

2.45 0.008376 2.95 0.008433

2.46 0.006725 2.96 0.006779

2.47 0.005076 2.97 0.005126

2.48 0.003435 2.98 0.003474

2.49 0.001893 2.99 0.001886

2.50 0.000739 3.00 0.000741

2.51 0.001955 3.01 0.001897

2.52 0.003579 3.02 0.003519

2.53 0.005230 3.03 0.005155

2.54 0.006894 3.04 0.006806

2.55 0.008559 3.05 0.008433

Table 4. Theoretical and experimental fixed points for the periodic region

λ Theoretical Experimental Iterations for Iterations for
Value Fixed Point Fixed Point Theoretical Experimental Fixed

Point Point

Period 2 region

3.10 0.558014 0.553057 56 48

0.764567 0.767024 65 45

Period 4 region

3.50 0.826941 0.827224 36 44

0.500884 0.501112 37 45

0.874997 0.875502 38 46

0.382820 0.383010 39 47

Table 5. Absolute mean error distribution between the theoretical and the neural
based curve for the periodic region

Error Points % Points %
Intervals λ = 3.10 λ = 3.50

< 0.001 654 65.4 629 62.9

0.001 0.002 303 30.3 311 31.1

0.002 0.003 036 03.6 037 03.7

0.003 0.004 001 00.1 013 01.3

0.004 0.005 001 00.1 001 00.1

> 0.005 005 00.5 009 00.9



Table 6. Absolute mean error distribution between the theoretical and the neural
based curve for the periodic region and for λ close to λtrained

λtrained = 3.10 λtrained = 3.50

λ Value Error λ Value Error

3.05 0.008436 3.45 0.008416

3.06 0.006777 3.46 0.006762

3.07 0.005119 3.47 0.005108

3.08 0.003462 3.48 0.003478

3.09 0.001876 3.49 0.001932

3.10 0.000876 3.50 0.000958

3.11 0.001794 3.51 0.002016

3.12 0.003403 3.52 0.003586

3.13 0.005051 3.53 0.005218

3.14 0.006707 3.54 0.006864

3.15 0.008371 3.55 0.008522

6 NEURAL MODELS FOR THE CHAOTIC REGION

The last case concerns the development of neural models for λ values that belong
to the chaotic region. Logistic map neural models have been created for the λ
values 3.90, 3.93 and 3.96. These values cover a significant part of the chaotic
region which has an upper bound that corresponds to the value λ = 4.00. The
experimental results produced by these models include the distribution of the
absolute mean error between the theoretical and the neural based logistic curve,
and the recall results for λ values close to the value λtrained for which the neural
model has been constructed. These results are shown in Tables 7 and 8.

Table 7. Absolute mean error distribution between the theoretical and the neural
based curve for the chaotic region

Error Points % Points % Points %
Intervals λ = 3.90 λ = 3.93 λ = 3.96

< 0.001 814 81.4 680 68.0 660 66.0

0.001 0.002 163 16.3 268 26.8 296 29.6

0.002 0.003 018 01.8 047 04.7 038 03.8

0.003 0.004 002 00.2 002 00.2 004 00.4

0.004 0.005 001 00.1 000 00.0 000 00.0

> 0.005 002 00.2 003 00.3 002 00.2



Table 8. Absolute mean error distribution between the theoretical and the neural
based curve for the chaotic region and for λ close to λtrained

λtrained = 3.90 λtrained = 3.93 λtrained = 3.96

λ Value Error λ Value Error λ Value Error

3.85 0.008408 3.88 0.008404 3.91 0.008383

3.86 0.006745 3.89 0.006741 3.92 0.006720

3.87 0.005090 3.90 0.005093 3.93 0.005058

3.88 0.003453 3.91 0.003458 3.94 0.003406

3.89 0.001828 3.92 0.001848 3.95 0.001784

3.90 0.000595 3.93 0.000761 3.96 0.000842

3.91 0.001789 3.94 0.001830 3.97 0.001808

3.92 0.003392 3.95 0.003404 3.98 0.003396

3.93 0.005046 3.96 0.005049 3.99 0.005052

3.94 0.006704 3.97 0.006707 4.00 0.006712

3.95 0.008362 3.98 0.008366 — —

7 LYAPUNOV EXPONENT AND FRACTAL
DIMENSION ESTIMATION

A good criterion for the characterization of the logistic map neural model is the
estimation of the Lyapunov exponent for the experimental time series produced
by the neural model, and its comparison to the corresponding theoretical Lya-
punov exponent calculated from the theoretical time series. It can be proven
that for the special case of the logistic map, the Lyapunov exponent is given by
the equation [5]:

α = lim
N→∞

1
N

N∑

i=1

log2|λ(1 − 2xi)| (2)

where N is the number of data points and λ the parameter value of the
logistic map equation. Since we have the ability to create both time series -
one theoretical and one experimental - for each λ value, we can estimate the
theoretical and the experimental Lyapunov exponents by applying the above
equation, and thus, evaluate the accuracy of the modeling of the logistic map.
The calculation of the Lyapunov exponent was performed for each λ value for
which we have created a neural model, and the results of this calculation are
shown in Table 9.

Figure 3 shows the variation of the Lyapunov exponent for various values of
λ parameter, for both the theoretical and the experimental cases.

The other characteristic feature calculated for both the theoretical and the
experimental time series was the values of the three main dimension types asso-
ciated with each chaotic system, that is, the capacity, the information, and the
correlation dimension.



Table 9. Theoretical and experimental Lyapunov exponent for all the neural models
created for the region of convergence, the periodic rerion, and the chaotic region

λ Theoretical Experimental
Value Lyapunov exponent Lyapunov exponent

2.50 - 0.970689 - 0.972358

3.00 - 0.035070 - 0.042604

3.10 - 0.308960 - 0.352512

3.50 - 0.903258 - 0.759712

2.90 + 0.723355 + 0.758118

3.93 + 0.881630 + 0.806589

3.96 + 0.905534 + 0.866076

Fig. 3. Variation of the Lyapunov exponent as a function of λ parameter for the the-
oretical and the experimental cases



The capacity dimension is given by the equation [5]

dcap = lim
ε→0

ln(N(ε))
ln(1/ε)

(3)

where (N(ε) is the number of hyper-cubes of side size ε that are required in
order to cover the attractor’s shape. The information dimension is defined as [6]

dinf = lim
l→0

−S(l)
log(l)

(4)

where S(l) is the minimum information that is required, in order to specify
a point in a set S with an accuracy of l. Finally, the correlation dimension is
calculated by the equation

dcor = lim
r→0

log(C(r))
log(r)

(5)

where C(r) is the correlation function that gives the percentage of points of a
system trajectory, whose distance is less than r.

The computation of the capacity, information and correlation dimensions
for both the theoretical and the experimental time series is performed through
a software package developed by Sarraille and DiFalco [7], named FD3. Table
10 includes the calculated values for the capacity, information, and correlation
dimension for the theoretical curve, as well as the neural based curve. From

Table 10. Capacity, information and correlation dimension for the theoretical and the
neural based time series associated with the logistic map, for various λ values

λ Theoretical dimension Experimental dimension

dcap dinf dcor dcap dinf dcor

2.50 0.26149 0.24854 0.16990 0.26149 0.24049 0.15958

3.00 0.68895 0.77769 0.73209 0.60443 0.57141 0.43861

3.10 0.44752 0.34209 0.20971 0.48580 0.43798 0.30538

3.50 0.60741 0.57348 0.48487 0.57846 0.61243 0.56844

3.90 0.97710 0.94312 0.89089 0.97383 0.93844 0.88953

3.93 0.97947 0.94662 0.89629 0.97879 0.94289 0.88655

3.96 0.97657 0.92181 0.79947 0.97581 0.93453 0.86197

the above table it is clear that the agreement between the theoretical and the
experimental results is sufficient, especially in the case of large λ values, where
the system time series are extremely chaotic.

Figures 4, 5 and 6 show the variation of the capacity, information and corre-
lation dimension as a function of λ parameter, for both the theoretical and the
experimental cases.



Fig. 4. Variation of the capacity dimension as a function of λ parameter

Fig. 5. Variation of the information dimension as a function of λ parameter



Fig. 6. Variation of the correlation dimension as a function of λ parameter

8 CONCLUSIONS

The aim of this research was the development of neural models for the logistic
equation - for selected λ values - and the investigation of the features associated
with the time series generated by these models. In all cases, the behavior of these
models matches very closely the actual theoretical model. This result is valid for
the type of periodicity and the values of the periodic fixed points, as well as the
value and the sign of the Lyapunov exponent and fractal dimensions for each
value. However, since this model is only an approximation of the actual system,
it is not possible to behave exactly in the same way in some very special cases.
So, for the value λ = 3, where the fixed point is reached after many millions of
iterations, the neural based time series reaches this point after only about 1400
iterations.

Another very important conclusion is that, in the chaotic region, the neural
based time series is very different from the corresponding theoretical time series,
even though the absolute mean square error between the theoretical and the
experimental logistic curve is very small - for λ = 3.90 this error is equal to
0.000595 which is the best calculated error value. This deviation between the
two series is caused by the properties of the logistic map in the chaotic region.
This small error value is a mean error value, which means that there are some
points for which this error is large enough. On the other hand, in the chaotic
region of the logistic map, it is obvious that after many iterations, the time series
curve - cobweb plot - will pass from every point of the logistic curve. If in some
iteration the curve passes from a point that leads to a large error value, the next



point will be quite different from the corresponding theoretical point and after a
large number of iterations, the two series will be quite different from each other.
However, a positive Lyapunov exponent characterizes both series so they are
chaotic, while, in the same way, the theoretical and the experimentally calculated
fractal dimensions have very close values. In other words, the neural models
created for the logistic map give exactly the same results as in the theoretical
case, for the region of convergence and the periodic region, but in the chaotic
region, the agreement is only qualitative, not quantitative.
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