2nd Hellenic Conf. on Al, SETN-2002, 11-12 April 2002, Thessaloniki, Greece,
Proceedings, Companion Volume, pp. 283-292

A Novel Algorithm for Training Radial Basis
Function Networks

K. Koutroumbas', A. Pouliakis?

! Institute of Space Applications and Remote Sensing, National Observatory of
Athens, Metaxa and V. Paulou, Palaia Penteli, 152 36 Athens, Greece, Tel. No:
+30-1-6138342, Fax No: +30-1-6138343, E-mail: koutroum@space.noa.gr.

2 Department of Informatics, University of Athens, Panepistimioupolis, T.Y.P.A.
Buildings, 15781 Athens, Greece, E-mail: makis@di.uoa.gr

Abstract. In this paper a new method for training Radial Basis Func-
tion (RBF) networks, called RBF-MST, is introduced. The novelty of
the method is in the way the first layer is constructed. This is carried
out using a clustering algorithm that relies on the idea of the Minimum
Spanning Tree (MST) and takes into account the classes where the data
vectors belong. The second layer nodes are trained using the Least Mean
Square (LMS) algorithm. The performance of RBF networks produced
by the proposed method is assessed through a real medical application,
where the aim is the classification of a cell nucleus as benign or ma-
lignant. Finally, the paper concludes with a discussion about ways for
improving the performance of the proposed method.
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1 Introduction

Radial Basis Function (RBF) networks is a well known class of neural networks
that have drawn significant attention in the recent years. Their architecture is
shown in fig. 1. They consist of two layers of nodes. The first layer consists of
nodes each one implementing a function of the form

yi=f(le —wil)), i=1,....k (1)

where x is the input vector of the node and w; its parameter vector. Typical
choices for f are

1
Yi :exp(—FHm—win), (2)

where o corresponds to the diameter of the receptive region of the node, and
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Fig. 1. Architecture of an RBF network

The output layer consists of linear nodes, i.e. nodes that implement the func-
tion

Zj :U_'iTya .7: ]-7 ) 1, (4)

where y is the vector containing the outputs of the k first layer nodes, aug-
mented by an additional coordinate which is set to 1 and v;, the (k+ 1) dimen-
sional parameter vector of the j-th output node.

RBF networks possess universal approximation capabilities, that is there
exists an RBF network with sufficient number of nodes in the first layer that
can approximate a given continuous function defined on a compact set S C R',
with arbitrary accuracy (see e.g. [9], [16], [17]).

In the sequel we consider RBF networks in the frame of classification appli-
cations. In this case, the number of the output nodes equals to the number of
the classes an input vector can be assigned.

One of the major issues in RBF networks is that of training, i.e. the deter-
mination of the parameters w;, 07, i =1,... ,k and vj, j = 1,... ,m. Training
is a procedure that embeds to the network knowledge provided by a data set of
the form

S:{(mnatn)) Tn ERI: tn € {0>]-7 7m_1}) n = ]-) 7p} (5)

known as training set. x,,’s serve as inputs to the network and ¢,’s as the cor-
responding desired responses. After the completion of the training, the network
should generalize well, that is it should be able to respond reliably to inputs @
that are not presented in S. The generalization ability of the network is usually
assessed via the test set, a data set of the form of S that has not been used
during training.

Several training approaches have been proposed in the literature. One of
them lies in the general framework of cost function optimization. In this case a



cost function J which depends on the dissimilarity between t; and z;, is adopted.
The estimates of the values of the parameters w;, o; and v; are obtained via
the optimization of J, using e.g. a gradient descent (or ascent) method (see e.g.
[22]). However, this approach exhibits high computational complexity for real
world problems .

An alternative approach is to choose the parameter vectors w; in a way
representative of the distribution of the data set ([15]). This can be carried out
using a clustering algorithm which will reveal the regions in the input space that
are dense in data (see e.g. [1], [4], [5], [22]). One such algorithm is described in
[12]. It is an implementation of the BSAS clustering algorithm described in [22],
where the class information for each vector is utilized.

Other methods for training RBF networks have also been suggested (e.g. [3],
[11], [19], [25]). A review of training methods of RBF networks can be found in
7].

In this paper a training scheme, called RBF-MST, is presented that follows
the second apporach. Specifically, the number of the first layer nodes, &, as well
as the values of the parameters w; are determined by a clustering algorithm that
relies on the idea of the minimum spanning tree (MST). Its innovative aspect
is that it takes also into account the class where the data vectors belong. The
paramters o7 are estimated with two methods, giving thus rise to two variants of
RBF-MST, namely RBF-MST1 and RBF-MST?2. Finally, the parameter vectors
v; of the second layer are determined via the well-known LMS algorithm.

The rest of this paper is organized as follows. In section 2 the description of
RBF-MST scheme takes place. In section 3 the proposed scheme is compared
to other known schemes in terms of a cytological application. Finally, section 4
contains the concluding remarks and guidelines for future work.

2 Description of the RBF-MST scheme

Before we proceed with the presentation of the RBF-MST scheme, some useful
definitions from graph theory are in order (for a more thorough introduction
see e.g. [13], [22]). A graph G = (V, E) is defined as an ordered pair of a set of
vertices and a set of edges connecting some pairs of vertices. An edge is denoted
by (z;,x;), where z;, z; are the vertices it connects. Usually, a weight is assigned
to the edges of the graph depending on the application at hand.

G1 = (Vi, Ey) is called a subgraph of G if Vi C V and E; C E with the
additional restriction that the edges of E; connect pairs of vertices of V;. Clearly,
a graph is a subgraph of itself.

A path between two vertices z, and z, is a sequence of vertices and edges
of the form @y, (Tn, Tn,), Tny, (Tny, Tng ) Tnos - - - 5 (Tn,_y > Tq), Tq. Note that there
may be pairs of vertices that are not connected via a path.

A connected component of a graph is a subgraph such that for every pair
of vertices there exists a path that connects them. If, in addition all pairs of
vertices are connected to each other the subgraph is called complete.

! Other optimization techniques may also be used (see e.g. [14]).



A spanning tree is a connected graph (containing all the vertices of the graph)
that has no loops (i.e., there exists no path connecting a vertex to itself). If the
edges of the graph are weighted, we define as the weight of the spanning tree the
sum of the weights of its edges. A minimum spanning tree (MST) is a spanning
tree with the smallest weight among all spanning trees connecting the nodes
of the graph. An MST of a graph may be obtained using Prim’s algorithm or
Kruskal’s algorithm (see e.g. [6]).

After the above definitions let us proceed with the description of the RBF-
MST scheme.

(a) Determination of k and w;’s

View the data vectors x,, as the vertices of a complete graph.

— Weight each edge (z,,x4) with the squared Euclidean distance of the two
vectors.

— Determine the MST of the graph.

- Remove the edges of it that connect vectors from different classes.

— Represent the resulted connected components (clusters) C; of the MST by
their mean vectors p;, 1 =1,... k.

— Place k£ nodes in the first layer of the network, such that each one corresponds
to one of the above determined clusters.

— Set w; equal to ps, i =1,... k.

Clearly, each connected subgraph contains vectors only from a single class.

(b) Determination of o?’s

According to the way o?’s are estimated, we have two variants of the RBF-
MST scheme. Specifically, in the first variant, called RBF-MST1, the parameter
o? of the i-th first layer node is set equal to the variance of the vectors of C;
around pt;.

In the second variant, called RBF-MST2, the parameter o7 is set equal to
the squared Euclidean distance between p; and its closest mean vector among
the mean vectors of the rest C,.’s, r = 1,... )k, r #i.

After the determination of w;’s and ¢?’s, we present each x,, € S to the
network, we compute the output of the first layer y,, and we form the set

S" = {(Yn,tn), yn € R¥* 1, €{0,1,..., m—1}, n=1,...,p}, (6)
where the k + 1 coordinate of all y,,’s is set equal to 1.

(¢) Determination of v;’s

They are determined via the LMS learning rule based on the data set S’ (see
eg. [22], [24]).

In contrast to the methods that rely on cost function optimization for the
determination of k£ and w;’s, RBF-MST requires no multiple runs for the deter-
mination of the proper values of £ and w;’s. This is a consequence of the fact



that the minimum spanning tree of a graph is (under broad conditions) unique.
The main computational burden of RBF-MST is in the determination of the
minimum spanning tree.

3 Experimental results

In this section the performance of the proposed algorithm is assesed through
a real cytological application. The aim of this application is the assignment of
a gastric cell nucleus to one of the following pathological classes: wlcer, gastri-
tis, inflammatory displasia, true displasia, cancer. The cells were obtained from
brushing cytology smears taken from patients during endoscopy. Each smear
contained about 100 cells. For each cell the measurements of 26 characteristic
attributes were taken, forming a 26-th dimensional vector that characterizes the
corresponding cell. The 26 attributes are divided into two categories, as follows:

1. Geometric characteristics: area, circularity, major axis, minor axis, perime-
ter, formArea, formPerimeter, nuclear contour index, contour ratio, round-
ness factor, nucleus diameter and mean radius [8],[21],[20].

2. Textural characteristics: ([18], [2]):

a. Nucleus run length matrix: short run, long run, grey level, distribution.
b.Nucleus histogram: mean, variance and standard deviation.
c.Nucleus coocurence matrix: maximum, entropy and inertia.

d.Nucleus differences histogram: mean, variance, contrast and entropy.

The selection of the features was based on factors that affect the cytologist
decision during screening. For example texture provides an indication of the DNA
activation, and changes in the nuclear size and shape reflect alterations related
to the behavior of the cells during mitosis. The data set used in this paper can
be downloaded from http://www.di.uoa.gr/ “makis/projects/CCS/CCS.html.

The whole data set consists of 13300 vectors (nuclei) extracted from 120 pa-
tients. The number of measured nuclei for each patient was ranging from 35 to
183 with a mean value of 120. This fact indicates the problems that cytologists
face during everyday practice. 2920 of the cells belong in the class “cancer” (C),
370 in the class “true displasia” (TD), 6550 in the class “vlcer” (U), 3150 in the
class “gastritis” (G) and 310 in the class “inflammatory displasia” (ID). The
identification of the class of each cell was made by two experienced cytologists
and confirmed by the histological examination of biopsies and/or surgical speci-
mens. The most difficult to identify cases are the displasias, which have not clear
cut characteristics. Thus, it is expected that these classes will lead the classifiers
to erroneous classifications.

15% of the available data were used as training set and 70% as a test set, using
stratified random selection, and thus preserving the original class distribution in
the two datasets. All vector components are linearly scaled in order to lie in the
range [—1,1].



In the sequel we consider the two-class problem, where the classes C, T'D
and the classes I D, U, G are unified, respectively. The cells of the first class are
characterized as malignant while the cells of the second class are characterized
as benign. As in the standard cytological practice, it is not expected to obtain
good classification results among the five classes as displasias usually indicate a
transition from a healthy to a pathological status.

Table 1. Results of the two variants of RBF-MST on the training and the test set.
The first and the third line of the table contain the results of the two variants when all
clusters produced by the clustering algortihm are used, while the remaining two lines
contain the results of the two variants when the single element clusters are removed

Accuracy on|Accuracy on
training set test set

RBF-MST1, 98.05% 96.12%

all clusters

RBF-MST1, 97.59% 96.67%

all non single element clusters

RBF-MST?2, 97.84% 96.43%

all clusters

RBF-MST?2, 96.99% 96.32%

all non single element clusters

The results presented in table 1, show that the two variants of the RBF-
MST discriminate very well among the two cell classes. This is an indication
that there are clear distinctions between the two classes, in terms of the 26
attributes that were used, despite the fact that the two types of displasia are
difficult to identify correctly. This happens because the number of the available
data from displasias is very small compared to that of the other three classes.
In particular, the RBF-MST1 variant gives slightly better results than the other
variants, when the single element clusters are not taken into account.

In table 2, the confusion matrices of the test set for the two variants when
all clusters and all except the single element clusters are presented.

From this table, it is shown that the above variants perform more or less
the same kind of errors. This is an indication that they give almost equivalent
results.

As a means of comparison to previous work, we present here the results of
three classifiers that are frequently met in practice. These are: (a) the RBF clas-
sifier described in [12], (b) the k-nearest neighbor classifier and (c) the multilayer
perceptron (see e.g. [22]). The RBF classifier gives 96.24% classification accuracy
on the test set 2. The k-nearest neighbor classifier gives 95.25% classification ac-
curacy on the test set, for k = 1,3,5,9,13. The multi-layered perceptron has
been trained with backpropagation in [10], using a subset of the dataset that we

2 It should be noted that in this case, the training set was 30% of the whole data set.



Table 2. Confusion matrices of the two variants of RBF-MST on the training and
the test set when (a) all clusters are taken into account and (b) all clusters with more
than one element are taken into account. The (1,2) element of the above confusion
matrices corresponds to the number of cells that belong in the class malignant and
have been identified as benign. The opposite holds for the (2,1) element. For example,
in the matrix of RBF-MST1 when all clusters are considered, 229 malignant cells have
been classified as benign and 132 benign cells have been classified as malignant

|| |Confusion matrix”

RBF-MST1, all clusters 2074 229
132 6875
RBF-MST1, all non single element clusters|2127 176
134 6873
RBF-MST?2, all clusters 2101 202
130 6877
RBF-MST?2, all non single element clusters|2098 205
138 6869

used here (about 11000 cells). Specifically, 30% of the vectors of this set formed
the training set and the remaining 70% the test set, such that the original class
distribution is preserved in the two datasets. The results of that method were
similar to the ones obtained here (95.7% — 97.3% accuracy on the test set).

Clearly, RBF-MST exhibits almost the same performance with the RBF clas-
sifier described in [12]. Also, RBF-MST performs slightly better than k-nearest
neighbor algorithms and, in addition, the resulted RBF network, in parallel
implementation, responds much quicker than k- nearest neighbor. Finally, the
RBF-MST performs equally well with the multilayer perceptron. However, it
does not require multiple runs with different number of hidden layer nodes, as
is the case with the back-propagation like schemes that are used for training
multilayer perceptrons.

4 Concluding remarks

In this paper a new scheme, called RBF-MST, is described, which is suitable
for training of RBF neworks. The new scheme does not rely on the idea of
cost function optimization and thus, it does not require multiple runnings to
determine the best possible solution, as is the case of other famous classifiers
such as the multilayer perceptrons. Actually, the minimum spanning tree of a
graph on which the proposed scheme relies is (under broad conditions) unique,
thus the algorithm is applied once in the data set.

The proposed scheme exhibited very satisfactory performance on a real cy-
tological application, which compares well to the performance of other well-
known classifiers, such as multi-layered perceptrons and the k-nearest neighbor.
Of course, in order to get furhter insight on the behavior of the algorithm, various
data sets with different characteristics have to be used.



One possible extension for RBF-MST is to use covariance matrices X; instead
of 0?’s in the first layer nodes of the RBF network, since they describe more
accurately the way the points of a cluster are spread around its center.

Also, it would be interesting to focus on a property that is inherit to the
proposed algorithm: the produced clusters need not be of spherical shape. In
this case, their representation by their mean is not the best choice. One way to
face this problem is to use cluster validity indices (see e.g. [22]), to take an idea
of the shape of a cluster. If for example an elongated cluster is produced, more
vectors may be employed for its representation.

In addition, one may perform the basic clustering MST algorithm (see e.g.
[22]) and then utilize the class information. It is expected that this approach will
reveal the natural clustering structure of the data set. The class information will
be used for further refinement.

Finally, other clustering techniques may be used instead of the proposed one
for the determination of number of the first layer nodes as well as their parameter
vectors.

References

1. Anderberg M.R. Cluster Analysis for Applications, Academic Press, 1973.

2. J. P. A. Baak, Manual of Quantitative Pathology in Cancer Diagnosis and Prog-
nosts. Springer-Verlag, Berlin Heidelberg, Germany, first ed., 1991.

3. Chen S., Cowan C.F.N., Grant P.M. “Orthogonal least squares learning algorithm
for radial basis function networks,” IEEE Transactions on Neural Networks, Vol.
2, pp. 302-309, 1991.

4. Everitt B. Cluster Analysis, 2nd ed., Halsted Press, 1981.

5. Hoppner F., Klawonn F., Kruse R., Runkler T., Fuzzy cluster analysis, John Wiley
and sons, 1999.

6. Horowitz E., Sahni S. Fundamentals of Computer Algorithms, Computer Science
Press, 1978.

7. Hush D.R., Horne B.G. “Progress in supervised neural networks,” IEEE Signal
Processing Magazine, Vol. 10(1), pp. 8-39, 1993.

8. “Introduction to cytometry and histometry,” tech. rep., 1st COMETT Interna-
tional Cource on Microscope Imaging in Biology and Medicine, Grenoble, France,
Dec. 1991.

9. Kalouptsidis N. Signal Processing Systems, Theory and Design, John Wiley, 1997.

10. Karakitsos P., Botsoli-Stergiou E., Pouliakis A., Tzivras M., Archimandritis A.,
Liossi A., Kyrkou K., “Potential of the Back Propagation Neural Network in the
Discrimination of Benign from Malignant Gastric Cells”, Analytical Quantitative
Cytology and Histololy, 1996, 18:3: 245-250.

11. Karayiannis N.B., Mi G.W. “Growing radial basis neural networks. Merging super-
vised and unsupervised learning with network growth techniques,” IEEE Transac-
tions on Neural Networks, Vol. 8(6), pp. 1492-1506, 1997.

12. Koutroumbas K., Paliouras G., Karkaletsis V., and Spyropoulos C.D., ” Compari-
son of Computational Learning Methods on a Diagnostic Cytological Application”,
Proc. of the European Symposium on Intelligent Technologies, Hybric Systems and
Their Implementation on Smart Adaptive Systems EUNITEQ1, Tenerife, Spain,
pp. 500-508, 2001.



13.
14.
15.
16.
17.

18.
19.

20.

21.

22.
23.

24.

25.

Liu C.L. Introduction to Combinatorial Mathematics, McGraw-Hill, 1968.
Luenberger D. G., Linear and nonlinear programming, Addison Wesley, 1984.

J. Moody, C. J. Darken, “Fast learning in networks of locally tuned processing
units”, Neural Computation, Vol. 6(4), pp. 281-294,1989.

Park J., Sandberg I.W. “Universal approximation using radial basis function net-
works,” Neural Computation, Vol. 3(2), pp. 246-257, 1991.

Park J., Sandberg I.W. “Approximation and radial basis function networks,” Neu-
ral Computation, Vol. 5(2), pp. 305-316, 1993.

I. Pitas, Digital Image Processing Algorithms. Prentice-Hall, first ed., 1993.

Platt J. “A resource allocating network for function interpolation,” Neural Com-
putation, Vol. 3, pp. 213-225, 1991.

J. C. Russ, The Image Processing Handbook. Boka Raton: CRC Press, IEEE Press,
second ed., 1995.

M. Sonka, V. Hlavac, and R. Boyle, Image processing analysis and machine vision.
Chapman&Hall, Cambridge, Great Britain, first ed., 1994.

S. Theodoridis, K.Koutroumbas, Pattern Recognition, Academic Press, 1998.
Widrow B., Hoff M.E., Jr. “Adaptive switching circuits,” IRE WESCON Conven-
tion Record, pp. 96-104, 1960.

Widrow B., Lehr M.A. “30 years of adaptive neural networks: Perceptron, mada-
line, and backpropagation,” Proceedings of the IEEE, Vol. 78(9), pp. 1415-1442,
1990.

Yingwei L., Sundararajan N., Saratihandran P. “Performance evaluation of a se-
quential minimal RBF neural network learning algorithm,” IEEE Transactions on
Neural Networks, Vol. 9(2), pp. 308-318, 1998.



	header: 2nd Hellenic Conf. on AI, SETN-2002, 11-12 April 2002, Thessaloniki, Greece, Proceedings, Companion Volume, pp. 283-292


