
WEAR: A Web-Based Authoring Tool for Building
Intelligent Tutoring Systems

Maria Moundridou & Maria Virvou

Department of Informatics, University of Piraeus
80 Karaoli & Dimitriou St., Piraeus 18534, Greece

Phones: +3014142133, +3014142269
Fax: +3014142264

{mariam,� mvirvou}@unipi.gr�

Abstract. WEAR is a Web-based authoring tool for the construction of
Intelligent Tutoring Systems (ITSs) in Algebra-related domains, such as
physics, economics, chemistry, etc. In WEAR’s authoring environment
instructors are able to construct problems and tests and also build adaptive
electronic textbooks. In return, WEAR generates a learning environment in
which students can solve problems and study the topics of the curriculum.
Apart from modelling the student which is a common practice in almost all
ITSs and ITS authoring tools, WEAR deals also with modelling the other class
of its users: the instructors. Based on the user models it maintains, WEAR
adapts the interaction with both students and instructors and provides them with
individualised feedback and help. In this paper we will describe WEAR’s
operation and functionality and discuss how this operation is enhanced by the
system’s user modelling capabilities.

1 Introduction

One-to-one tutoring is believed to be one of the most effective methods of instruction
(e.g. [1]). Unfortunately, the large number of expert instructors that would be needed
in such an educational setting make this ideal form of instruction unfeasible.
Intelligent Tutoring Systems (ITSs) are computer-based instructional systems aiming
at providing each student with a learning experience similar to the ideal one-to-one
tutoring. In particular, ITSs have the ability to present the teaching material in a
flexible way and to provide learners with tailored instruction and feedback. A number
of successful evaluations of ITSs (e.g. [5], [11]) have managed to show that such
systems can be effective in improving learning by increasing the students’ motivation
and performance in comparison with traditional instructional methods. However, ITSs
are still seen with scepticism due to the fact that they have not been extensively used
in real educational settings. The main reason for this limited use is probably the fact
that the task of constructing an ITS is complex, time-consuming and involves a large
number of people including programmers, instructors and experts of a specific
domain. Moreover, once constructed, an ITS for a specific domain can not be re-used
for different domains without spending much time and effort. An approach to

simplifying the ITS construction is to develop ITS authoring tools that can be used by
a wider range of people to easily develop cost-effective ITSs.

In the last decade a lot of research energy has been put in building ITS authoring
tools. Murray in his paper reviewing the state of the art for ITS authoring tools [10],
has classified these systems based on their capabilities and concluded that they fall
into two broad categories: those which focus on how to sequence and teach relatively
canned content (pedagogy-oriented authoring tools) and those which focus on
providing rich learning environments in which students can learn skills by practicing
them and receiving feedback (performance-oriented authoring tools).

WEAR, the system we will describe in this paper, mainly belongs to the category
of performance-oriented authoring tools, since it provides a learning environment in
which students can learn how to solve problems in various algebra-related domains.
In particular, WEAR deals with the generation of instruction, since it offers the ability
of problem construction and also the ability of building adaptive electronic textbooks.
In that sense it shares the same focus with RIDES [9], an authoring system used for
the construction of tutors that teach students how to operate devices through
simulations. A system which adds capabilities to RIDES is DIAG [12], a tool which
simulates equipment faults and guides students through their diagnosis and repair.
DIAG is concerned with the creation of domain knowledge and performs student
error diagnosis by providing a mechanism that is applicable to many domains that are
related to diagnosis of equipment failures. In the same way WEAR performs student
error diagnosis by providing a mechanism that can be applied to many algebra-related
domains.

However, WEAR also shares capabilities with authoring tools belonging to the
pedagogy-oriented category. In particular, WEAR gives instructors the ability to
control the order by which students solve problems and study the teaching material by
assigning a value to each problem’s attribute called “level of difficulty” and by
defining prerequisite relationships between topics of the electronic textbook.
Therefore, WEAR is also concerned with managing the sequence of the curriculum on
top of generating it. The former is a characteristic that can likewise be met in a system
called REDEEM (Major, Ainsworth & Wood, 1997). REDEEM expects the human
instructor to describe existing teaching material in terms of their difficulty, their
generality, etc., to construct teaching strategies (i.e. when and how to test the students,
how much hinting and feedback to offer, etc.) and to identify students. The tool
exploits the knowledge provided by the instructor and its default teaching knowledge
to deliver individualised instruction to students. Another pedagogy-oriented system is
GTE [13]. GTE allows an author to develop courseware declaratively, through the
creation of various instructional objects (exercises, presentations, examples, etc.) that
make up a course. The central component of GTE’s architecture is a large generic
instructional knowledge base containing instructional tasks and methods. This
knowledge base makes GTE able to take the declarative courseware specification that
an author has given and use it in a real instructional context.

The users of ITS authoring tools are instructors who are responsible for the
authoring procedure and learners who work with the produced ITSs. While learner
modelling is a common task that is performed in almost every ITS and in many ITS
authoring tools, instructor modelling has not gained any attention yet. This is an
observation made also by Kinshuk and Patel in [4]: “Whereas the work on student

modelling has benefited by the user modelling research in the field of HCI, the
research on the role of a teacher as a collaborator in the computer integrated learning
environments is almost non existent.” However, the role of instructors as
users/authors of ITS authoring tools is very important for the effectiveness of the
produced ITSs. In order for authoring tools to benefit the most from the involvement
of instructors, they should provide individualised feedback to them throughout the
ITS’s life cycle. This can be achieved by an instructor modelling component
incorporated in the architecture of the authoring tool [17].

Indeed, WEAR is an ITS authoring tool for the Web that models not only its
students-users but also the instructors who author the ITSs to be generated [15].
Furthermore, WEAR’s user models (instructor and student model) interact with each
other by exchanging information [16]. This communication mimics in some sense the
interaction that takes place in a real setting of a one-to-one tutoring: both the
instructor and the student build models of each other and these models affect their
attitude towards the learning process.

This paper is a review of the current version of WEAR which incorporates new
features, such as the adaptive navigation support provided to students and the
instructor modelling mechanisms that are used for offering intelligent and tailored
assistance to instructors. An earlier version of WEAR, focusing on problem
construction and solving, was described in [14]. In the main body of this paper we
will present WEAR’s architecture and operation and describe how the student and
instructor modelling components are incorporated in it.

2 Wear’s Architecture

The system’s underlying architecture is shown in Figure 1. The Authoring
components contain the system’s modules dealing with courseware construction and
management. These are tools for describing a domain in terms of variables and
equations, associating domain variables with topics of the electronic textbook,
specifying relationships between topics, uploading teaching material, managing
student records, constructing new problems and tests and retrieving problems that
were previously constructed. The information that the instructor passes to the
Authoring components forms the database of Domain knowledge and problems.

The Instructor modeller is responsible for building and updating each instructor
model. The Instructor model holds: i) information obtained explicitly by asking the
instructors (such information may be the instructor’s preferences concerning the
course and his/her teaching expertise), and ii) implicit information inferred by WEAR
(such as the instructor’s interest in some categories of problem). The Instructor model
provides information that is used by the system to individualise the interaction with
each instructor; for example, when an instructor browses the categories of problem
s/he finds already pre-selected those categories that s/he is interested in.

Fig. 1. WEAR’s architecture

The Tutoring components consist of components that interact with students while
they are solving problems, present the teaching material in an adaptive way and form
individualised advice for students. To perform these tasks, the Tutoring components
need to know who each student is and what s/he knows so far, what the structure of
the domain being taught is (e.g. which are the prerequisite concepts a student should
know before studying a specific concept) and which the correct equations that
describe this domain are. The sources for all this information are the Student models
and the Domain knowledge and Problems. A Problem Solver included in the Tutoring
components is using its knowledge about solving systems of linear equations correctly
in order to inform the Student modeller about the problem solving activity of the
student. The Problem Solver is also using information from the Domain knowledge
and problems. In case of an error, the Student modeller is responsible for diagnosing
the cause of it. The Student modeller is also responsible for updating the Student
model based on the student’s actions when interacting with the system (reading or not
topics of the electronic textbook, solving correctly or not a problem, etc.).

The resulting ITSs from WEAR have a Student interface that incorporates a
speech-driven animated agent which provides speaking messages to the student [8].
On the other hand, the Instructor interface does not include any animated agent and it
operates as a conventional GUI.

As shown in the above figure, WEAR uses its instructor and student model for
instructors and students respectively but also vice versa. This means that the model of
each class of user is also used as a source of information to be passed to the other
class of user. This is done both explicitly by informing the other class of user and
implicitly by affecting the model of the other class of user. For example, the students’
performance recorded in the student models is used to calculate the degree of an
instructor’s tendency to overestimate or underestimate the level of difficulty that s/he
assigns to problems. If a high degree of such a tendency seems to exist, it is recorded
in the instructor’s model and used to provide individualised help to the instructor (e.g.
to remind him/her of this when constructing new problems). Similarly an instructor
model may affect student models. For example, the students’ level of knowledge,
which is recorded in student models, is assessed taking into account the students’

errors. These may either be mathematical or domain errors. By default WEAR
considers the two kinds of error equally important; however, if an instructor model
indicates a specific instructor’s preference to weigh more one kind of error than the
other, then the students’ level of knowledge is calculated taking into account the
instructor’s preference.

The implementation of the system is based on the client-server architecture.
WEAR resides on a Web server. Both students and instructors are clients who can use
the teaching and authoring services offered by the system using a conventional Web
browser.

3 WEAR’s Operation

WEAR functions in two different modes: the instructor’s mode and the student’s
mode. The instructor’s mode provides the environment of the authoring tool itself
while the student’s mode provides the environment for the ITS that WEAR produces.
In the student’s mode, students are presented with a number of problems to work on
and are provided with individualised feedback while they are solving them. They also
have at their disposal an electronic textbook and are offered navigation support
adapted to their individual knowledge. In the instructor’s mode the instructor is able
to construct new problems, retrieve previously created ones and author the adaptive
electronic textbook. In all cases, WEAR provides automatic assistance, as will be
discussed in the subsequent sections.

3.1 The Authoring Environment

The tool takes input from a human instructor about a specific equation-related domain
(e.g. economics). This input consists of knowledge about variables, units of measure,
formulae and their relation. An example of input to the system that an instructor could
provide to describe a portion of the domain of economics is shown in Table 1.

Table 1. Input example from the domain of economics

Variable’s description: Variable’s name
Gross Domestic Product: GDP, Gross National Product: GNP, Net Factor Payments from abroad: NFP,
Private Consumption: C, Investment: I, Government consumption and investment: G, Net exports: NX,
Private disposable income: DY, Transfers received from the Government: TR, Interest payments on the
Government Debt: INT, Taxes paid to the Government: T, Private saving: Spvt, Government saving:
Sgovt, National saving: S, Current account balance: CA
Equations
GDP=GNP-NFP; Spvt=DY-C; GDP=C+I+G+NX; Sgovt=T-TR-INT-G; DY=GDP+NFP+TR+INT-T;
S=Spvt+Sgovt; CA=NX+NFP; S=I+CA

When an instructor wishes to create problems s/he is guided by the system through
a step by step procedure. At each step of this procedure the instructor should specify
values for some parameters needed to construct a problem. In particular, the
procedure of constructing a problem is the following: The system displays every
variable that the human instructor has entered when describing the domain and
requests the unknown. The system considers automatically all the variables, which

depend on the “unknown” (according to the equations), as possible given data. These
variables are shown to the instructor who should now enter their values. The system
follows the instructor’s actions and reports any inconsistencies. For example, if the
instructor enters values for fewer variables than those needed for the problem to be
solvable then the system points out the error. Finally, the system produces a simple
problem text describing the given and asked data, which the instructor may change to
make it more realistic and comprehensible. The information concerning the known
and unknown variables is used by WEAR to examine the domain equations and
isolate the ones that are needed for the problem to be solved (Figure 2). After the
construction of a problem the tool lets the instructor preview the problem text and the
solution of the problem as formulated by the system. At this point, the instructor is
asked to assign to the problem the appropriate level of difficulty. The system uses this
measure in order to suggest to each student what problem to try next.

Fig. 2. Problem construction

While students are tackling the given problems the system collects evidence about
the level of difficulty so that it can provide feedback to the instructor. For example, if
the majority of the students of a certain level have failed in solving a particular
problem, which has been assigned to this level, then the instructor is informed. In a
case like this, perhaps the instructor may wish to reconsider the level of difficulty
since there is evidence that the problem may be of a higher level of difficulty. On the
other hand, if many students have managed to solve a problem of a higher level of
difficulty than the one proposed by the instructor, the level of difficulty may have
been overestimated by the instructor. In this case too, the system informs the
instructor. In both cases, the tool does not take the initiative to alter the level of
difficulty by itself: it suggests the instructor to increase or decrease this measure
according to the observed students’ performance in a specific problem. In this way an
instructor is being assisted by the system in the classification of problems. Beyond
this kind of problem in which the students are tested over their ability to solve a

system of linear equations (mathematical skills) and their knowledge of the equations
describing the particular domain, WEAR also offers instructors the ability to create
multiple-choice tests. Since there are topics of the curriculum that can not be assessed
by problems such as the above mentioned, by using multiple-choice tests instructors
can be aware of their students’ performance and understanding in these topics as well.

Beyond constructing a problem by himself/herself, the instructor has the ability to
explore the problems constructed by others and choose the ones that s/he desires to be
accessible by his/her class. Since new problems (belonging to different domains,
involving different variables, etc.) can be continuously added to the system, there is
no way for the system to have fixed categories of problem. Every time an instructor
constructs a new problem the system performs this problem’s categorisation based on
some parameters. The problems are first categorised according to the domain to which
they belong. At a second level the problems of each domain are categorised according
to the variables they involve and their level of difficulty. Every variable of the domain
can possibly form a problem category. For example, a problem like: “A force of 100
Newtons is acting on a 25 kg object which is initially stable. After 10 secs how much
is the impulse?” belongs to the broad category “Physics” and in the sub-categories
“Impulse”, “Velocity” and “Acceleration” due to the variables involved in it. The
same problem could also belong to the sub-category “level of difficulty 1” based on
the problem’s level of difficulty as this has been defined by the instructor.

Instructors are allowed either to browse the collection of problems by selecting the
categories and sub-categories that match their needs and interests, or to search the
entire collection using some keywords. An instructor modelling mechanism
incorporated in the system is responsible for tailoring the interaction of the instructors
with the system to the instructors’ needs. The exact way, in which this adaptation of
the interaction to the instructors’ needs is performed, is described in section
“Instructor modelling”.

Finally, WEAR allows the authoring of electronic textbooks by instructors and
delivers them over the WWW to learners [7]. These textbooks offer navigation
support to students, adapted to their individual needs and knowledge. The authoring
procedure to create an adaptive electronic textbook with WEAR is quite simple. In
particular, the instructor should prepare HTML files for the topics that would be
contained in the electronic textbook. The next step is to use WEAR’s facilities for
uploading these files to the WEAR server. For each uploaded file the instructor must
specify a title, a difficulty level and the position that it should have in the topics
hierarchy. S/he should also relate topics to the domain variables. Finally, the
instructor must edit the is_prerequisite_of and is_related_to relationships between
topics. This information is used to form WEAR’s domain model. The domain and
student models are used by WEAR to generate a table of contents for each student.
This table of contents consists of links to each topic of the textbook. These links are
annotated in order to inform students about the educational appropriateness of the
topic behind them. When building an electronic textbook, instructors are provided
with tools that verify the consistency of the course and report possible problems or
errors, such as the case when the prerequisite relationships imply that a topic
indirectly requires the knowledge of itself. To offer more intelligent and
individualised help WEAR relies on the information provided by the instructor
modelling component that it embodies.

3.2 The Learning Environment

Information obtained from student models as well as knowledge of the domain being
taught, are exploited by WEAR to provide adaptive navigation support to students [2].
To achieve this, WEAR makes use of the adaptive link annotation technique: students
interacting with the system see visual cues (different icons next to each link) that
inform them about the current state both of the available problems and of the topics
constituting the teaching material. This is done in order to facilitate the student’s
choice about which problem to solve next and which topic to study, as well as to
provide them with information concerning the already mastered topics and concepts.

Fig. 3. Solving a problem while in student’s mode

When a student attempts to solve a problem, the system provides an environment
where the student gives the solution step by step. At first the student is presented with
a problem statement like the one shown in Figure 3. The student is requested to write
down the equations that are needed to solve the problem and then s/he is requested to
mathematically solve the problem. To detect the erroneous answers the system
compares the student’s solution to its own at every step. The system’s solution is
generated by WEAR’s Problem Solver, which is implemented in PROLOG. The
Problem Solver incorporates knowledge about how to solve systems of linear
equations correctly and may generate the solution to a problem using information
about the specific domain to which the problem belongs (e.g. physics). During the
process of solving a problem the student’s actions are monitored by the system. In
case of an erroneous action, the Problem Solver passes the student’s answer to the
Student modeller, which is then responsible for diagnosing the cause of the error.
Based on this diagnosis, the system provides the student with the appropriate
feedback message. As has been already mentioned, the student interface includes an
animated speaking character which is responsible for communicating the instructions
and any feedback messages to the students.

4 User Modelling in WEAR

4.1 Instructor Modelling

The instructor modelling component monitors each instructor’s interactions with
WEAR and constructs and/or updates his/her user model. In particular, the instructor
aspects that are being modelled in WEAR, are the instructor’s preferences, usual
activities, special interests and his/her level of expertise in teaching. These are
described below.

In WEAR the instructor may give some long-term preferences as to whether s/he
wishes the course to be difficult, average or easy or whether s/he wishes it to be very
popular or fairly popular or whether s/he is not interested in this feature. Each of these
preferences is associated with a percentage of failure in performances of class
students and student interest in the course (e.g. how many times students visit the
electronic textbook, and/or how many problems they have solved). The instructor may
also state how important s/he considers each category of student error to be. In that
way the students’ level of knowledge could be calculated according to the instructor’s
preferences, assigning higher weight to those errors that the instructor has defined as
more important.

Instructor’s activities that are frequent are also recorded in his/her long-term
model. For example, if an instructor often constructs problems that belong to the same
category then it is inferred that this particular instructor is a “major contributor” in
that sort of problem and this usual activity of his/her is recorded in his/her user model.
In addition, the instructor’s interests are inferred and recorded in the long-term
instructor model. For example, if an instructor frequently searches for specific
categories of problem then the inference made is that this instructor is “interested” in
these categories of problem and this special interest of his/her is recorded in his/her
user model.

Finally, in WEAR the instructor model records the teaching expertise of the
instructor. This is explicitly stated by the instructor himself/herself. Each instructor
may situate himself/herself in one of three categories: novice, having little experience
and experienced. In the case of novice tutors and those having little experience, the
authoring tool offers more detailed help concerning the teaching strategies that the
tutor may select and shows him/her by default the results of the consistency checks.

The instructor model is utilised by the system in the following ways:
To provide individualised help to the instructor. For example, if an instructor has

stated a long-term goal that s/he wishes to render the course popular within the class
students then the authoring tool will examine whether the instructor’s short-term goals
are consistent with his/her long-term goals. Student models provide information about
how many students have attempted certain exercises and how many times they have
seen certain lectures.

To adapt the interaction with instructors. When an instructor wishes to find a
problem and decides to browse the available categories, s/he will see that in the
categories’ list the ones that s/he frequently explores are pre-selected for him/her by

the system. In addition, if new problems belonging to the categories that a particular
user is interested in are added, the system informs the user when s/he logs in.

To promote collaborative work among instructors. Users are offered the choice of
seeing what other users have done along two dimensions: the course structure and the
constructed problems. Concerning the former, the information that is presented to the
instructor is the structure of a similar course created by another instructor. In that
way, instructors who may be novice as course designers could be assisted by more
experienced peers who have previously used WEAR. When selecting to see problems
constructed by others, the instructor is presented with a list of problems constructed
by instructors who are considered by the system as “major contributors” in the
categories that this specific instructor is considered “interested”.

4.2 Student Modelling

The student model that WEAR maintains is a combination of a stereotype and an
overlay student model, similarly with other systems such as [3]. The stereotype
student model (formed either directly by the instructor or after a preliminary test that
has been posed to the student) classifies initially the student according to his/her
knowledge of the domain and his/her mathematical skills. As a result of this, each
student is assigned to a stereotype (novice, beginner, intermediate or expert). The
stereotype model defines initial values for the overlay student model. The latter is
represented by a set of pairs “concept-value”. The concepts are domain concepts and
concepts concerning the equation solving process (e.g. isolating the unknown variable
in an equation). Domain concepts include domain variables and topics constituting the
teaching material. For example, each variable presented in Table 1 constitutes a
domain concept for the economics domain. The value for each concept is an
estimation of the student’s knowledge level of this concept and it is initialised by the
stereotype student model. If, for example, the stereotype model indicates that a
student is “intermediate” as to his/her mathematical skills and “beginner” as to his/her
knowledge in the domain, then the concepts constituting the overlay student model
are given the corresponding values: every concept that concerns the equation solving
process and that has not been rated by the instructor as difficult or very difficult is
considered known by the student; every domain concept rated as very easy is
considered already known. After the initialisation of each “concept-value” pair, the
student model is updated taking into account the student’s performance in solving the
problems associated with this concept and the reading or not of the corresponding
teaching material. For example, if a student has successfully solved all problems
evaluating the domain concept “Gross Domestic Product – GDP” and s/he has also
read the corresponding topics of the electronic textbook, then in his/her student model
the concept “GDP” will hold the value 1 and thus it will be considered known.

As has been already mentioned, during the process of solving a problem the
student’s actions are monitored by the system and in case of an erroneous action the
Problem Solver passes the student’s answer to the Student modeller, which is then
responsible for diagnosing the cause of the error. The errors that are recognised by
WEAR’s Student modeller are the following:

1. Domain errors. These include errors that are due to the student’s unfamiliarity with
the domain being taught. For example, if a student enters the equation U=d*t
instead of U=d/t, then the error is attributed to the category of Domain errors and in
particular to the sub-category of “erroneous relationship between variables”.

2. Mathematical errors. These include errors that are due to the student’s lack of
skills in solving mathematical equations. Such errors could be calculation errors,
errors in isolating the unknown variable, etc. For example, if a student trying to
isolate d in the equation U=d/t enters d=U/t instead of d=U*t, then the error is
attributed to the category of Mathematical errors and in particular to the sub-
category of “wrong isolation of the unknown variable”.

5 Conclusions

In this paper we described WEAR which is a Web-based authoring tool for the
construction of Intelligent Tutoring Systems in Algebra-related domains. In WEAR’s
authoring environment instructors are able to construct problems and tests and also
build adaptive electronic textbooks. In return, WEAR generates a learning
environment in which students can solve problems and study the topics of the
curriculum. An important aspect of the system is its user modelling capabilities. In
WEAR both classes of user (students and instructors) are being modelled, unlike what
is happening with most ITS authoring tools that only model the students. Based on the
user models it maintains, WEAR can tailor the interaction with each user. In the near
future we plan to evaluate WEAR in whole and especially the user modelling issues
discussed in this paper.

References

1. Bloom, B.: The 2 sigma problem: The search for methods of instruction as effective as one-
to-one tutoring. Educational Researcher. 13(6) (1984) 4-16

2. Brusilovsky, P.: Methods and techniques of adaptive hypermedia. User Modeling and User-
Adapted Interaction. 6(2-3) (1996) 87-129

3. Hohl, H., Böcker, H., Gunzenhäuser, R.: Hypadapter: An Adaptive Hypertext System for
Exploratory Learning and Programming. User Modeling and User Adapted Interaction, 6(2-
3) (1996) 131-155

4. Kinshuk & Patel, A.: Intelligent Tutoring Tools: Redesigning ITSs for Adequate Knowledge
Transfer Emphasis. In: Lucas, C. (ed.): Proceedings of 1996 International Conference on
Intelligent and Cognitive Systems. IPM, Tehran (1996) 221-226

5. Koedinger, K.R., Anderson, J.R., Hadley, W., Mark, M.: Intelligent Tutoring Goes to
School in the Big City. International Journal of Artificial Intelligence in Education. 8 (1997)
30-43

6. Major, N., Ainsworth, S., Wood, D.: REDEEM: Exploiting Symbiosis Between Psychology
and Authoring Environments. International Journal of Artificial Intelligence in Education. 8
(1997) 317-340

7. Moundridou, M., Virvou, M.: Authoring and Delivering Adaptive Web-Based Textbooks
using WEAR. In: Okamoto, T., Hartley, R., Kinshuk, Klus, J.P. (eds.): IEEE International

Conference on Advanced Learning Technologies; Issues, Achievements, and Challenges -
ICALT 2001. IEEE Computer Society, Los Alamitos California (2001) 185-188

8. Moundridou, M., Virvou, M.: Evaluating the Impact of Interface Agents in an Intelligent
Tutoring Systems Authoring Tool. In: Avouris, N., Fakotakis, N. (eds.): Advances in
Human-Computer Interaction I: Proceedings of the Panhellenic Conference with
International participation in Human-Computer interaction – PC-HCI 2001. Typorama
Publications, Patras Greece (2001) 371-376

9. Munro, A., Johnson, M., Pizzini, Q., Surmon, D., Towne, D., Wogulis, J.: Authoring
Simulation-centered tutors with RIDES. International Journal of Artificial Intelligence in
Education. 8 (1997) 284-316

10. Murray, T.: Authoring Intelligent Tutoring Systems: An analysis of the state of the art.
International Journal of Artificial Intelligence in Education. 10 (1999) 98-129

11. Shute, V., Glaser, R.: A large-scale evaluation of an intelligent discovery world: Smithtown.
Interactive Learning Environments. 1(1) (1990) 51-77

12. Towne, D.: Approximate reasoning techniques for intelligent diagnostic instruction.
International Journal of Artificial Intelligence in Education. 8 (1997) 262-283

13. Van Marcke, K.: GTE: An epistemological approach to instructional modelling.
Instructional Science. 26 (1998) 147-191

14. Virvou, M., Moundridou, M.: A Web-Based Authoring Tool for Algebra-Related Intelligent
Tutoring Systems. Educational Technology & Society. 3(2) (2000) 61-70

15. Virvou, M., Moundridou, M.: Modelling the instructor in a Web-based authoring tool for
Algebra-related ITSs. In: Gauthier, G., Frasson, C. and VanLehn, K. (eds.): Intelligent
Tutoring Systems: Proceedings of the 5th International Conference - ITS 2000. Lecture
Notes in Computer Science, 1839. Springer, Berlin (2000) 635-644

16. Virvou, M., Moundridou, M.: Student and Instructor Models: Two Kinds of User Model and
their Interaction in an ITS Authoring Tool. In: Bauer, M., Gmytrasiewicz, P., Vassileva, J.
(eds.): User Modeling 2001: Proceedings of the 8th International Conference UM2001.
Lecture Notes in Artificial Intelligence, 2109. Springer, Berlin (2001) 158-167

17. Virvou, M., Moundridou, M.: Adding an Instructor Modelling Component to the
Architecture of ITS Authoring Tools. International Journal of Artificial Intelligence in
Education. 12 (2001) 185-211

	header: 2nd Hellenic Conf. on AI, SETN-2002, 11-12 April 2002, Thessaloniki, Greece, Proceedings, Companion Volume, pp. 203-214

