
Heuristic Algorithms for Similar Configuration
Retrieval in Spatial Databases

Dinos Arkoumanis, Manolis Terrovitis,Lefteris Stamatogiannakis

Dept. of Electrical and Computer Engineering
National Technical University of Athens

Zographou 157 73 Athens, Greece
{dinosar,mter,estama}@dblab.ntua.gr

Abstract. The search for similar configurations is an important re-
search topic for content-based image retrieval in G.I.S. and spatial data-
bases. Due to the complexity of the problem, finding the fittest solution
in a large database is computationally intractable. Our work is focused
on designing, implementing and experimentally evaluating two heuris-
tic algorithms, an evolutionary and a hill-climbing one, that provide an
approximate solution. With the use of spatial indexes we manage to
efficiently deal with considerably large queries. We utilize a similarity
framework that addresses topological, directional and distance relations.
In this framework the problem of retrieving similar configurations is de-
fined as a binary constraint satisfaction problem. Our work complements
the existing work on similarity retrieval with two efficient, stochastic, al-
gorithms.

1 Introduction

A user of a G.I.S. system usually searches for configurations of spatial objects
on a map that match some ideal configuration or are bound by a number of
constraints. For example, a user may be looking for a place to build a house.
He wishes to have a house A north of the town that he works, in a distance no
greater than 10km from his child’s school Band next to a park C. Moreover, he
would like to have a supermarket D on its way to work. Modern GIS systems
look for a solution that satisfies all query conditions. In the case of complex
queries, like the above, it is very unlikely that a solution in the database exists.
An answer that indicates that no solution has been found is not very helpful.
In these cases the user is interested to know the closest possible answer. The
way to overcome this is either by having the user to relax the constraints he sets
on his ideal house configuration, or having an algorithm that returns the fittest
configurations rated by some similarity metric. The problem of configuration
similarity retrieval in spatial databases expresses the latter approach of the
problem. It has been an active area of research in the recent years [8]. Similar
problems are very common in information retrieval areas (WWW search engines



are a good example of this), where the user has an overview of the alternatives
if a perfect solution is not found.

Our work focuses on similar configurations retrieval. Retrieving the fittes t
configuration is a computationally intensive procedure. We use the similarity
framework of [8]. We address three kinds of relations: topological, directional
and distance.

Related work is presented by Roussopoulos et. al. [12]. They propose a tech-
nique for answering nearest neighbor queries with the help of an R-tree index.
Papadias et. al in [9], reduce the configuration similarity retrieval to several
smaller ones with the use of a spatial index. [9] uses only topological relations.
Moreover, the authors investigate variations of a forward checking and a min-
imum conflict local search algorithm. Finally, Papadias et. al., in [10], propose
a few algorithms for a similar problem, but deal with small queries and with a
limited version of the problem.

Related work partially deals with the problem as defined in [8] or address
rather easy versions of it. In this paper we design, implement and evaluate two
heuristic algorithms; a Hill-Climbing and an evolutionary one, and we investigate
the successful integration of the R*-tree index in them. We find an approximate
solution to the most computationally intensive version of the problem, using at
the same time significantly larger queries than most in approaches that have
appeared in the past. We experimentally evaluate the effect of several parame-
ters on the algorithms’ performance and study the behavior of several of their
variations.

The rest of the paper is organized as follows: In Sections 2 and 3 we present
the similarity retrieval framework. Section 4 proposes a Hill-Climbing and an
evolutionary algorithm. In Section 7 we present the results of the experimen-
tal evaluation of the algorithms’ performance. Our conclusions are presented in
Section 8.

2 Spatial Relations

As mentioned in Section 1, we use a similarity framework that relies on three
kinds of spatial relations, namely topological, directional and distance. Let us
now present a short description of each one.

Topological relations express the concepts of inclusion and neighborhood. We
use the topological relations of the 9-intersection model [2]. This model identifies
the following 8 pair-wise disjoint topological relations (Figure 1):

{Disjoint, Meet, Overlap, Inside, Covered by, Equal, Contains, Covers}

Two topological relations Ti and Tj are first degree neighbors iff there is an edge
(Ti, Tj) in the graph of Figure 1. For instance, Overlaps and Covers are first
degree neighbors while Overlaps and Equals are not. The similarity sigmaT of
two topological relations Ti and Tj is defined as follows [PAK98]:



Meet

p q

Overlap

q
p

Covers

p q

Equal

q

p

Covered_by

p q

Contains

p
q

Inside

p
q

Disjoint

p

q

Fig. 1. Topological relations and 1st degree neighbors graph

σT (Ti, Tj) =




1
τ (0 < τ < 1)

0
if

Ti = Tj

Ti and Tj are 1 st degree neighbors
otherwise

(1)

where τ is an application defined constant.
relative to one another (e.g., object a is north of object a). We follow a

centroid-based approach where the direction between objects is determined by
the angle between their centroids (a more expressive model is discussed in [14]).
This models identifies the following 8 directions:

{NorthEast, North, NorthWest, West, SouthWest, South, SouthEast, East}.
The similarity σA of each direction with a given angle θ is the following

trapezoid function [8]:

σA = (Ai, θ) =




θ/(i45o − a)
1

((i + 1)45o − θ)/(i45o − α)
0

if

(i − 1)45o < θ < i45o − α
i45o − α ≤ θ ≤ i45o + α
i45o + α < θ < (i + 1)45o

otherwise
(2)

where α is a constant that expresses the tolerance in our directional relations,
and i is an integer in the range 1..8. For θ = 0, we have an eastbound relation.

A distance relation D[d1,d2] between two objects indicates that the distance
between the centeroids of the two objects is no less than d1 and no more than
d2. For instance, relation D[0,d] means “closer than d” and relation D[d,∞] means
“further than d”.

The similarity measure of a distance dx with the relation D[d1,d2] is given by
the following equation [8]:

σD(D[d1,d2], dx) =
{

1
0 if

d1 ≤ dx ≤ d2

otherwise
(3)

3 Similarity Retrieval as a Constraint Satisfaction
Problem

Let us assume that we have a database storing the spatial objects Oof an image
I. Let also C be a set of query conditions. A typical database query Q looks



x0

x2

x1
x39 km

Fig. 2. Prototype

o4

o6

o5 o79.8 km

o0

o1
o3

o
2

o8

Fig. 3. Solution

for objects in the database that satisfy all conditions C. A similarity query is
something more general. It considers that conditions C describe a prototype and
looks for objects that are similar to it. In this section, we formalize such queries as
constraint satisfaction problems and we define a metric (the satisfaction degree)
that can be used to express similarity.

Example 1. Let us now consider the following similarity query over the spatial
objects {o0, ..., o8} of the image of Figure 3:

“Retrieve all configurations that are similar to the scene where there are four
objects x0, x1, x2 and x3such that object x0 meets object x1, object x1 is disjoint
to object x2 and it is in a distance of 8km to 10km from object x2 and object
x2 overlaps with object x3, which is north from object x2.”

Figure 2 illustrates the prototype of the example query. The assignment
{x0 ← o4, x1 ← o5, x2 ← o6, x3 ← o7}, illustrated in Figure 3, is similar to the
prototype; only one condition is lost since x2 does not overlap with x3.

A configuration similarity query Qcan be formalized as a binary constraint
satisfaction problem (BCSP), which is verbally defined in [6] as:

– A set of n variables {x0,. . . , xn−1}.
– For each variable xi a finite domain Diof potential values.
– For each pair of variables xi, xj a set of binary constraints Cij , where Cij is

a subset of Di × Dj .

Thus, a query Qis a triplet (V , D, C) where V ={x0, . . . , xn−1} is a set
of variables, D = {D0, . . . , Dn−1} is the set of their domains and C is a set
of constraints over x0, . . . , xn−1. Let {x0 ← oo, . . . , xn−1 ← on−1} be an
assignment of variables (where oi ∈ Di). The satisfaction degree of an assignment
{x0 ← o0, . . . , xn−1 ← on−1}, expresses how close this configuration is to the
query’s prototype and is defined as follows [8].

σ =

∑
i6=l,0≤i,j<n

σT (CT (xi,xj),T (oi,oj))+σA(CA(xi,xj),θ(oi,oj))+σD(CD(xi,xj),d(oi,oj))

3n(n−1)

(4)



Algorithms for
finding aproximate

solutions

Systematic
Algorithms

Genetic
Algorithm

Hill
Climbing
Algorithm

Backtracking
Algorithm

Forward
Checking
Algorithm

Exhaustive
Search

Heuristic
Algorithms

Algorithms that
find the globally
best assignment

Fig. 4. Algorithms for finding approximate solutions to similarity retrieval BCSP

where CT , CA, CD are the topological, directional and distance constraints re-
spectively between the variables xi, xj , and oi, oj are objects that are assigned
to these variables.

The satisfaction degree of an assignment can be calculated using several
other possible metrics. [13] describes conjunctive combination (i.e., the minimum
degree of satisfaction of individual constraints) and productive combination (i.e.,
the product of satisfaction degrees of individual constraints). The problem with
conjunctive combination is that it does not distinguish between assignments that
contain equally “bad” binary instantiations, while productive combination does
not differentiate between instantiations that fully violate some constraint(s).

Here we use the average combination metric that was proposed by [8], which
is the sum of all pair-wise satisfaction degrees divided by the total number of
constraints. This avoids the drawbacks of the other metrics (i.e., conjunctive and
productive combination) but is more computationally expensive (instantiations
cannot be abandoned as early in the search process). We choose this metric for
our work since it allows to sort assignments that are not perfect a lot easier than
the others. For the rest of the paper when we say an assignment a is better than
another assignment b, it will mean that assignment a has a greater degree of
satisfaction than assignment b.

4 Finding Approximate Solutions

In Section 3, we have seen that the similarity retrieval problem can be formalized
as a BCSP. BCSP is an NP-complete problem, thus, even with the use of indexes,
finding the best global solution is a computationally intensive procedure. Our
work is not focused in finding a solution for the BCSP but rather at finding
an approximate one. The algorithms that have been proposed [Ark01] for this
problem can be classified as shown in Figure 4. They are briefly sketched in the
sections 4.1 , 4.2.



4.1 Exhaustive search

Exhaustive search examines all possible assignments of query variables and eval-
uates their satisfaction degree in order to find the best possible assignment. The
above procedure is performed without pruning any part of the search space. As
a result it is highly inefficient, especially for large queries and large databases.

4.2 Systematic algorithms

Systematic algorithms also find the best assignment of query variables but they
avoid examining areas of the search space that do not lead to better assignments.
They take advantage of the data index (R*-tree for our data) and they perform
well for large queries and databases provided that we are interested in assign-
ments with high satisfaction degree. Unfortunately, if we are also interested in
assignments with lower satisfaction degree the performance of systematic algo-
rithms deteriorates a lot, because in this case they cannot avoid examining many
areas of the search space. [Ark01] proposed two systematic algorithms a back-
tracking and a forward checking. Backtracking does not check the areas of the
search space that do not lead to assignments with higher satisfaction degree than
the one it has already found. Forward checking, on the other hand, limits the
set of potential values of each variable of the query, according to the constraints
between the variables and the current partial instantiations.

4.3 Heuristic algorithms

The main difference between systematic and heuristic algorithms lies in the fact
that the latter do not always find the overall optimal assignment. Typically they
find an assignment with a high satisfaction degree quickly. Their performance
varies since they approximate the solution in a non-deterministic way.

Evolutionary Algorithms. Evolutionary algorithms [Hol62][5], instead of evolv-
ing a single assignment to increase the satisfaction degree, they evolve a popula-
tion of assignments with competitive criteria. A population p, of random assign-
ments is created. On this population a series of variation operators is applied.
In our implementation we use the mutation and the crossover operator. The
application of these operators is probabilistic; there is a mpprobability that the
mutation operator will be applied and an mc probability that the crossover op-
erator will be applied, for each assignment. After the application of the variation
operators the degree of satisfaction of each assignment is calculated according to
Equation 4 and a selection operator is applied to determine the assignments that
are going to survive to the next iteration (or generation if we use the evolution-
ary term). The selection procedure is probabilistic too. The best assignments are
more likely to survive, and the worst less. The selection is done is such a way
that the population size of each generation remains the same. This means that
in many cases some assignments are duplicated, sometimes more than once, at



the next generations, whereas others do not appear at all. We present below a
short description of each operator.

Mutation. Mutation is the most basic operator of an evolutionary algorithm. It
helps introduce new elements into an assignment and it enables the assignments’
population to evolve. The basic idea is to replace an object of the current assign-
ment with another one from the database. The techniques we use to choose the
variable to be re-instantiated and the new object to be assigned are described
in more details in Sections 5 and 6.

Crossover. The 2-point crossover technique [PMK+99][11], is used. Two points
of an assignment are chosen and the objects between them are exchanged with
those from another random assignment.

Tournament Selection. Three different ways of selecting the assignments that
will survive at the next generation, were examined:

– Proportional selection, where the chance of each assignment to survive is
proportional to its similarity.

– Ranking, where all assignments of the initial population are ordered accord-
ing to their similarity score and the best are chosen to survive. In variant of
this technique the objects that will survive at the next generation are chosen
with probability proportional to their rank.

– Tournament selection, where a subpopulation t of the initial assignments
is selected randomly and the best assignment of this population is chosen
for the next generation. This is repeated for each assignment of the next
generation.

After testing the three variants we chose the last one because it is the most
flexible. By changing the size of the subpopulation, the tournament size, the
randomness of the selection procedure can be adjusted. This way the random-
ness degree that gives the best performance to the algorithm can be found by
experimental methods.

The basic function of the evolutionary algorithms is described by the follow-
ing equation [3]:

x(t + 1) = s(v(x(t))) (5)

where x(t) is the population of the t generation and v() and s() are variation
and selection operators respectively.

Our evolutionary algorithms’ performance is affected greatly by several fac-
tors: the probability pm of each assignment to be mutated, the probability pc

of the crossover operator to be applied, the size of the tournament population
ts and the size of the generation population ps. After implementing the algo-
rithms we did extensive experiments to achieve a fine-tuning. In the procedure
of fine-tuning the four previous factors were adjusted in order to maximize the
satisfaction degree of the best assignment found in a time period of 2 minutes.



Local Search – Hill Climbing Algorithm Hill-Climbing uses an iterative
improvement technique. A single random assignment is created and a variable
is chosen to be re-instantiated (current variable). During each iteration, a new
object is selected from the domain of the current variable. If that object provides
a better similarity score, it is assigned to the current variable, and a new variable
is chosen to be re-instantiated. Otherwise some other object is selected and tested
on the current variable. The method terminates if no further improvement is
possible. The details of the algorithm are discussed in the following Section.

It is clear that Hill-Climbing algorithm highly depends on the selection of
the starting point. Moreover, it can only provide locally optimum assignments.
In such cases, no further improvement can be made, and the process will re-start
from another random assignment.

5 Variable selection

The choice of the variable that will be re-instantiated has a significant effect
on the performance of our algorithms. In both of the previous algorithms we
used the minimum conflict heuristic [7], which suggests the replacement of the
“worst” variable. Each variable in an assignment contributes a certain percentage
in the total inconsistent degree. The inconsistence degree of a variable xi in a
assignment S is defined as follows:

dgr(xi, S) =
2

n
− ∑

i6=l,i=k,0≤j<n

σ(C(xi,xj),(oi,oj))−
∑

i6=l,j=k,0≤i<n

σ(C(xi,xj),(oi,oj)) (6)

where σ(C(xi, xj), (oi, oj)) is the sum of the similarity measures given by equa-
tions 1, 2 and 3, C is the conjunction of CT , CA and CD and oi, oj ε S, are
the objects that are assigned to variables xi, xj respectively. This metric ex-
presses the difference that the satisfaction degree would have, if instead of the
object that is currently assigned to variable xi, an object that satisfied all the
constraints that bound the variable xi, were assigned.

In the Hill-Climbing algorithm the object that violates the most constraints,
as calculated by Equation 6, is selected to be substituted. After a variable is re-
instantiated, the same procedure is repeated with the rest of the variables until
new objects are assigned to all of them. When this occurs the algorithm outputs
the result and continues with the same assignment but with all variables being
considered, again, for substitution. A new random assignment is created when
the similarity of the assignment does not improve after trying to re-instantiate
all the variables.

In evolutionary algorithms our approach is slightly different. The object with
the highest inconsistence degree is always chosen to be re-instantiated with all
variables being considered for re-instantiation. If a local maximum has been
reached and no better assignment can be found a random object is chosen to be
re-assigned to the same variable. In this case, even if the variable that violates the
greatest number of constraints remains the same, the decreased similarity of the
assignment renders unlike the survival of the assignment in the next generation.



After providing the description of the algorithms we to discuss the improve-
ment that spatial indexing techniques can bring to them.

6 Value Selection

The choice of the objects that will be assigned to the variables of the query is
identical in both of our algorithms. We studied two basic strategies: a) To select
one object randomly b) to select the object that would give the highest satisfac-
tion degree to our assignment (fittest object). Selecting the fittest object without
the use of spatial indexes is a slow procedure, especially for large databases. In
order to overcome this, in our implementation, we used the R*-tree [1], which is
variant of the R-tree [4].

6.1 The R-tree

The R-tree is a height balanced tree and it can be considered as the extension
of the B+-tree in multiple dimensions. R-trees are used for the dynamic orga-
nization of a set of k-dimensional geometric objects (2-dimensional in our case)
representing them by the Minimum Bounding k-dimensional Rectangle (MBR).
Each R-tree node corresponds to the MBR that contains its children. The leaves
contain pointers to the objects of the database.

There are many variations of the R-trees. For our work we use a popular
variation, the R*-tree, which has the same structure as the R-tree but it uses a
more efficient clustering algorithm.

6.2 Using the R*-tree

Due to the increased computational cost of search for the fittest object, for an
existing assignment, a random substitution is the best choice if a spatial index
is not available. In the worst case, with an n variable query in an N object
database, 3(n-1) constraints for N objects must be examined. Using an R*-tree
index over the spatial data for the search procedure, enables the algorithms to
limit the search space significantly.

Before examining a sub-tree of the R*-tree, the algorithms check if its MBR
violates any constraints with the existing assignment. The similarity of a relation
between an MBR M2 and an object o1, is defined as the maximum similarity
of the relation of an object that may exist in M2 with o1. In this way we can
translate the relations between two objects o1 and o2to a set of prerequisite
relations between o1 and an intermediate node M2, where M2 is an ancestor of
o2, as illustrated in Table 1. The first column shows the topological relations
between two objects o1, o2 and the second column shows the relations that o1

and M2 must have in order for o2 to be a child of M2.The correspondence of
directional and distance relations is simpler. Whereas the similarity of a relation
between two objects o1 and o2 is actually the similarity of the relation of the two



Relation(xi, xj) Condition for intermediate nodes(Xi, xj)

equal equal∨cover∨contain

contain Contain

inside overlap∨covered by∨inside∨equal∨cover∨contain

cover cover∨contain

covered by overlap∨covered by∨equal∨cover∨contain

disjoint disjoint∨meet∨overlap∨cover∨contain

meet meet∨overlap∨cover∨contain

overlap overlap∨cover∨contain
Table 1. Conditions for intermediate nodes

Fig. 5. Prototype Fig. 6. Solution

objects’ centeroids, the similarity of the relation of o1 and M2 is the maximum
similarity or the relation between the centeroid of o1 and any point of M2.

Calculating the similarity of an MBR with an existing object, in this way,
enables the algorithm to prune all the R*-tree branches that cannot lead to
assignments with a higher satisfaction degree.

7 Experiments

We performed our experiments on four images concerning geographical areas
(such as the Long Beach roads) or VLSI circuits. The sizes of the images vary
from 5000 to 75000 data objects. In each image, we performed 5 sets of queries
in 5, 10, 15, 20 and 25 variables respectively.

We have constructed our queries from actual configurations on each image.
We chose a set of objects in each image and we created the queries in such
a way so that the relations between the objects in the images would be the
constraints between the variables in the derived queries. This method of con-
struction produced queries with some special characteristics. Each topological
constraint, between two variables, is satisfied for just one topological relation.
The distance tolerance is 10% for all distance constraints (the minimum and
maximum distances defined by the constraint are ±10% of the actual distance



between the objects). The directional constraint is satisfied by only one direction
or by two neighbor ones (for example N , NE ). The queries produced do not have
any universal constraints and they have only few, or just one, solutions on each
image. At the same time though, we are certain that a perfect solution exists for
each query, thus we can observe how close to the optimal are the assignments
that the algorithms find.

We tested 3 algorithms: The Evolutionary Algorithm, the indexed Evolu-
tionary algorithm, where the mutation is done by using the R*-tree, and the
Hill-climbing Local Search Algorithm. All algorithms were left to run for 2 min-
utes and the satisfaction degree of the best assignment found at the end of this
time period, was recorded. They were tested with 5 queries of each size on 4
images, and they performed 5 iterations of each run. As a result, for each query
size, we had 5×4×5 = 100 runs. The results for each algorithm can be seen in
Figure 5.

From the Figure 5 it is evident that the use of R*-tree increases the perfor-
mance of the algorithms, since the simple evolutionary algorithm is the worst
in all cases. Still, though, it performs quite well in comparison with the others,
for large queries. Both evolutionary algorithms perform better as the size of the
query grows. We conjecture that our genetic algorithm gets trapped easier at a
local maximum and always loses some constraints. In small queries, losing just
a few constraints has a grater impact on the satisfaction degree than in larger
queries where the total number of constraints is polynomially larger. It is, also
clear, that the Hill-Climbing Local Search outperforms both other algorithms for
all query sizes and at the same time demonstrates a robust behavior by perform-
ing equally well in all cases. This is more visible in Figure 6 where the average,
the best and the worst performance for each query size and each image are shown
for the Hill-climbing Local Search algorithm. As the size of the query grows the
derivation of the satisfaction degree of the assignment found, is decreased.

8 Conclusions

This paper applies heuristic algorithms in order to process spatial configuration
similarity queries. The goal is to retrieve the best assignment of database objects
to query variables resembling a given spatial configuration. We investigate a
version of the Hill-Climbing algorithm and two evolutionary algorithms. With
the use of spatial indices, the exhaustive domain search is avoided, giving us
the possibility to handle large queries, up to 25 variables, over large databases,
up to 75000 objects. The results, we obtain, show that our algorithms can find
satisfying approximations to the queries (i.e., assignments with high satisfaction
degree), with the assignments being more than 95% accurate even at the hardest
cases.

We believe these methods have a wide range of applications in spatial and
multimedia systems, as well as the upcoming video compression methods. An-
other area of application is the emerging spatiotemporal databases, where schedul-
ing problems requiring acceptable solutions fast, will be common.



Further experimenting with variations and similar algorithms, but mainly
with their tuning over the indexing techniques, will make the topological config-
uration similarity problem solvable, for even larger domains, aiming at millions
of objects.

References

1. N. Beckmann, H. Kriegel, and B. Schneider, R.and Seeger. The r*-tree: An efficient
and robust access method for points and rectangles. In Proceedings of the 1990
ACM SIGMOD International Conference on Management of Data, Atlantic City,
NJ, May 23-25, 1990, pages 322–331. ACM Press, 1990.

2. M. J. Egenhofer and R. D. Franzosa. Point-set topological spatial relations. Inter-
national Journal on Geographical Information systems, 5(2):161–174, 1991.

3. D. Fogel and A. Ghozeil. Using fitness distributions to design more efficient evolu-
tionary computations. In International Conference on Evolutionary Computation,
pages 11–19, 1996.

4. A. Guttman. R-trees: A dynamic index structure for spatial searching. In Beat-
rice Yormark, editor, SIGMOD’84, Proceedings of Annual Meeting, Boston, Mas-
sachusetts, June 18-21, 1984, pages 47–57. ACM Press, 1984.

5. Holland. Outline for a logical theory of adaptive systems. In Essays on Cellular
Automata, ed. Arthur W. Burks, University of Illinois Press, Urbana, Chicago,
London. 1970.

6. A. Mackworth and E. Freuder. The complexity of some polynomial network con-
sistency algorithms for constraint satisfaction problems. Artificial Intelligence,
25(1):65–74, 1985.

7. S. Minton, M. Johnston, A. Philips, and P. Laird. Minimizing conflicts: A heuris-
tic repair method for constraint satisfaction and scheduling problems. Artificial
Intelligence, 58(1-3):161–205, 1992.

8. D. Papadias, N. Arkoumanis, and N. Karacapilidis. On The Retrieval of Similar
Configurations. In Proceedings of 8th International Symposium on Spatial Data
Handling (SDH), 1998.

9. D. Papadias, P. Kalnis, and N. Mamoulis. Hierarchical Constraint Satisfaction in
Spatial Databases. In Proccedings of AAAI Conference, pages 142–147, 1999.

10. D. Papadias, N. Mamoulis, and V. Delis. Algorithms for querying by spatial struc-
ture. In Proc. 24th Int. Conf. Very Large Data Bases, VLDB, pages 546–557,
24–27 1998.

11. D. Papadias, M. Mantzourogiannis, P. Kalnis, N. Mamoulis, and I. Ahmad.
Content-based retrieval using heuristic search. In SIGIR ’99: Proceedings of the
22nd Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, August 15-19, 1999, Berkeley, CA, USA, pages 168–175.
ACM, 1999.

12. N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries. In Pro-
ceedings of the 1995 ACM SIGMOD International Conference on Management of
Data, San Jose, California, May 22-25, 1995, pages 71–79. ACM Press, 1995.

13. Z. Ruttkay. Fuzzy constraint satisfaction. In Proceedings 1st IEEE Conference on
Evolutionary Computing, pages 542–547, Orlando, 1994.

14. S. Skiadopoulos and M. Koubarakis. Composing Cardinal Directions Relations. In
Proceedings of the 7th International Symposium on Spatial and Temporal Databases
(SSTD-01), volume 2121 of LNCS, pages 299–317, July 2001.


	header: 2nd Hellenic Conf. on AI, SETN-2002, 11-12 April 2002, Thessaloniki, Greece, Proceedings, Companion Volume, pp. 141-152


