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Abstract. The weighted maximum satis�ability (MAXSAT) problem is
of great interest to the Arti�cial Intelligence community, as a model for
several constraint satisfaction problems (emerging e.g. from planning)
which require that an optimum subset of their constraints be satis�ed.
Recent research on satis�ability (SAT) problems has reached interest-
ing conclusions regarding their hardness. In this paper, we introduce
an algorithm designed in a way inspired by these results. Based on the
newly introduced concept of the backbone of a formula in conjunctive
normal form, we try to sample the most likely values of boolean variables
through an iterative process. Experiments conducted on appropriate un-
satis�able SAT instances show that the algorithm converges to a near
optimum subset of satis�ed disjunctive clauses. Evidence of remarkable
success on weighted MAXSAT instances is also presented and discussed.

1 Introduction

The boolean satis�ability problem (SAT) has attracted the interest of the AI
community, as an aspect of fundamental importance for automated reason-
ing systems. SAT was also the �rst combinatorial problem shown to be NP-
complete [1].

The problem involves determining a satisfying assignment on boolean vari-
ables that participate in the formation of a boolean formula in conjunctive nor-
mal form (CNF). A CNF formula is a conjunction of clauses. Each clause consists
of the disjunction of literals, where a literal is a boolean variable or its logical
negation.

The optimization version of SAT (MAXSAT) is the problem of �nding an
assignment over the variables of a CNF formula that maximizes the total number
of satis�ed clauses. In this paper, we also consider the more generic weighted
MAXSAT problem, where each clause is associated with a positive weight. The
objective function of weighted MAXSAT maps an assignment of the boolean
variables to the sum of the weights of the satis�ed clauses. The aim is to maximize
the aforementioned sum. Setting all weights to 1 yields the unweighted form of
MAXSAT. For the rest of our discussion, MAXSAT will refer to the generic
weighted form, unless otherwise stated.



MAXSAT constitutes a special case of the generic valued Constraint Satis-
faction Problem (valued-CSP) [11] and, as such, it may be used to model sev-
eral overconstrained problems, which require that an optimal subset of their
constraints be satis�ed. As an example, we mention the Steiner Tree problem
faced in [4]. Furthermore, several planning problems can be transformed into
boolean CNF formulae, which require either complete satisfaction of all clauses,
or satisfaction of an appropriate subset, according to some objective optimality
criterion.

We introduce HBS (Heuristic Backbone Sampling), an iterative heuristic for
MAXSAT problems. The main contribution of the proposed methodology con-
cerns a stochastic initialization scheme, which provides a simple hill climbing
heuristic with potentially interesting startup states. Our work was inspired by
recent studies on the hardness of SAT problems, which have revealed the prop-
erty of the backbone [7] for CNF formulae. We conjecture that it may be possible
to measure the likelihood of a variable being assigned to a particular value in
several good assignments, given a set of good assignments. We then exploit this
measure in producing stochastically a new assignment, which is the startup state
of a hill climbing procedure.

Several theoretical and experimental MAXSAT studies have appeared. Im-
pressive approximation algorithms have been introduced, that acquire assign-
ments of quality 75% of the optimum [15] and beyond [3]. In [4], a modi�cation
of the WalkSat [12] algorithm is presented, which deals with MAXSAT prob-
lems. In [10], a constructive procedure provides startup assignments for a hill
climbing heuristic (GRASP). Their combination �nds near optimal solutions on
many MAXSAT instances. Another algorithm which performs remarkably better
on the same instances appears in [14].

The paper is organized as follows: In section 2, we brie
y survey some issues
concerning the backbone structure property. The proposed algorithm is discussed
in section 3. Experimental results and conclusions follow in sections 4 and 5.

2 Phase Transition and the Backbone

Recent research in SAT problems has provided several statistical and theoretical
results, concerning the hardness of satisfying CNF formulae. Early experimental
results [6] have shown that randomly generated 3-SAT instances (each clause
contains exactly 3 literals) of M clauses and N variables with the property
� = M=N ' 4:26 = �c are hard to solve. Furthermore, instances with a < �c
or a > �c seem to be relatively easy to solve: their search space is either dense
in satisfying assignments, or empty, respectively, thus making it easy to prove
their satis�ability or unsatis�ability. This easy-hard-easy e�ect is characterized
as the phase transition of SAT.

The statistical and theoretical study of phase transitions is intended to reveal
the increase in complexity for the various distributions of SAT problems. In [8],
through the application of methods from statistical mechanics and extended ex-



perimentations, the phase transition of K-SAT is investigated for the estimation
of the complexity increase rate with problem size.

An important structural property of unweighted CNF formulae, namely the
backbone, has been revealed through the study of phase transitions [7, 9]. The
backbone stands for the set of variables which appear constrained to the same
value in all optimal variable assignments. As shown experimentally in [9], the
backbone size is an important parameter for the cost of local search procedures.
A large backbone keeps most of the variables of the formula frozen to some value
in every optimal assignment, thus implying that all optimal assignments will lie
in a restricted area of the search space. Small backbones, on the contrary, tend to
preserve a wider distribution of optimal assignments. Since in a large backbone,
participating in the optimum assignment, many variables have a restricted value,
there are many erroneous decisions (at least as many as the restricted variables)
to be taken during search. Backbones of considerable size seem to emerge in
CNF formulae lying on the phase transition and beyond (a � ac). Occurrence
of backbones in optimization problems is also discussed in [13].

Optimal and near optimal assignments are expected to include at least a
subset of the formula's backbone constrained to appropriate values. The core of
HBS involves maintaining a set of the best assignments found so far. This set is
used to determine the likelihood of a variable being assigned to 1. We expect that,
at least for the variables of the backbone, this likelihood measure will eventually
converge to some very small (near 0) or very large (near 1) value. A recent
systematic search algorithm, which exploits the backbone is described in [2]. In
this work a constructive search procedure is described, enhanced with analytic
techniques for exploiting the backbone concept, towards achieving satisfying
assignments or deciding the unsatis�ability of 3-SAT CNF formulae. HBS is, to
our knowledge, the �rst local search strategy, designed to capture the backbone
of (unweighted) MAXSAT problems, in a statistical manner, for guiding the
search towards optimal assignments.

3 The HBS Algorithm

In this section, we describe the HBS algorithm. HBS is an iterative algorithm.
In each iteration, a stochastic procedure produces a new assignment, which is
further optimized by a hill climbing heuristic. The stochastic procedure is ex-
amined �rst and a short description of the hill climbing heuristic follows. In the
following paragraphs, we consider a CNF formula built upon n boolean variables,
xi; i = 1 : : : n. If a is an assignment, then we denote the value of variable xi in
a with a(xi). The objective function value corresponding to a is denoted with
Z(a).

3.1 The Stochastic Initialization Procedure

The stochastic initialization procedure is memory-based. A set S of restricted
size contains the best assignments found during previous iterations of HBS. S is
an input to the procedure.



A new startup assignment is produced by assigning xi the boolean value 1
with probability:

pi =
�X
a2S

faa(xi)
�
=
�X
a2S

fa

�

If we set fa = 1, then pi is equal to the frequency of positive appearances of
the variable xi in the set S. Thus, pi intuitively dictates the most likely value
assignment of xi with respect to the assignments contained in S. An alternative
way of obtaining a more representative pi value is setting fa = Z(a). In this way,
we also assign a measure of importance to xi's value in the various assignments
of S. We adopted the latter approach during our experimentations.

HBS (t; I; jSj)

1. Initialize S with random (P [xi = 1] = 0:5) assignments

2. repeat I times

a. Calculate pi; i = 1 : : : n

b. Pick the best assignment among t randomly

created assignments, using the pi probabilities.

c. Do hill climbing until local optimum, and store in T
all the evaluated assignments during this iteration.

d. Insert in S the best assignment in T
not already in S and better than the worst of S.
Delete the worst in S.

Fig. 1. The complete HBS algorithm

3.2 Hill Climbing

The neighbourhood explored by the heuristic is the standard 
ip neighbourhood
for SAT problems. A transition from one assignment to a neighbouring one is
performed by 
ipping a selected variable (i.e. setting it to its complementary
value). Let C+(xi) and C�(xi) be the sets of clauses that become satis�ed and
unsatis�ed respectively by 
ipping the variable xi. The gain obtained by 
ipping
xi is then de�ned as:



gi =
X

cj2C+(xi)

wj �
X

cj2C�(xi)

wj

The steepest ascent version of hill climbing performs in each iteration a cal-
culation of the g vector and 
ips the variable xi with i = argmaxj(gj > 0). If
(8j)(gj � 0), then a local optimum has been reached and the search stops. The
complete HBS algorithm appears in Fig. 1.

3.3 Implementation Details

We clarify here some implementation issues, not directly discussed in previous
paragraphs, but imposed by the description in Fig. 1.

The stochastic initialization scheme is repeated t times, as shown in the �g-
ure. The t value is a parameter to the algorithm, which tunes the probability of
�nding randomly a startup assignment of high quality. During our experimenta-
tions, we determined the value t in combination with a clipping policy for the pi
values: all pi values outside the range [0:1; 0:9] were appropriately clipped to the
margins of this range. We then experimented with values of t � 10, so that each
boolean variable could obtain randomly one of the two values with probability
at least 10%. The bias of producing assignments extremely similar to the ones
that appear in the set S is thus reduced.

T stores candidate solutions for updating S. Updating S in the end of each it-
eration means inserting the best assignment a 2 T for which Z(a) 6= Z(s), 8s 2
S holds. Furthermore, the size of S is maintained constant during the execu-
tion of the algorithm: each time a new assignment enters the set, an assignment
of worst quality is erased. It appears plausible that the convergence speed of
the algorithm to high quality assignments is depended on jSj. Finally, we should
note that assignments produced during stochastic initialization which could con-
tribute to the enrichment of S are also stored in T .

4 Experimental Results

The behaviour of the algorithm was investigated through experiments carried on
weighted and unweighted CNF formulae. In particular, we experimented on the
uuf125-538-100 dataset1 of unweighted formulae, which contains 100 unsatis�-
able 3-SAT instances of 125 variables and 538 clauses. All instances are \phase
transition"-hard. Improved results are also discussed on the weighted MAXSAT
instances of [10]. This dataset (jnh) contains 44 CNF formulae with clauses
of varying sizes and weights uniformly distributed in the range 1{1000. These
problems consist of 100 variables and 800{900 clauses. All experiments were per-
formed on a Sun Ultra SPARC 5 workstation with 269 MHz CPU and 128 MB
RAM. The run time of HBS for I = 500 iterations did not exceed 3 seconds in

1 Available from http://www.satlib.org
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Fig. 2. Performance of MRHC on uuf125-538-100

our experiments. EÆciency of local search implementations has received consid-
erable attention. For HBS, storing and processing of assignments constitutes an
overhead to the hill climbing search part. However, it still is a polynomial time
process, which we have eÆciently integrated within our implementation.

4.1 On Unweighted CNF Formulae

Performance on unweighted CNF formulae is compared towards the performance
of random multi-restart hill climbing (MRHC ), where each restart is initiated
with a random assignment (each variable is set to true with probability 0.5).
Figures 2 and 3 summarize the results. Each of the compared heuristics was
ran independently 20 times on every SAT instance. The proposed algorithm ran
under the con�guration HBS (20; 300; 10), whereas for MRHC, the number of
restarts was set to 300 per run.

The barcharts of Fig. 2 and Fig. 3 depict the amount of instances for which a
certain number of satis�ed clauses was reached. We consider the highest achieved
number of satis�ed clauses among twenty runs of the algorithms on each instance.
We might carefully observe a shift of the performance on the core of the dataset,
which corresponds to a small increase of satis�ed clauses at least by two. Im-
provements in this range, however, are hardly achievable by random MRHC,
since they bring most formulae to their optimum satis�ability state.

In order to �ne tune the algorithm's clipping range of the pi values, we experi-
mented with some clipping ranges over several instances of the uuf-125-538-100
dataset. A typical picture of the algorithm's performance is shown in Fig. 4. HBS
quickly moves to a locally optimum area, whereas the selected clipping range af-
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Fig. 3. Performance of HBS on uuf125-538-100

fects its performance during the subsequent iterations. In our experiments the
selected [0:1; 0:9] range proved to be the most appropriate. In fact, shrinking the
range corresponds to approaching the MRHC bias of producing a new startup
assignment. On the contrary, leaving the pi values unclipped biases the algo-
rithm towards production of startup assignments highly dependent on the ones
contained in S.

4.2 On Weighted CNF Formulae

HBS was applied on the dataset2 of [10] with remarkable success. Twenty runs
of HBS (10; 500; 12) were conducted on each instance. The best solution achieved
for each instance exceeded the solution quality reached by GRASP in [10]. Due
to lack of space we only mention in Table 1(a) ten instances with the greatest
improvement over GRASP's results. It is important to note that optimum solu-
tion was reached for 17 instances, whereas GRASP managed to solve optimally
only 3 instances.

Table 1(b) depicts the best improvement achieved by HBS over WalkSat
(WSAT) on ten instances. We experimented with the weighted MAXSAT version
of WSAT, as it appears in [4]. The default parameters of WSAT were used (that
is, 0.5 noise, 10000 
ips), as suggested in the authors' implementation. The best
improvements were calculated over 20 runs of the algorithms on each problem
instance. As shown in the table, solution qualities reached by HBS exceeded the
results obtained by WSAT. In particular, the least obtained best improvement

2 Available from http://www.research.att.com/~mgcr/data/index.html
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over the 44 instances of the jnh dataset was 31. However, we should note that
WSAT performed slightly better on 13 out of 44 instances, containing a minimum
number of clauses.

4.3 Discussion

In [5], it is shown that randomly initialized hill climbing succeeds almost always
in �nding a satisfying assignment for satis�able 3-SAT instances. Furthermore,
it is shown that this success is also due to the small probability that the ran-
domly generated initial assignment is bad (in the sense of sharing a small part
in common with the satisfying assignment).

However, search spaces of MAXSAT problems are known to be seething with
large amounts of local optima [14]. The existence of large backbones makes it
even more diÆcult to construct randomly an initial assignment that captures a
great part of an optimal assignment (in fact, the probability of success is expo-
nentially small). Our experiments on the uuf125-538-100 dataset have shown
that HBS gradually manages, through sampling, to discover a great part of the
backbone. This is con�rmed by the progressive convergence of the collection
P = fpiji = 1 : : : ng to a state of informative certainty: many of the elements of
P approach 0 or 1. As a result of that, the stochastically produced assignments
tend to capture an even larger part of the backbone from one iteration to the
next.

Reaching a state of maximum certainty for the collection P corresponds
to maximizing the normalized sum of squares of deviations from 0.5: D =
(4=n)

Pn
i=1(pi�0:5)

2. Figure 5 depicts the maximization of D, which occurs dur-



Table 1. Performance on weighted formulae

(a) (b)

Deviations from Optimum

Problem HBS GRASP

jnh305 -142 -609
jnh219 0 -436
jnh8 -147 -578
jnh18 -20 -423
jnh214 -66 -462
jnh19 -79 -436
jnh308 -156 -502
jnh304 0 -319
jnh14 0 -314
jnh15 -52 -359

HBS(10; 500; 12) vs. WSAT(0:5)

Problem Best Improvement

jnh302 564
jnh305 450
jnh303 295
jnh307 239
jnh211 194
jnh308 194
jnh216 142
jnh310 141
jnh15 129
jnh8 121

ing three executions of HBS (20; 300; 10) on a particular instance of the dataset.
As shown in the �gure, there is a rough correspondence of the reached D level
and the achieved solution quality. In particular, the optimum solution (OPT)
was found during the run which reached the highest D value. The other two runs
found successively worse solutions, OPT-1 and OPT-2 respectively, whereas the
reached D values were lower. Although this is not always the case, it is generally
desirable that the algorithm reaches soon a state of high D value (capturing the
backbone) and keeps searching in this state for a long time.

The diagram of Fig. 5 con�rms experimentally the convergence of the sample
set S to a collection of backbone assignments. Control of the convergence speed
and level (as indicated by D) remain as challenging matters of study.

5 Conclusions and Future Work

In this paper, we examined experimentally the e�ectiveness of sampling heuris-
tically the backbone structure for hard CNF formulae, in order to provide a hill
climbing heuristic with e�ective startup states. The algorithm HBS was intro-
duced. Experimentations with HBS revealed remarkably improved behaviour on
both weighted and unweighted MAXSAT instances.

The introduced stochastic initialization scheme seems to be a computing
artifact which bears theoretical investigation in combination with the backbone
theory. An interesting challenge concerns estimating the expected quality of a
stochastically produced assignment with respect to qualities contained in S.
Theoretical identi�cation of conditions ensuring that S will eventually converge
to a collection of backbone assignments also constitutes a matter of future work.

Dynamic tuning of HBS 's parameters is an interesting aspect in its own
right. Speci�cally, the size of the assignments sample S appeared to be of great
importance for the method's performance during our experiments. For problem
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instances of size similar to the ones' presented here, 10 � jSj � 15 seems to be
a proper range.

The encouraging experimental results obtained on weighted CNFs con�rmed
HBS 's generic heuristic value. It gradually discovers valuable partial assignments
through sampling, thus guiding the search to promising regions of the search
space. Therefore, we consider experimenting with the algorithm on several NP-
hard optimization problems, such as maximum graph bisection, coloring, and
cut.
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