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Abstract. For years metaphor has been considered as mere language, a
simple figure of speech, a matter of concern just for linguists. Apparently,
during the past decade it has been greatly reevaluated and became a
matter of great interest in many interdisciplinary approaches. The grow-
ing literature on metaphor pervades the fields of linguistics, psycholin-
guistics, cognitive science, neuropsychology, neurobiology, and artificial
intelligence. A number of developmental theories have been proposed,
according to which metaphor seems to play a central role in human cog-
nition. In the light of a number of neurobiological experiments, scientists
have started to consider, and gradually building the belief that the key
to human comprehension and intelligence might be hidden in the decod-
ing of metaphor interpretation and metaphor production mechanisms.
In this paper we present an overview of various aspects in metaphor re-
search and some ongoing projects that try to implement the new theories
on metaphor in an altogether effort to go in depth into human cognition.
We will finally present our effort to capture the metaphorical essence,
based on George Lakoff’s renowned theory of metaphor, with the use
of artificial neural networks. We created a standard three-layer feed for-
ward net. The first layer is used to represent a sentence and questions
to the sentence, while the third layer is the answer to the questions. Af-
ter being trained by a corpus of non-metaphorical sentences the network
was tested by a set of metaphorical sentences. The results were satisfac-
tory showing that artificial neural networks might provide a promising
domain of research in the field of metaphor interpretation.

1 Introduction

A number of ideas present in modern theories of metaphor pre-existed in older
theories. However, since the scope of this paper is not to present a complete
historical overview, we will focus on contemporary theorists only, mostly be-
cause the study of metaphor has entered a new Era, especially after the second
half of our century. Our objective is to present the progressive transition of
metaphor studies from linguistics and philosophy to psychological, neurobiolog-
ical and computational treatment. Theories deriving from different disciplines
mingle together interacting in a most fruitful way. Although it is difficult to
find the boundaries in such a broad interdisciplinary research, we try to catego-
rize different aspects of metaphor study, according to some scientific domains.



Our connectionist model for metaphor interpretation, presented here, falls un-
der these novel approaches, and exploits the potential of neural networks on this
direction.

2 Theoretical overview

2.1 The Linguistic View - The Question about Truth

Linguists and philosophers are concerned with the question about the truth
of metaphorical sentences. The traditional metaphor treatment, that regards
metaphor as an anomaly of language, a simple figure of speech, started to change
in linguistic theories about metaphor of our century. According to Black’s [3]
interaction view, metaphor does not just work on a level of word combination
but it is treated as a cognitive phenomenon that wakens interactions between the
conceptual structures behind words. It seems that Black does assign to metaphor
an active role as a cognitive device.

Aarts and Calbert [1] semantic marker and selectional constraint’s approach
follows a strong linguistic tradition of semantics in interpreting metaphor. Simple
as it may be, it also shows that metaphor is rather a conceptual phenomenon
and its interpretation needs more world-knowledge than word-knowledge.

Ortony [27]with his “Salience Imbalance” theory tries to explain why metaphors
emphasize some properties while de-emphasize others, a phenomenon later un-
derlined by Lakoff.

2.2 The Psycholinguistic View — The Question about Language
Acquisition

A more recent interest, in metaphor studies, enters the fields of psycholinguistics
and cognitive science and raises the fundamental question about the way by
which humans acquire their natural language. All recent evidence, based on
work with children seems to point to the same conclusion: that metaphor is a
key figure in language acquisition.

Gentner [14] [15]is well known for her work on analogy and child develop-
ment. She observed that although children are able to produce metaphors from
an early age, they are unable to understand metaphors presented to them during
experiments. The problem actually seems to be the type of metaphors children
use. It is obvious that younger children tend to produce object metaphors, that
is metaphors based on outer appearance (i.e. using “snake” instead of “hose”).
Their ability to understand and therefore create relational metaphors (i.e.” She
is a sunshine” instead of “She is happy”) increases with age. It is only after
long familiarization with the domains of references that children can actually
understand the situation in which the metaphor is produced. Their familiariza-
tion with written language also plays a role. It is then obvious that language
development is directly linked to cognitive development.

We observe the same developmental relational shift in metaphor interpreta-
tion and production depending on children’s age in the work of Gardner and



Winner [35] [36]. In their work, there was a developmental trend toward appro-
priate apprehension of metaphor. Several steps preceding mature comprehension
were observed. In general, cross-sensory metaphor proved easier to comprehend
than psychological-physical metaphors.

Greenfield [16] supports that, in early ages, there is a common neural sub-
strate that is responsible for both the development of speech and object manipu-
lation. In order to achieve more complex combinations of both words and objects
there must be a cortical differentiation with the corresponding specialization of
each part.

2.3 The Neurobiological View — How Does Brain Function?

Even more recent, seems to be the interest on the neurobiology of metaphor.
The study of the physiology of the brain, its structure and its processes may be
very important in the study of metaphor and vice versa. For this reason we will
also mention some neurobiological studies of language that seem to be growing
rapidly.

Observation on brain-damaged people gave birth to the hypothesis that brain
structure is somehow related to language competence. Paul Broca discovered a
section in the left frontal lobe of the brain (Broca’s area) that he claimed to be
responsible for language processing.

However in an early study Winner & Gardner [37] carried out an experiment
with left hemisphere-damaged (LHD) aphasic patients, RHD patients, bilaterally
damaged patients and a non-neurological group. The participants were presented
with a figurative sentence such as "he has a heavy heart” and asked to perform
two tasks. One task involved matching the sentence to one of four pictures: a lit-
eral interpretation (i.e., a man carrying a large heart), an appropriate metaphoric
interpretation (a crying man), a salient quality depicted by the metaphoric ad-
jective (a 500 lb weight) and an illustration of the noun (a large heart). In the
second task patients were asked to explain their choices. RHD patients selected
the metaphoric picture much less frequently than LHD patients or the control
group in the first task. However in the second task RHD patients were able to
verbalize their choices using figurative language whereas LHD patients were un-
able to explain their ’correct’ choices verbally. Winner & Gardner argue that
these results show that the effective interaction of the hemispheres is important
in appreciating figurative meaning. This study clearly shows that the figurative
and literal language comprehension processes are not parallel processes in differ-
ent hemispheres. It also indicates that at least some subcomponents of language
comprehension, concerned with metaphoric processing, are linked to the RH. In
short, the RH is needed in figurative language processing. .

The work of Danesi [8] reinforces these results. He contends that while lo-
calization of many speech functions in the left hemisphere of the brain is well
documented, metaphorical language requires the interaction of left and right
hemispheric functions. Research shows that the content of emotive language is
controlled by the right hemisphere and only structured by the left. Experimental



evidence also shows that the ability to understand and produce metaphors can-
not be attributed just to the functions of the left hemisphere. His overall research
evidence supports an interaction model in emotive and metaphorical language
and denies the view that the right hemisphere is totally inactive in language pro-
cessing. Further more he proposes a neurological model of metaphor [9] based
on the brain’s hemispheric modalities. Experimental and clinical evidence sup-
ports that there is indeed a task distribution for each hemisphere but in order to
explain the cognitive process of metaphor what we really need is an interhem-
ishperic model.

2.4 The Embodiment View — Are Bodies Necessary for Minds?

A major breakthrough on various theories about metaphor and language in
general has been the theory of embodied language [20] [30]. It is a combination of
linguistic and cognitive theories and it claims that we learn and produce language
through our sensory-motor activities and bodily experience from outside world.
In addition, the view about an objective reality is challenged on the basis that
each person uses his/her senses and body together with cultural experiences in
order to understand the world. Therefore they propose an experimentalist view
of language in which the role of metaphor is considered as central.

According to this view, language is based on metaphorical concepts, by which
we build our cognition. Most concepts are understood in terms of other concepts.
There are certain central concepts (i.e. orientational like UP-DOWN, FRONT-
BACK, IN-OUT, etc.) that are more sharply delineated than others and which
allow us to conceptualize more easily other concepts that are less sharply de-
lineated, like our emotions. We typically conceptualize the nonphysical in terms
of the physical and therefore we create metaphors almost every minute of our
existence, in order to understand the world in which we are living.

More technically, the metaphor can be understood as a mapping, tightly
structured, from a source domain (i.e. journeys) to a target domain (i.e. love).
The general theory of metaphor is given by characterizing such cross-domain
mappings. And in the process, everyday abstract concepts like time, states,
change, causation, and purpose also turn out to be metaphorical. Extending
such metaphorical mappings creates novel metaphors, which are usually used in
poetic language.

Metaphors fall under certain categories. There are spatialization metaphors
(HAPPY IS UP, SAD IS DOWN, MORE IS UP, LESS IS DOWN), ontological METAPHORS
(THE MIND IS A MACHINE, INFLATION IS AN ENTITY), or other less concrete
metaphors (ARGUMENT IS WAR, TIME IS MONEY, LOVE IS A JOURNEY, IDEAS
ARE FOOD, SEEING IS TOUCHING, LIFE IS A GAMBLING GAME).

HAPPY IS UP- SAD IS DOWN
I'm feeling up.

That boosted my spirits.
My spirits rose.

I'm feeling down.



I’'m depressed.
My spirits sank.

CONSCIOUS IS UP — UNCONSIOUS IS DOWN
Get up.

Wake up.

I’'m up already.

He rises early in the morning.

He fell asleep.

He’s under hypnosis.

HEALTH AND LIFE IS UP — SICKNESS AND DEATH ARE DOWN
He’s at the peak of health.

Lazarus rose from the dead.

He’s in top shape.

As to his health, he’s way up there.

He fell ill.

ARGUMENT IS WAR

Your claims are indefensible.

He attacked every weak point in my argument.
His criticisms were right on target.

I demolished his argument.

I’ve never won an argument with him.

TIME IS MONEY

You’re wasting my time.

This gadget will save you hours.

I don’t have the time to give you.

How do you spend your time these days?
That flat tire cost me an hour.

I’'ve invested a lot of time in her.

You need to budget your time.

Put aside some time for ping-pong.
Thank you for your time.

LOVE IS A JOURNEY

Look how far we’ve come.

We’re at a crossroads.

We can’t turn back now.

We’ re stuck.

I don’t think this relationship is going anywhere.
We’ve gotten of the track.



Lakoff and Johnson claim that all of our linguistic expressions fall into one
or more of these categories. Each metaphor may focus on certain aspects, while
downplaying others. It is in this sense that, even though some metaphors may
seem to contradict, we need them all in order to have a more holistic idea about
a concept.

3 Models of Computational Treatment

3.1 Conventional Models

There are a number of existing conventional computational models of metaphor
treatment. Some are based on just linguistic theories like the models of Fass [10]
and Wilks [32] [33] [34]. Others are based on cognitive theories like Gentner’s
model of SMP theory [13] and Veale’s and Keane’s [31] hybrid (both traditional
and connectionist programming) model.

3.2 Connectionist Models

The theory of embodied language had a major impact in AI research on the
connectionist direction. Two major NLP projects that run at this time, try to
implement Lakoff’s and Johnsosn’s theory with the use of ANNs. The first one
is running at Berkeley, known as the Neural Theory of Language (now NTL,
previously the Loproject), and the other one at the MIT Artificial Intelligence
Lab (known as Cog — the humanoid robot).

NTL

The Neural Theory of Language (NTL) is an interdisciplinary research group
of computer scientists, linguists, cognitive scientists, and psychologists working
to answer questions about the way we think, learn, use and understand language.
They use connectionist models and simulations of language and learning phe-
nomena. Their goal is to explore the potential of neural systems in the procedure
of characterizing specific concepts, such as spatial relations concepts, aspectual
concepts (used in structuring events), abstract metaphorical concepts, and so
on.

Regier [29] built a system that is able to “recognize” spatial relations, like
“on” and “under”, by reference to objects in a picture. Bailey’s [5] thesis de-
scribes a system that uses model to learn the different senses of action verbs
such as "push” and ”slide” from labeled examples of structured event descrip-
tions. Narayanan [26] built a system that uses metaphorical mapping and the
simulation of events/actions to draw metaphorically entailed inferences from
preparsed text input.

Cog

AT has for long tried to build disembodied intelligences considering brain
as independent from the body and trying to implement brain’s capacities in a
machine instead of a body. Nouvelle Al is a new trend in Al that attempts to
build embodied intelligences situated in real human bodies, or at least close to



human. Nouvelle AI claims that the attempts made were very ambitious and that
we cannot reach human intelligence unless we first achieve insect intelligence.

In MIT AI lab, a team of researchers [2] has built a humanoid robot known
as Cog. Cog is provided with four microphones and a camera in order to detect
sound and visual stimuli. It has a spine that gives it information about the
posture. Cog is legless but it has an arm and a manipulating hand that are both
equipped with heat sensors. It can also acquire tactile information by electrically
conducting rubber membranes on the hand and arm.

The goal is to teach Cog to correlate noises with visual events and to extract
human voices from background noise; and in the long run Cog will learn by
itself some of common sense world knowledge, through its interactions with its
environment and with human beings.

4 QOur Model

4.1 The Network Architecture

The idea for our model was to implement Lakoff’s theory by trying to model a
metaphorical concept, like ARGUMENT IS WAR, and testing the level of gener-
alization that a neural network can achieve. We created a standard three-layer
feed-forward net. The first part of the first layer is used to represent a sim-
ple sentence, where the syntactic role of the word is given by its place in the
input vector. So, for example, the first four bits of the input vector might be
used to represent the different head nouns we will be using, the next four bits
the various verbs and so on. The remaining part of the input layer represents
the questions to the sentence that is represented in the first part of the input
layer. The questions query some aspects of the sentence meaning. For exam-
ple, we might have an input, which asks for the agent of the sentence, or some
property value of the agent. The kinds of queries we have in mind fall under
three categories: Questions about the agents and objects in the sentence, about
the property values and the states of agents and objects. So given a sentence
like ” John kissed Mary”, we might ask questions of the form ”agent is”, ”pa-
tient is”, ”actor_has_property_value_animacy” (the answer is either animate or
inanimate), ”actor_has_state” (the answer here might be ”infatuation”, ”love”,
"lust”, or whatever), and so on. In each case the answer to the question would
be provided as the output of the network. The output units would also con-
sist of sufficient units to provide answers to the questions. So for example, in
case of animacy, we might set aside one unit to handle that. (e.g., 1=animate,
O=inanimate).

The network was then trained with a set of sentences and questions. For any
given sentence, several questions were asked. So, the sentence input was held
constant while the questions were varied.

4.2 The Training Corpus

We compiled two sets of sentences from metaphorically related discourse do-
mains. As we mentioned above we used the ARGUMENT IS WAR metaphor. So we



might have sentences about Mary building a house, and Anna knocking down
a house, and the house and Mary (or Anna) having various properties, and the
house or whatever, having certain state following the action. We also have sen-
tences about arguments, their properties and states. For example, arguments are
not animate, nor are they concrete entities. However, they can be constructed
and demolished, therefore their state can change after an action like the state of
concrete objects.

4.3 The Metaphorical Dimension

The basic idea was to train the network on the details of construction and de-
struction of concrete objects (e.g., buildings, walls), and on the details of argu-
ments as purely abstract entities. After training the network, we tested it using
sentences in which we used the construction terms to talk about arguments. If
all went well, what we expected to find is that when we queried the net after in-
putting something like ”T demolished your objection”, we should have found that
the ”state” of the concept ”objection” is ”broken”, "not intact”, or whatever. It
should be noticed here that we have never used the verb ”demolished” with the
noun ”objection” up until now. Therefore, if the network can generalize success-
fully to a property value or state, then we can say that the net has mapped the
source domain (construction) to the target domain (argumentation).

5 Simulation Details

5.1 The Network

After having designed the implementation in the way we described above, we
started the implementation using Stuttgart’s Neural Networks Simulator (SNNS).
We therefore created a three-layer network in which the input layer is used to
represent a sentence and the questions about the sentence. The second is a layer
of hidden units and the third layer consists of output units that represent the
answers to the questions of the first layer. 77

In more detail the first layer consists of 24 units of which the first 16 are used
to represent the sentence and the remaining 8 represent the questions about that
sentence. The first 3 units represent the agent of the sentence that might be ”I”,
”You”, or ”She”. The next two units represent the verb that is either ” construct”
or "demolish”. The remaining units also represent several features of the object
of the sentence. The remaining 8 units of the first layer, as we mentioned above,
represent 8 different questions about the sentence represented in the previous
16 units. The questions refer to the agent of the sentence as well as to the
object. For example, the first question asks about the animacy of the actor and
the second about the state of the actor. The third is about the animacy of the
object, the fourth about the size of the object and so on. The questions that are
more interesting to us are the questions about the state of the object before and
after the action. One purpose here is to teach the network the state of a concrete
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object before and after the action of demolition or construction and then test it
to see how it will answer in the same question if the input sentence refers to an
abstract object, like an argument.

After the layer of 10 hidden units, we have a layer of 16 output units that
represent the answers to the questions. For example, there is a unit that repre-
sents the answer about the animacy (animate: activate, inanimate: deactivated).
There are also units that represent answers about properties of the object and
the state of the object, before and after the action.

Those are the units on which we expected the generalization to occur. The
state of the object is ”intact” before the demolition of a concrete object and
”broken” after it, while it is ”non-existent” before the construction and ”intact”
after it. We expected the same results for abstract objects as well.

5.2 The Pattern Files

After creating the network above, we then had to write down the training corpus,
that is the training and testing pattern files.

The first one consisted of 228 patterns. The first 180 patterns refer to concrete
objects. We therefore had sentences like "I constructed the building 7, ” You
demolished the wall ”,” She demolished the house ” and so on and the 8 questions
asked for each of those sentences as the input pattern. As an output pattern we
had the answer to each of the questions. We also trained the network on 48
patterns with abstract objects (arguments) in order to differentiate them from
concrete objects, like buildings. However we omitted the questions about the
state of the object before and after the action, which had to be inferred by the
network, after generalizing from its previous learning.

The questions referring to arguments that were omitted in the training pat-
tern file were then asked in the test pattern file, where we had as input sentences
that refer to arguments and the questions about the state of the object before
and after “construction” and “demolition”. In this file we did not have output
patterns, so we could check what answer was given by the network, trained on
the previous training corpus.

6 Simulation Results

In the above implementation several problems have occurred and we should say
that we tried different architectures each time in order to achieve the performance
that we required.

We used three-layer backpropagation feed-forward networks with momentum,
all trained over 5000 cycles. We used a learning rate of 0.01 and 0.9 momentum.
After the 5000 cycles all networks reached a minimum locus, after which the
error rate was not reduced any more, or its reduction was very slow. The error
tolerance that we used was 0.0005.

We experimented with different architectures, trying different input, output
and hidden units and changing the pattern files each time. We finally concluded



by using the architecture presented in detail above, which was different from
the previous ones in three basic points. The first is that the question about all
properties of the object was omitted because it seemed that this was why the
network was confused and problems were caused in generalization. The second
point is that we tried to increase the degree of overlap between the two contexts,
by adding more features that they have in common, like the state of the actor.
Finally we increased the number of implicit inferences derived from the presence
of the verbs by asking about the prior state of the object. Therefore we now ask
two questions when we test the network: one about the state of object before
the action and one about the state of object after the action.

As we have already mentioned the results were very satisfactory, since the
network achieved a very high level of generalization from the very beginning.
After training it 15 times - every training session lasted 16 minutes - it could
give the results we presented already, which are a high level of activation for
generalization of this kind and show that the network could very successfully map
the source to the target domain. More specifically on the construction metaphor
we had activation values (degree of certainty about the answer) of the correct
output unit ranging from 0.29 to 0.998 for the ”state_before” question (average:
0.558) and from 0.20 to 1.00 for the ”state_after” (average: 0.617) question. For
the demolition metaphor we had activation values of the correct output unit
ranging from 0.000 to 1.000 for the ”state_before” question (average: 0.474) and
from 0.045 to 0.944 for the ”state_after” question (average: 0.643). In addition we
did not have much problem with wrong generalization either. This meant that
our first supposition about the ”all properties” question confusing the network
was probably correct. We suspect that if we increased the features where the
source and target domains overlap, the problem would be further diminished.

7 Conclusions

As good as the results may seem, the model we have presented is only a tiny
example of work that can be done in this direction, and it is very far away from
a real world implementation. It can only be used to suggest that generalizations
of this kind might be possible and it is probably useful to take connectionist
approaches under consideration.

We would like to make some suggestions of how we could elaborate the ex-
isting model and make its results more valuable. The idea here is to show that
the results we obtained are stable when we vary some of the parameters of the
model. One way of varying the training regime is to change the corpus, use a
different metaphorical scheme or a different set of features. Once we can ob-
tain the same results with different schemes or a different set of features one
could conclude with more certainty that an architecture like this can be useful
to explore phenomena like metaphor.

One thing seems to be certain though, whether it will be with conventional,
connectionist or other kind of models, metaphor is going to be widely explored,



as it represents a key figure in NLP and in the decoding of human intelligence
and cognition.
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