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Abstract. We present a formal model for qualitative spatial reason-
ing with cardinal directions that is based on a recent proposal in the
literature. We use our formal framework to study the composition op-
eration for the cardinal direction relations of this model. We consider
progressively more expressive classes of cardinal direction relations and
give composition algorithms for these classes. Finally, when we consider
the problem in its generality, we show that the binary relation resulting
from the composition of some cardinal direction relations cannot even
be expressed using the relations which are currently employed by the
related proposal.

1 Introduction

The composition operator has received a lot of attention in the area of qualita-
tive spatial reasoning [7, 15, 5]. and has been studied for several kinds of useful
spatial relations like topological relations [2, 3, 15], direction relations [6, 10] and
qualitative distance relations [5, 4]. Typically, the composition operator is used
as a mechanism for inferring new relations from existing ones. Such inference
mechanisms are very important as they are in the heart of any system that re-
trieves collections of objects similarly related to each other using spatial relations
[13]. Moreover, composition is used to identify classes of relations that have a
tractable consistency problem [7, 15, 12].

This work concentrates on qualitative spatial reasoning with cardinal direc-
tion relations [6, 10]. Cardinal direction relations describe how regions of space
are placed relative to one another (e.g., region a is north of region b). We study
the recent model of Goyal and Egenhofer [6]. This model is currently one of
the most expressive models for qualitative reasoning with cardinal directions. It
works with extended regions and has potential in Multimedia and Geographic
Information Systems applications [3, 4].



In this paper, we give formal de�nitions for the cardinal direction relations
that can be expressed in the model of Goyal and Egenhofer [6]. Then, we use
our formal framework to study the composition operation for cardinal direction
relations in the model of [6]. Goyal and Egenhofer �rst studied this operation in
[6] but their method does not always work correctly. The previous observation
leaves us with the task of �nding a correct method for computing the compo-
sition. To do this, we consider progressively more expressive classes of cardinal
direction relations and give composition algorithms for these classes. Finally,
when we consider the problem in its generality, we show that the binary relation
resulting from the composition of some cardinal direction relations cannot even
be expressed using the relations de�ned in [6]. A more detailed discussion as well
as the proofs of the above results appear in [16].

The rest of the paper is organized as follows. Section 2 presents the formal
model. In Sections 3 and 4 we consider two subclasses of cardinal direction
relations and give composition algorithms for these classes. In Section 5 we show
that the result of the composition of some cardinal direction relations cannot
be expressed using the relations de�ned in [6]. Our conclusions are presented in
Section 6.

2 A Formal Model for Cardinal Direction Information

We consider the Euclidean space <2. Regions are de�ned as non-empty and
bounded sets of points in <2. Let a be a region. The greatest lower bound or
the in�mum [11] of the projection of region a on the x-axis (respectively y-
axis) is denoted by infx(a) (respectively infy(a)). The least upper bound or the
supremum of the projection of region a on the x-axis (respectively y-axis) is
denoted by supx(a) (respectively supy(a)). We will often refer to sup and inf
as endpoints.
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Fig. 1. A region and its bounding box

The minimum bounding box of a region a, denoted by mbb(a), is the box
formed by the straight lines x = infx(a), x = supx(a), y = infy(a) and y =
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Fig. 2. Regions

supy(a) (see Figure 1). Obviously, the projections on the x-axis (respectively
y-axis) of a region and its minimum bounding box have the same endpoints.

We will consider throughout the paper the following types of regions:

{ Regions that are homeomorphic to the unit disk [11]. The set of these regions
will be denoted by REG. Regions in REG are closed, connected and have
connected boundaries (for de�nitions see [1, 11])

{ Regions that are formed by �nite unions of regions in REG. The set of
these regions will be denoted by REG�. Notice that regions in REG� can
be disconnected and can have holes.

In Figure 2, regions a, b1, b2 and b3 are in REG (also in REG�) and region
b = b1 [ b2 [ b3 is in REG�.

Regions in REG have been previously studied in [6, 14]. They can be used to
model areas in various interesting applications, e.g., land parcels in Geographic
Information Systems [3, 4]. In the sequel we will formally de�ne cardinal direction
relations for regions in REG. To this end, we will need regions in REG�.

Let us now consider two arbitrary regions a and b in REG. Let region a
be related to region b through a cardinal direction relation (e.g., a is north of
b). Region b will be called the reference region (i.e., the region to which the
relation is described) while region a will be called the primary region (i.e., the
region from which the relation is described) [6]. The axes forming the minimum
bounding box of the reference region b divide the space into 9 tiles (Figure 3a).
The peripheral tiles correspond to the eight cardinal direction relations south,
southwest, west, northwest, north, northeast, east and southeast. These tiles
will be denoted by S(b), SW (b), W (b), NW (b), N(b), NE(b), E(b) and SE(b)
respectively. The central area corresponds to the region's minimum bounding
box and is denoted by B(b). By de�nition each one of these tiles includes the
parts of the axes forming it. The union of all 9 tiles is <2.

If a primary region a is included (in the set-theoretic sense) in tile S(b) of
some reference region b (Figure 3b) then we say that a is south of b and we write
a S b. Similarly, we can de�ne southwest (SW ), west (W ), northwest (NW ),
north (N), northeast (NE), east (E), southeast (SE) and bounding box (B)
relations.

If a primary region a lies partly in the area NE(b) and partly in the area
E(b) of some reference region b (Figure 3c) then we say that a is partly northeast
and partly east of b and we write a NE:E b.



NW(b)

SW(b)

W(b) E(b)

N(b) NE

SE(b)

b b

a

(a) (b)

b

(c)

b

(d)

S(b)

B(b) a

a

Fig. 3. Reference tiles and relations

The general de�nition of a cardinal direction relation is as follows.

De�nition 1. An atomic cardinal direction relation is an element of the set fB,
S, SW , W , NW , N , NE, E, SEg. A basic cardinal direction relation is an
atomic cardinal direction relation or an expression R1: � � � :Rk where 2 � k � 9,
R1; : : : ; Rk 2 fB, S, SW , W , NW , N , NE, E, SEg, Ri 6= Rj for every i, j
such that 1 � i; j � k and i 6= j, and the tiles R1(b); : : : ; Rk(b) form a region of
REG for any reference region b.

Example 1. The following are basic cardinal direction relations:

S; NE:E and B:S:SW :W :NW :N :E:SE:

Regions involved in these relations are shown in Figures 3b, 3c and 3d respec-
tively.

In order to avoid confusion we will write the atomic elements of a cardinal
direction relation according to the following order: B, S, SW , W , NW , N , NE,
E and SE. Thus, we always write B:S:W instead of W :B:S or S:B:W . The
readers should also be aware that for a basic relation such as B:S:W we will
often refer to B, S and W as its tiles.

2.1 De�ning Basic Cardinal Direction Relations Formally

Now we can formally de�ne the atomic cardinal direction relations B, S, SW ,
W , NW , N , NE, E and SE of the model as follows:

a B b i� infx(b) � infx(a), supx(a) � supx(b), infy(b) � infy(a) and
supy(a) � supy(b).

a S b i� supy(a) � infy(b), infx(b) � infx(a) and supx(a) � supx(b).

a SW b i� supx(a) � infx(b) and supy(a) � infy(b).

a W b i� supx(a) � infx(b), infy(b) � infy(a) and supy(a) � supy(b).

a NW b i� supx(a) � infx(b) and supy(b) � infy(a).

a N b i� supy(b) � infy(a), infx(b) � infx(a) and supx(a) � supx(b).

a NE b i� supx(b) � infx(a) and supy(b) � infy(a).

a E b i� supx(b) � infx(a), infy(b) � infy(a) and supy(a) � supy(b).

a SE b i� supx(b) � infx(a) and supy(a) � infy(b).



b

(a)

b

(b)

a1

a2

a7a4

a3
a2

a
5

a1

a8

a6

Fig. 4. Relations and component variables

Using the above atomic relations we can de�ne all non-atomic ones. For in-
stance relation NE:E (Figure 4a) and relation B:S:SW :W :NW :N :E:SE (Fig-
ure 4b) are de�ned as follows:

a NE:E b i� there exist regions a1 and a2 in REG� such that a = a1 [ a2,
a1 NE b and a2 E b.

a B:S:SW :W :NW :N :SE:E b i� there exist regions a1; : : : ; a8 in REG� such
that a = a1 [ a2 [ a3 [ a4 [ a5 [ a6 [ a7 [ a8, a1 B b, a2 S b, a3 SW b, a4 W b,

a5 NW b, a6 N b, a7 SE b and a8 E b.

In general each non-atomic cardinal direction relation is de�ned as follows.
If 2 � k � 9 then

a R1: � � � :Rk b i� there exist regions a1; : : : ; ak 2 REG� such that
a = a1 [ � � � [ ak; a1 R1 b; a2 R2 b; : : : ; and ak Rk b.

The variables a1; : : : ; ak in any equivalence such as the above are in general
in REG�. For instance let us consider Figure 4a. The lines forming the bounding
box of the reference region b divide region a 2 REG into two components a1
and a2. Clearly a2 is in REG� but not in REG. Notice also that for every i, j
such that 1 � i; j � k and i 6= j, ai and aj have disjoint interiors but may share
points in their boundaries.

Each of the above cardinal direction relations can also be de�ned using set-
theoretic notation as binary relations consisting of all pairs of regions satisfying
the right-hand sides of the \i�" de�nitions. The reader should keep this in mind
throughout the paper; this equivalent way of de�ning cardinal direction relations
will be very useful in Section 5.

The set of basic cardinal direction relations in this model contains 218 el-
ements. We will use D to denote this set. Relations in D are jointly exclusive
and pairwise disjoint. Elements of D can be used to represent de�nite infor-
mation about cardinal directions, e.g., a N b. An enumeration and a pictorial
representation for all relations in D can be found in [6].

Using the 218 relations of D as our basis, we can de�ne the powerset 2D

of D which contains 2218 relations. Elements of 2D are called cardinal direction



relations and can be used to represent not only de�nite but also inde�nite infor-
mation about cardinal directions e.g., a fN; Wg b denotes that region a is north
or west of region b. [6] considers only a small subset of the disjunctive relations
of 2D through a nice pictorial representation called the direction-relation matrix.

In the following sections we will study the operation of composition for cardi-
nal direction relations. Let us �rst de�ne the composition operation for arbitrary
binary relations [11].

De�nition 2. Let R1 and R2 be binary relations. The composition of relations
R1 and R2, denoted by R1 Æ R2, is another binary relation which satis�es the
following. For arbitrary regions a and c, a R1 Æ R2 c holds if and only if there
exists a region b such that a R1 b and b R2 c hold.

A composition table stores the result of the composition R1 Æ R2 for every
pair of relations R1 and R2. For the case of cardinal direction relations, the com-
position table has 2182 = 47524 entries. Therefore, since it is rather painful to
manually calculate each entry, one has to develop appropriate algorithms to for
the calculation of composition. Goyal and Egenhofer have proposed a method
for composing cardinal direction relations in [6]. Unfortunately, the method pre-
sented in [6] does not calculate the correct composition for several cases (see [16]
for details). To remedy this our approach addresses the composition problem one
step at a time. In the next section we will consider the simplest case, i.e., the
composition of an atomic with a basic (atomic or non-atomic) cardinal direction
relation.

3 Composing an Atomic with a Basic Cardinal Direction

Relation

In Figure 5 we show the composition table for atomic cardinal direction rela-
tions [6]. The table uses the function symbol Æ as a shortcut. For arbitrary atomic
cardinal direction relations R1; : : : ; Rk, the notation Æ(R1; : : : ; Rk) is a shortcut
for the disjunction of all valid basic cardinal direction relations that can be con-
structed by combining atomic relations R1; : : : ; Rk. For instance, Æ(SW;W;NW )
stands for the disjunctive relation:

fSW; W; NW; SW :W; W :NW; SW :W :NWg:

Moreover, we de�ne:

Æ( Æ(R11; : : : ; R1k1); Æ(R21; : : : ; R2k2); : : : ; Æ(Rm1; : : : ; Rmkm) ) =
Æ(R11; : : : ; R1k1 ; R21; : : : ; R2k2 ; : : : ; Rm1; : : : ; Rmkm):

Application of the operator Æ as it has been de�ned, suÆces for our needs in this
paper.

As usual Udir stands for the universal cardinal direction relation. The cor-
rectness of the transitivity table can easily be veri�ed using the de�nitions of
Section 2 and the de�nition of composition (De�nition 2).
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Fig. 5. The composition R1 ÆR2 of atomic relations R1 and R2

We now turn our attention to the composition of an atomic with a basic
cardinal direction relation. We will �rst need a few de�nitions and lemmas before
we present the main theorem (Theorem 1).

De�nition 3. A basic cardinal direction relation R is called rectangular i� there
exist two rectangles (with sides parallel to the x- and y-axes) a and b such that
a R b is satis�ed; otherwise it is called non-rectangular.

Example 2. All atomic relations are rectangular. Relations B:N and B:S:SW :W
are rectangular while relations B:S:SW and B:S:N :SE are non-rectangular.

The set of rectangular cardinal direction relations contains the following 36
relations:

fB; S; SW; W; NW; N; NE; E; SE;
S:SW; B:W; NW :N; N :NE; B:E; S:SE; SW :W; B:S; E:SE; W :NW; B:N; NE:E;

S:SW :SE; NW :N :NE; B:W :E; B:S:N; SW :W :NW; NE:E:SE;
B:S:SW :W; B:W :NW :N; B:S:E:SE; B:N :NE:E;

B:S:SW :W :NW :N; B:S:N :NE:E:SE; B:S:SW :W :E:SE; B:W :NW :N :NE:E;
B:S:SW :W :NW :N :NE:E:SEg:

De�nition 4. Let R1 = R11: � � � :R1k and R2 = R21: � � � :R2l be two cardinal
direction relations. R1 includes R2 i� fR21; : : : ; R2lg � fR11; : : : ; R1kg holds.

Example 3. The basic cardinal direction relation B:S:SW :W includes relation
B:S:SW .

De�nition 5. Let R be a basic cardinal direction relation. The bounding rela-
tion of R, denoted by Br(R) is the smallest rectangular relation (with respect to
the number of tiles) that includes R.



Example 4. The bounding relation of the basic cardinal direction relationB:S:SW
is relation B:S:SW :W .

De�nition 6. Let R be a rectangular cardinal direction relation. We will de-
note the rectangular relation formed by the westernmost tiles of a relation R
by Most(W;R). Similarly, we can de�ne the rectangular relations Most(S;R),
Most(N;R) and Most(E;R). Moreover, we will denote the atomic relation
formed by the southwesternmost tiles of a relation R by Most(SW;R). Sim-
ilarly, we can de�ne the atomic relations Most(SE;R), Most(NW;R) and
Most(NE;R). Finally, as a special case, we de�ne Most(B;R) = R.

Example 5. Let us consider the rectangular relationB:S:SW :W . Then according
to De�nition 6 we have:

Most(W;B:S:SW :W ) = SW :W;Most(SE;B:S:SW :W ) = S;
Most(S;B:S:SW :W ) = S:SW; Most(SW;B:S:SW :W ) = SW;
Most(E;B:S:SW :W ) = B:S; Most(NW;B:S:SW :W ) = W;
Most(N;B:S:SW :W ) = B:W; Most(NE;B:S:SW :W ) = B;

Most(B;B:S:SW :W ) = B:S:SW :W:

The following lemma expresses an important property of operator Most.

Lemma 1. Let R1 be an atomic and R2 be a rectangular cardinal direction re-
lation. Assume that relation Most(R1; R2) is Q1: � � � :Qt. Then, the composition
of R1 with Most(R1; R2) can be computed using formula R1 ÆMost(R1; R2) =
Æ(R1 ÆQ1; : : : ; R1 ÆQt).

Now, after all the necessary de�nitions and lemmas, we can present our result.

Theorem 1. Let R1 be an atomic cardinal direction relation and R2 be a basic
cardinal direction relation. Then

R1 ÆR2 = R1 ÆMost(R1;Br(R2)):

The above theorem give us a method to compute the composition R1 ÆR2 of
an atomic cardinal direction relation R1 with a basic cardinal direction relation
R2. First we have to calculate the relation Most(R1;Br(R2)). Then we use
Lemma 1 and the table of Figure 5 to compute R1 ÆR2.

We illustrate the above procedure in the following example.

Example 6. Let R1 = W be an atomic and R2 = B:S:SW be a basic cardinal
direction relation. Then Most(W;Br(B:S:SW )) = SW :W . Thus using Theo-
rem 1, we have W Æ B:S:SW :W = W Æ SW :W . Using Lemma 1, we also have
W Æ B:S:SW = Æ(W Æ SW;W ÆW ). Moreover, using the table of Figure 5 we
equivalently have: W ÆB:S:SW = Æ(SW;W ). Finally, expanding operator Æ we
have:

W ÆB:S:SW = fSW; W; SW :Wg:

The above equation can be easily veri�ed (see also Figure 6).
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4 Composing a Rectangular with a Basic Cardinal

Direction Relation

In this section we will study the composition of a rectangular with a basic car-
dinal direction relation. We will need the following de�nition.

De�nition 7. Let R1 and R2 be two basic cardinal direction relations. The tile-
union of R1 and R2, denoted by tile-union(R1; R2), is a relation formed from
the union of tiles of R1 and R2.

For instance, if R1 = B:S:SW and R2 = S:SW :W then tile-union(R1; R2) =
B:S:SW :W . Note that the result of tile-union is not always a valid cardinal di-
rection relation. For instance, if R1 = W and R2 = E then tile-union(R1; R2) =
W :E =2 D.

Theorem 2. Let R1 = R11: � � � :R1k be a rectangular and R2 be a basic cardinal
direction relation, where R11; : : : ; R1k are atomic cardinal direction relations.
Then

R1 ÆR2 = fQ 2 D : Q = tile-union(s1; : : : ; sk)^

s1 2 R11 ÆR2 ^ � � � ^ sk 2 R1k ÆR2g:

Using Theorem 2 we can easily derive Algorithm Compose-Rect-Basic

that computes the composition R3 of a rectangular cardinal direction relation
R1 with a basic cardinal direction relation R2. Assume that R1 is R11: � � � :R1k,
whereR11; : : : ; R1k are atomic cardinal direction relations. AlgorithmCompose-

Rect-Basic proceed as follows. Initially the algorithm calculates relations Si,
1 � i � k as the composition of the atomic relationR1i with the basic cardinal di-
rection relation R2 (as in Section 2). Subsequently, Algorithm Compose-Rect-

Basic forms relations by taking the tile-union of an atomic cardinal direction
relation si, from every cardinal direction relation Si (1 � i � k). Finally, the
algorithm checks whether the result of the union corresponds to a valid cardinal
direction relation. If it does then this relation is added to the result R3; otherwise
it is discarded.

We have implemented Algorithm Compose-Rect-Basic and generated the
compositions R1 Æ R2 for every rectangular cardinal direction relation R1 and
basic cardinal direction relation R2. The results and the code are available from
the authors.
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The following is an example of Algorithm Compose-Rect-Basic in opera-
tion.

Example 7. Assume that we want to calculate the composition of the rectangular
relation W :NW with the basic relation B:S:SW (Figure 7). We have:

S1 = W ÆB:S:SW = Æ(W Æ SW;W Æ SW ) = Æ(W;SW ) = fSW;W; SW :Wg

S2 = NW ÆB:S:SW = NW ÆW = fW;NW;W :NWg:

Now we construct all relations formed by the union of one relation from S1
and one relation from S2. These relations are: SW :W; SW :NW , SW :W :NW ,
W , W :NW , W :NW , SW :W , SW :W :NW and SW :W :NW . From the above
relations only SW :W , SW :W :NW , W , W :NW are valid cardinal direction re-
lations. Therefore, we have:

W :NW ÆB:S:SW = fW; SW :W; W :NW; SW :W :NWg:

The above equation can be easily veri�ed (see also Figure 7).

5 Composing Basic Cardinal Direction Relations

Let us now consider the general question of composing two non-rectangular basic
cardinal direction relations. For this case we have a very interesting result: the
language of cardinal direction constraints (as de�ned in Section 2) is not expres-
sive enough to capture the binary relation which is the result of the composition
of non-rectangular basic cardinal direction relations. This is illustrated by the
following example.

Example 8. Let us consider region variables a; b; c and cardinal direction con-
straints a S:SW :W b and b SW c (see Figure 8a). The only cardinal direction
constraint implied by these two constraints is a SW c. Thus, someone would be
tempted to conclude that (S:SW :W Æ SW ) = SW . If this equality was correct
then for each pair of regions a0; c0 such that a0 SW c0, there exists a region
b0 such that a0 S:SW :W b0 and b0 SW c0. However Figure 8b shows two such
regions a0 and c0 such that a0 SW c0 and it is impossible to �nd a region b0
such that a0 S:SW :W b0.
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Fig. 8. Illustration of Example 8

If we consider this example carefully, we will notice that the given constraint
on a and b implies the following constraint on a: the area covered by each re-
gion substituted for a cannot be rectangular; it should extend so that it covers
tiles S(b); SW (b) and W (b) for any region b. Obviously this constraint is not
expressible in the language of cardinal direction relations presented in Section 2.

It is an open question to de�ne an appropriate set of predicates that could
be used to augment the constraint language of Section 2 so that the constraints
needed to de�ne the result of a composition operation are expressible in all cases.

It is important to point out that the above non-expressibility result should
not deter spatial database practitioners who would like to consider adding the
cardinal direction relations described in this paper to their system. The dis-
cussion of the introduction (i.e., using the inferences of a composition table for
spatial relations in order to prune the search space during optimisation of certain
queries) still applies but now one has to be careful to say that she is using a
constraint propagation mechanism and not a composition table!

Unfortunately, we cannot be as positive about using the cardinal direction
relations de�ned in this paper in the constraint databases frameworks of [8] or
[9]. In these frameworks, the class of constraints involved must be closed under
the operation of variable elimination. Example 8 above demonstrates that this
is not true for the class of cardinal direction constraints examined in this paper.
For example, if we have constraints

a S:SW :W b; b SW c

and we eliminate variable b, the result of the elimination is not expressible in the
constraint language we started with! So the language of Section 2 needs to be
modi�ed in order to be used in a constraint database model. We are currently
working on extending this language to remove this limitation.

6 Conclusions

In this paper we gave a formal presentation of the cardinal direction model of
Goyal and Egenhofer [6]. We used our formal framework to study the compo-
sition operation for cardinal direction relations in this model. We considered



progressively more expressive classes of cardinal direction relations and gave
composition algorithms for these classes. Finally, we have demonstrated that in
some cases, the binary relation resulting from the composition of two cardinal
direction relations cannot even be expressed using the vocabulary de�ned in [6].
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