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Data Mining, Learning, Statistics, AI, etc

Data Mining consists of many steps (i.e. define the prob-
lem, choose the data, choose data representations, clean
the data, measure basic statistics, develop learning models,
evaluate the models, - etc - then iterate)

Learning (supervised): once you have clean data describing
a relation between inputs and outputs of a process, develop

a model that captures this relation.

“learning is at the core of intelligence”, T. Poggio



Learning (as function approximation) from

examples

The basic goal of supervised learning is to use a training
set S consisting of £ samples (datapoints, examples, data)
(z;,y;) drawn i.i.d. from an unknown probability distri-
bution P(x,y), namely S = {(x1,y1),---,(xp,yp)}, to con-
struct a function fg that given a new xneyw predicts the
associated value of y:

Ypred — fs(znew)

It is crucial to note that we view P(x,y) as fixed but un-
known.



Regression and Classification
If y is a real-valued random variable, we have regression.

If y takes values from a finite set, we have pattern clas-
sification. In two-class pattern classification problems, it
is often mathematically convenient to assign one class a y
value of 1, and the other class a y value of —1.



Some Examples

- X is a vector representing an image (i.e. pixel values), y
iIs +1 if the image is that of a person, —1 otherwise. Learn
how humans |look.

- x is a vector representing an email (i.e. frequency of
words), y is +1 if the email is about a complaint, —1 if it
IS about a request.

- x is a vector of measurements from a chemical or biolog-
ical process, y is the time until a certain event occurs.



Given a certain number of examples...




here 1S one possible solution...




. but here is another (and very different)
one!




Which one should we pick?




Central (Philosophical) Question

How to develop a “theory” (be it a function, model, or
lifestyle theory) from “empirical data” (be it training data,
observations, experiences from the past) that is “good”.

T he Demarcation Problem

“What is the distinction between scientific empirical theo-
ries and metaphysical ones?” (Immanuel Kant, 18th cen-

tury)



Falsifiability

“A necessary condition for the correctness (scientific value)
of an empirical theory is the possibility of its falsification”
(Karl Popper, 20t" century)

Occam’s Razor

“One should not increase, beyond what is necessary, the
number of entities required to explain anything” (“Keep it
simple stupid - but not too simple”) (William Occam, 14t"
century)

Complexity and Information

The more data you have, the more complex a theory you
can ‘“safely” build.



Statistical Learning Theory:
The 3 forces for good theories

1. Falsifiability

2. Complexity

3. Amount of information



Part I: Loss Functions

In order to measure the goodness of our function, we need
a loss function V. In general, we let V(f(x),y*) denote the
price we pay when we see x and guess that the associated
y value is f(xz) when it is actually y* - when we make an
error (false).



Common Loss Functions For Regression

For regression, the most common loss function is the square
(L>) loss:

V(f(@),y) = (f() —y)?

We could also use the absolute value (Lq) loss:

V(f(z),y) = |f(z) -y

For reasons we will see later, we sometimes use Vapnik’s
e-insensitive Ly loss function:

V(f(z),y) = |f(z) —yle



Common Loss Functions For Classification

For binary classification, the most intuitive loss is the 0-1
|lOSS:

V(f(z),y) = (-yf(z))

where © is the Heavyside function.

For tractability and other reasons, we often use the Lq-
hinge loss in binary classification:

V(f(z),y) =11 —y- f(@)|+



The True Error

Given a function f, a loss function V, and a probability
distribution P over X x Y, we can define the true error

(risk) (or just error (risk) ) of f as:

R(H) = [ V(F(@),p)dP

Note that R(f) is also the expected loss on a new example
drawn at random from the unknown distbution P.

We would like to make R(f) small. Unfortunately, because
P is unknown, we cannot measure R(f).



T he Empirical Error

Given a function f, a loss function V, and a training set
S consisting of £ datapoints, we can define the empirical
error (risk) of f as:

14
Ri(H) = 3 V() u)
1=1

Notice: Emprirical error = falsifiability

(Will the empirical error of a function be similar to its true
error?)



Part II: Target Space, Hypothesis Space

The target space 7 is a space of functions that is assumed
to contain the "true” function that minimizes the error.
We can safely assume that 7 is all functions in Lo, or all
differentiable functions.

The hypothesis space H is the space of functions that
we allow our algorithm to search. It is often chosen with
respect to the amount of data available.

(Note: a hypothesis space that “at the limit” is dense in
L~ is a desired property of any approximation scheme.)



Empirical Risk Minimization Method

Given a training set S and a hypothesis space H, empirical
risk minimization is the approach of finding a function fy ¢
that minimizes the empirical error over all functions f € H.:

. 1 Lt
fus = arg min > V(f(x), vi)
1=1

s.t. feH.



Approximation Error and Estimation Error

Let fo be the function in 7 with the smallest true error.
Let fyy be the function in ‘H with the smallest true error.

The generalization error of our empirical error minimizer
IS the sum of the estimation error and the approximation

error:

R(fy.s) — R(fo) = (R(fp.s) — R(fx)) + (R(fy) — R(fo))

We want to minimize the generalization error.






Consistency of the empirical risk
minimization method

The empirical risk minimization method is said to be con-
sistent for the set {f € H}, the loss function V, and for
the probability distribution P(z,y) if

lim R[fsu] = RI[fxl
and
EILr?ORemp[fS,H] g R[fH]

That is, the expected error of the minimizer of the empir-
ical error converges to the best possible expected error in
the hypothesis space H.



Uniform convergence

Two sided uniform convergence in probability is de-
fined as:

lim P{sup R(f) — R(f)| > e} =0 Ve>0
£— 00 feH

Uniform convergence is a necessary and sufficient condi-
tion for the empirical risk minimization approach to be
consistent in a hypothesis space ‘H



Uniform convergence for one function

If our H consisted of one function f; we can show that:

P{IR(f1) — R(f1)| > €} < exp(—€>(C).

If our loss function is bounded 0 < V(f1(x),y) < B then
we can use Hoeffdings inequality which says: let X be a
set and D a distribution on X and let f : X — [a,b] be a
function. Then

4

Applying the inequality results in

P{IR(f1) = R(f1)| > €} < 2exp(~€/B?).

1 !
7 > f(z;) — Epf(=)
i=1

> e} < 2exp(—2¢%¢/(a — b)?).



Uniform convergence for k£ functions

If our ‘H consisted of k functions fq,..., fi we need to show

P{ sup . ‘R(fi) — R(f)| > e} < exp(—eQEC).

fii’i:].,..,

We know that for one function f;

P{IR(f;) — R(f;)| > €} < 2exp(—€?¢/B?).

We need the above to hold for all k& functions. So we apply
the union bound

PlaUbUc) < P(a) + P(b) + P(c)
SO

P{ sup ) |R(f;) — R(f;)| > e} < 2k exp(—GQE/BQ).

i1=1,..,



Uniform convergence for a general
hypothesis space

In general our hypothesis space is not a finite set of func-
tions (i.e. all linear functions in R%).

For continuous functions, we can count the number of
functions in a hypothesis space using the topological notion
of a minimum e-net. That is, for any r (= the "€’ of the
e-net) we compute what is the minimum number N of
functions g¢g1,...,gn € H that we can find such that for any
f € H we have that sup, |f(z) — g;(x)| < r for at least one

gi-
Now we can say

P{§35|R<f)—ﬁ(f)|ze} < 2N(H,r(e)) exp(—€*t/B?).



Counting classification functions
For classification functions, we can do something else:

Given ¢ points {(z1,y1),..., (zp,yp)}, for every f € H we get
different "labelings” {©(—y1f(z1)),...,©(—ypf(xy))}

We define the random VC entropy of a hypothesis space H
as the number of labelings that can be implemented over
f € H written as

NH((LI}]_, yl)a ooy (xfa yﬁ))

An obvious property of Nt((z1,y1), ..., (zs,yp)) is:

NH((LI}]_, y1)7 ey (xﬁa yﬁ)) < 26'



Implementation of different labelings
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Implementation of different labelings

(1) (2)

(3) .




The 8 possible labelings of 3 points in 2D
using lines
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Example
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How Many Labelings?
Sauer’s Lemma

If the hypothesis space can separate h points in all possible
(2" ways), then ¢ > h points can be labelled in

S ()< (%)

possible ways and



VC-dimension

The VC-dimension of a set of binary functions is h if and
only if

e There is at least one set of h points that can be
labeled in all possible ways;

e there is no set of h+ 1 points that can be labeled in
all possible ways;



VC-dimension and free parameters

The VC-dimension is proportional, but not necessarily equal,
to the number of parameters.

e For Multilayer Perceptrons with hard thresholds h
nlnn (Maass, 1994);

e For Multilayer perceptrons with standard sigmoid thresh-
olds h o n? (Koiran and Sontag, 1995);

e For classification functions of the form 6(—ysin(ax))
the VC-dimension is infinite;



Classification

The finiteness of the VC-dimension of the set of functions
f € H for the classification loss is a necessary and suf-
ficient for the uniform convergence of the empirical risk
minimization in a bounded function class for arbitrary prob-
ability distributions with a fast rate of convergence.



VC type Bounds

In the case of classification:

P R R 2 (4" 2¢20)
{]S;g%\ (f) — (f)\>e}< (;) exp(—2¢e<L).

Which allows us to state that with probability 1 — ¢

hin(et/R) — In(8/2)
: |

R(f) < R(f)+ \/

There are many such bounds for classification and for re-
gression. They relate the empirical error, the expected
error, the number of data, and the complexity of the hy-
pothesis space.



estimation error

11, 12 = number of data

VC dimension

Estimation error as a function of the VC dimension for
different number of data points ¢; and #¢», with ¢1 < ¥5.



rica

emp i

Empirical error as a function of the VC-dimension h (typical
behavior).



expected
|

Guaranteed error (that is, bound on the expected error) as
a function of the VC-dimension h (typical behavior).



A new induction principle

INISS

Guaranteed risk = Remp(f) + \/h<|n%ﬁ—|—z)—ln< )

Expected risk < Guaranteed risk

Y

Minimize the guaranteed risk, rather than
the empirical risk!

This implies that the VC-dimension (generally the com-
plexity of the hypothesis space) must be one of the vari-
ables of the problem (the others being the empirical error
and the number of data - REMEMBER THE 3 FORCES
FOR GOOD THEORIES?).



Structural risk minimization (SRM)

Let S;, an hypothesis space of VC-dimension h, so that

S1CSC...CS5,C...

SRM consists in solving a problem of the form

h(|n%f+;)—|n(j)

min Remp(f) + \l




Structural risk minimization: examples

S;, = {RBF nets with h centers}

Sy, = {MLP nets with A units}

S;, = {Polynomials of degree h}

Sh =4S | olf] < h}



Structural risk minimization “Type”
Methods

Typically (for computational reasons) one solves the opti-
mization problem:

14
min 3 V(wi, £0)) + AC complexity of f)
1=1

Choosing V and “complexity/hypothesis space” we get a
very large family of learning machines (i.e. Regularizatin
Networks, Support Vector Machines, etc) that we will dis-
Cuss next.



Summary of Part I

In Statistical Learning Theory the problem of learning from exam-
ples is cast in a probabilistic framework where one ideally wants to
minimize the expected error of the solution;Since the minimization
of the expected error is not feasible, one attempts to minimize
the empirical error.

The three forces of good theories: empirical error, complex-
ity, number of data. Statistical learning theory links the three

through the “VC-bounds” (Expected error < empirical error 4+
Complexity
Number of data)

The important concepts of hypothesis and target spaces, and
generalization, approximation, and estimation errors have been
introduced. VC-dimension and complexity measures have been
introduced.

Structural risk minimization (SRM) as an approach to learning
has been developed. This leads to a family of learning methods.



Tikhonov Regularization and SRM

In Tikhonov regularization, we trade off the training error
and the complexity of the hypothesis:

/
frs = argmin 3 V(f(z), ) + MIFI%
1=1

What is V? What is || f||%7?



Three important techniques

V = (y— f(x))? for RN,
V = |y— f(x)|e for SVMr, and
V = |1-yf(x)|, for SVMc,

RN: Regularization Networks
SVMr: Support Vector Machines Regressions
SVMc: Support Vector Machines Classification

What about the functions used? Let's use f(x) = w-x for
the moment.



The e-Insensitive Loss Function

25

e-insensitive loss, e=.5
-

0.5

-0.5
-3



Hinge Loss

The SVMc Loss Function




Substituting in the square loss

Using the square loss, our problem becomes

14
W =argmin > ((wx;) — y:)? + Awl|?
1=1



The Representer T heorem

Theorem. The solution to the Tikhonov regularization
problem

min Y= V(y;, wx;) + \||w]|?

W .
1 =1

can be written in the form

14
f(x) =w-x= Z a;(x - x;).
i=1
This theorem is exceedingly useful — it says that to solve

the Tikhonov regularization problem, we need only find
the best function of the form f(x) = Y¢_;a;(x-x;). Put
differently, all we have to do is find the a;.



Solving for o;’s

It turns out that for the L, loss function the «;'s are:

a=(Q+IN"1y
(a is the vector of «;'s) and

14

F(x) =) oi(x;-x).

1=1

Where, (@ is the square matrix defined by
Qij = (X5 - X;5).



Least-Squares Regularized Regression

e The matrix (Q 4+ I)\) is guaranteed to be invertible (if
O <A< o). As A — 0, the regularized least-squares so-
lution goes to the standard least-squares solution which
Mminimizes the empirical error. As A — oo, the solution
goes to f(x) = 0.

e In pratice, we don't actually invert (Q+1X)), but instead
use an algorithm for solving linear systems.

e In order to use this approach, we need to compute and
store the entire matrix ). This makes it impractical
for use with very large training sets.



Support Vector Machines Classification

With the L1 hinge loss, the learning method becomes

min 3" |1 — yywx;| L + A||w||?

W
1=1



Slack Variables (Optimization Theory)

We introduce slack variables &;, to make the problem easier
to work with:

min Yi_q &+ Allw|[2
subjectto: ywx; >1-¢ 1=1,...,¢

£ >0 i=1,....¢



The Dual Program

Simple optimization theory gives that the problem is equiv-
alent to solving the following (dual) Quadratic Optimiza-
tion Problem with box constraints:

(225722 Zle a; — al Qa

subject to : 0<e; <3 i=1,...,0

Where, (@ is the matrix defined by

Qij = iy (X; - X;).

NOTE: if we look for f(x) = wx—+b (added a threshold b),
then we also have the constraint: Zle y;o; = 0



Support Vectors

The solution

14

F(x) =) ai(x;-x).

1=1

is sparse in the sense that a coefficient «; will be non-
zero only if y;f(x;) < 1. In other words, points with no
“training” error do not contribute to the function, and are
not (so called) support vectors.



The Geometric Approach to SVMc

The “traditional” approach to developing the mathematics
of SVM is to start with the concepts of separating hyper-
planes and margin. Defining the margin as the distance
from the hyperplane to the nearest example, the basic ob-
servation is that intuitively, we expect a hyperplane with
larger margin to generalize better than one with smaller
margin.



Large and Small Margin Hyperplanes

(a) (b)



Classification With Hyperplanes

We denote our hyperplane by w, and we will classify a new
point x via the function

f(x) = sign (w-x). (1)

Given a separating hyperplane w we let x be a datapoint
closest to w, and we let xV be the unique point on w that
IS closest to . Obviously, finding a maximum margin w is
equivalent to maximizing ||x —x%|| for all our training data

THIS LEADS TO THE SAME OPTIMIZATION PROB-
LEM FOR SVMc



Support Vector Machines For Regression

If we write a regularized regression problem with the e-
insensitive loss, and do some math, we end up with a
quadratic programming, and a regression function of the
form f(xz) = X¢_; a;(x - x;) again.

The solution is sparse again in the sense that a coefficient
a; Will be zero if y; —e < f(x;) < y; + €. In other words,
points with no *training” error do not contribute to the
function, and are not support vectors.



Historical Perspective

SVM for classification was defined in terms of maximiz-
ing the margin. With slack variables, this is no longer a
strong justification. SVM for regression was an outgrowth
of classification that preserved the idea of solving using a
quadratic program and sparsity of the solution.

The SVM formulations have attracted a lot of attention in
the literature. SVM classification, in particular, was often
compared to other non-complexity-controlled methods for
classification, and found to give very strong results. It is
not however clear that SVM is better than RN, although
this view is not prevalent in the literature.

Moreover, the perspective of viewing the choice of SVM vs
RN as the choice of the more appropriate computational
strategy is not prevalent in the literature.



Non-linear Functions

Nonlinear functions are also linear!

Consider the space of functions that is spanned by the
“basis functions” ¢,(x),

N
H={f] f(x)= Z cpdp(X) }-
p=1
(where N can be infinite)

The idea is to map the data into a higher dimensional
space called a feature space (¢ : x — ®(x)) and to look
for a linear function in this space.



Kernels and dot products

We can often define the inner product between two points
mapped into feature space as

K(x,z) = (®P(x) - P(2))

and the norm of a linear function in the feature space as:

2 N 2
HfHK — Z Cn
n=1

K is called a kernel and the space of functions defined
this way is called a Reproducing Kernel Hilbert Space.
K basically defines a dot product in a high-dimensional
feature space defined by the ¢’s.



Kernels: Examples

K(x,z) = (1 +x-2)? )corresponds to polynomial functions
of degree d)

K(x,z) = exp(—||x — z||?) (Gaussian RBF)

K(x,2z) = ||x — z||2"T1 (Thin plate splines)

K(x,z) = tanh(x-z — 0) (only for some values of 6 - Multi
Layer Perceptron)



RKHS can be very rich

Depending on the coise of the kernel (or feature functions
®) an RKHS becomes dense in Lo.

This means is that these hypothesis spaces are “big”, since
they can approximate arbitrarily well a very rich class of
functions (namely all L»).

Moreover, it is possible to create “controlled” hypothesis
spaces where we control the size of this space by using the
RKHS norm as a “knob”

Ifll% < A

Which justifies RN and SVM within Statistical Learning
Theory.



Why Kernels Work

We can use the kernel “trick” because for all the
methods we developed so far, the final function is of
the form f(x) = Y>¢_; a;(x-x;), that is, to evaluate it
we only need to consider dot products between the
example data and a new point. Moreover, to find the
a; we need to have only the dot products between our
data.

With kernels our function is always of the form:

¢
f(x) =) oK(x,x;)
i=1



General Learning Methods

In general you can:

e Define your favorite loss function for the problem in
hand

e Start by using linear functions (i.e. f(x) = w-x) and
formulate an optimization problem that is of the form
of minimizing (over a set of parameters) empirical error
+ A complexity

e T hen simply use kernels in order to get non-linear func-
tions



Key Practical Issues

This way we can get “advanced” (i.e. as non-linear and
as complex models are we like) learning methods as long
as:

1. It is computationally efficient to solve the optimization
problem

2. The methods are “kernelizable” : this is the case ONLY
iIf solving the optimization problems requires only dot-
product calculations

3. Complexity of the solution is well-controlled: can lead
from very simple to very complex functions.



Another ‘“theory of theories” : Stability and
Regularization

The goal is to have an algorithm for fitting the data that
Is stable with respect to changes to the data (i.e. how
much will our solution change if we perturb the data a little
or if we remove one training point?). (This is also one of
the basic ideas behind regularization theory developed well
before V. Vapnik did his PhD in Moscow).
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...we can find the smoothest interpolating
polynomial.
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But if we perturb the points slightly...
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...the solution changes a lot.
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If we restrict ourselves to degree two
polynomials...
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...the solution varies only a small amount
under a small perturbation.
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Stability and Generalization Performance

Let 8 be the stability of a learning algorithm (i.e. an upper
bound on how much the solution can change if a training
point changes). There exist bounds of the form:

With probability 1 — ¢

21In(2/6)

R(f) < R(f)+ B+ 53\/

so if B = k for some constant k we get bounds of the form:

R(H) < R()+ 5 + kf nez/0)

See (Bousquet and Elisseeff, 2002 JMLR) for more infor-
mation.




Applications

SVM and Kernel Machines with complexity control are

very appropriate for very large dimensional datasets (NO
CURSE OF DIMENSIONALITY) with very few exam-
ple data.

e Object detection and recognintion in images (see demo)

e Bioinformatics

e Internet and business applications



Bioinformatics Problems

Types of data: DNA data, gene expression data, protein
data, etc

Types of tasks: diagnostics, gene function prediction, pro-
tein folding, drug discovery, etc

Example:

Predict the functional class of genes given data of gene ex-
pression profiles (genes make proteins by producing RNA...).
This is a very high dimensional classification problem with
very few data. SVM have been shown to be helpful.



Modeling Preferences
For this problem the data are of the following form:

Fori=1,...n we are given 2 “products” (vectors) {x;1,X;2}
and we are told that (without loss of generality) product
x;1 IS preferred.

Problem: Develop a utility function f(x) such that when
given a new set of products {x1,xXo,...x;} function f takes
the largest value for the preferred product.

The term ‘utility function” is a standard term in eco-
NOMICS.



General Learning Methods (As before)

In general you can:

e Define your favorite loss function for the problem in
hand

e Start by using linear functions (i.e. f(x) = w-x) and
formulate an optimization problem that is of the form
of minimizing (over a set of parameters) empirical error
+ A complexity

e T hen simply use kernels in order to get non-linear func-
tions



Key Practical Issues (As before)

This way we can get “advanced” (i.e. as non-linear and
as complex models are we like) learning methods as long
as:

1. It is computationally efficient to solve the optimization
problem

2. The methods are “kernelizable” : this is the case ONLY
iIf solving the optimization problems requires only dot-
product calculations

3. Complexity of the solution is well-controlled: can lead
from very simple to very complex functions.



Modeling Preferences

Consider linear utility functions f(x) = wx. Simple empir-
ical risk minimization leads to the method:

s.t. wx;1 >wx;o—¢& forie{l,2,...n}



Modeling Preferences: SRM approach

min - Xy &+ Alw])?
s.t. w(x;1 —x0)>1-¢&, forie {1,2, . n}
& >0

(Does this look like SVM classification of vector differ-
ences? )



Modeling Preferences: the kernel trick

min S & A%

s.t. f(xi1) — f(x2) 21§ forie{l,2,...n}
& >0

with dual form:

T
max Yimg i — ol Qa

subject to : 0<e; <3 i=1,...,0

Where, @ is the matrix defined using again the kernel
K(z;,z;) (is it directly this kernel? - “homework’)



Other Problems

. Anomaly detection can be treated similarly (kind of)

. Optimal control problems

. Density estimation problems

Nl ol ale



A Reality Check

e 95% of the time for Data Mining is spent on preparing
the data. Less than 5% of the time is spent on using
SVM or whatever other method.

e Even if we do data mining well, most of the time at
most 3 people in the world know it (the author and the
2 reviewers) - and even fewer care about it.

e Yet lately many data miners (machine learners, Alers,
etc) thought of themselves as gold-miners - but guess
what?

Are there opportunities? What are the key issues for busi-
Nness success?



The Data World

e The average novel is 107® TB (1 TerraByte = 1000
GB). The US library of Congress has 20 TB.

e [ he ‘“visible” WWW is around 30 TB.
e In 1999 there were 1 trillion emails sent in the world.

e It took 10 years for a big bank in the 80’s to reach 10
TB of data. Only 9 months in the 90's online.

e T he average online company is expected to manage
120 TB of customer data by 2003.

= There is so much damn data



The 3 Big Areas (currently)

. Customer Relationship Management (i.e. e.piphany.com,
SAS, etc)

. Financial markets (many)

. Knowledge Management (i.e. Autonomy.com)



Data Mining and Business Value Chain

Supply Chain Management —— > Internal comnunications
—— > Customer Relationship management

There is data to be analyzed (to cut costs, increase rev-
enues, create new markets) at all points in these “business
chains”, especially because of the virtual value chain cre-
ated due to IT (including the Internet).

Example: Openratings.com and supply chain management.



Other areas

- Bio/medical

- Fraud detection

- Risk management

- Preventive maintenance

- Industry specific opportunities

The market for business intelligence TOOLS is growing
at an annual rate of 50%, and is estimated to about 150
billion Euros (more than the GNP of Greece). Analytics
is a small part of it (but analytics based applications are
key).



Factors of Success:. warnings

. People (i.e. ease of use)

. People (i.e. behavioral constraints)

. People (i.e. incentives to use)

. Strategy (Yes it helps, but does it help with what we
want to achieve?)

. Bottom line effects (reduce costs or increase revenues)

. The right data, legal constraints (i.e. privacy), etc



Conclusions

We talked about two worlds:

e Philosophy, Mathematics, Engineering (research ap-
plications)

e Applications adopted by companies, and used in every
day life

In the information age, data mining is about issues in both
worlds.
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