
 1

HAPRC: An Automatically Configurable Planning System

Dimitris Vrakas, Grigorios Tsoumakas, Nick Bassiliades and Ioannis Vlahavas

Department of Informatics, Aristotle University of Thessaloniki,

Thessaloniki 54124, GREECE

[dvrakas, greg, nbassili, vlahavas]@csd.auth.gr

Abstract

This paper presents an adaptive planning system, called HAPRC, which automatically fine-tunes its

planning parameters according to the morphology of the problem in hand, through a combination

of Planning, Machine Learning and Knowledge-Based techniques. The adaptation is guided by a

rule-based system that sets planner configuration parameters based on measurable characteristics

of the problem instance. The knowledge of the rule system has been acquired through a rule

induction algorithm. Specifically, the approach of propositional rule learning was applied to a

dataset produced by results from experiments on a large number of problems from various

domains, including those used in the three International Planning Competitions. The improvement

of the adaptive system over the original planner is assessed through thorough experiments in

problems of both known and unknown domains.

1. Introduction

In domain independent heuristic planning there is a number of systems that their performance

varies between best and worse on a number of toy and real-world planning domains. No

planner has been proved yet to be the best for all kinds of problems and domains. Similar

instability in their efficiency is also noted when different variations of the same planner are

tested on the same problem, when the value of one or more parameters of the planner is

changed. Although most planners claim that the default values for their options guarantee a

 2

stable and averagely good performance, in most cases fine tuning the parameters by hand

improves the performance of the system for the given problem.

 Few attempts have been made to explain which are the specific dynamics of a

planning problem that favor a specific planning system and even more, which is the best setup

for a planning system given the characteristics of the planning problem. This kind of

knowledge would clearly assist the planning community in producing flexible systems that

could automatically adapt themselves to each problem, achieving best performance.

 In this paper, we used a large dataset with results from executions of our planning

system, called HAP (Highly Adjustable Planner), on various problems and we employed

machine learning techniques to discover knowledge that associates measurable characteristics

of the planning problems with specific values for the parameters of the planning system. The

selection of these characteristics was very carefully made, emphasizing on balancing the

mixture of characteristics that are independent, semi-dependent and dependent on the specific

planning system used for the research. The knowledge, acquired by the process of machine

learning, was embedded in the planner in the form of a rule-based system, which can

automatically change its configuration to best suit the current problem.

 The performance of the resulting planning system was thoroughly evaluated through

experiments that aimed at showing the behavior of the adaptive system in a) unknown

problems of known domains, b) unseen domains, c) harder problems of known domains, d) a

single domain and e) comparison with three state-of-the-art domain independent planning

systems. The results showed that the system managed to adapt quite well in all the

experiments and to be competitive compared to the other planning systems.

 The rest of the paper is organized as follows: Section 2 presents a survey of related

work on combining Machine Learning and Planning. The next section outlines the complete

methodology we followed for building HAPRC. The original planning system that was used

 3

for the purposes of our research and the problem analysis done for deciding the problem

attributes are presented in sections 4 and 5, respectively. Section 6 describes in detail the

learning methodology we followed and Section 7 discusses how the learned model was

embedded as a rule system in HAPRC. Section 8 presents and discusses the experimental

results and Section 9 evaluates the significance of the problem attributes and discusses a

subset of the produced rules. Finally, Section 10 concludes the paper and poses future

research directions.

2. Related Work

Machine learning has been extensively exploited in the past to support Planning systems in

many ways. Since it is a usual case for seemingly different planning problems to present

similarities in their structure, it is reasonable enough to believe that planning strategies that

have been successfully applied to some problems in the past will be also effective for similar

problems in the future. Learning can assist planning systems in three ways: a) to learn domain

knowledge, b) to learn control knowledge and c) to learn optimization knowledge. Domain

knowledge is utilized by planners in pre-processing phases in order to either modify the

description of the problem in a way that it will make it easier for solving or make the

appropriate adjustments to the planner to best attack the problem. Control knowledge can be

utilized during search in order to either solve the problem faster or produce better plans. For

example, the knowledge extracted from past examples can be used to refine the heuristic

functions or create a guide for pruning non-promising branches. Finally, optimization

knowledge is utilized after the production of an initial plan, in order to transform it in a new

one that optimizes certain criteria, e.g. number of steps or resources usage.

 Most approaches in the past have focused on ways for learning control knowledge

since it is crucial for planners to have an informative guide during search. The PRODIGY

 4

Architecture [4,29] was the main representative of this trend. This architecture, supported by

various learning modules, focuses on learning the necessary knowledge (rules) that guides a

planner to decide what action to take next during plan execution. Since the overhead of

testing the applicability of rules was quite large (utility problem) the system also adopted a

mixed criterion of usability and cost for each rule in order to discard some of them.

 Although PRODIGY is the most known system integrating planning and learning, the

history of learning control knowledge for guiding planning systems dates back to the early

70’s. The STRIPS planning system was quickly enhanced with a learning module [8] that

analyzed past experience from solved problems in order to infer macro-operators, which

represented successful combinations of action sequences, and general conditions for applying

these macro-operators.

 DYNA-Q [26] uses Q-learning, a form of reinforcement learning, in order to

accompany each pair of state-action with a reward (Q-value). The rewards maintained by

DYNA-Q are incrementally updated as new problems are faced and are utilized during search

as a means of heuristic function. The main problems faced by this approach were the very

large memory requirements and the amount of experience needed for solving non-trivial

problems.

 Borrajo and Veloso [3] also developed HAMLET, another system combining

planning and learning that was built on top of PRODIGY. HAMLET combines deductive and

inductive learning strategies in order to incrementally learn through experience. The main

aspect responsible for the efficiency of the system are: the lazy explanation of successes, the

incremental refinement of acquired knowledge and the lazy learning to override only the

default behavior of the planner. Another learning approach that has been applied on

PRODIGY, is the STATIC algorithm [7], which uses Partial Evaluation (PE) instead of EBL

to automatically extract search-control knowledge from training examples.

 5

 A more recent approach of learning control knowledge for domain independent

planning was presented by Martin and Geffner [20]. In their research they focus on learning

generalized policies that serve as heuristic functions, mapping states and goals into actions. In

order to represent their policies they adopt a concept language, which allows the inference of

more accurate models using less training examples.

 Another example of utilizing learning techniques for inferring control knowledge for

automated planning systems is the family of case-based planners, such as CHEF [12] or

PRIAR [17]. CHEF is one of the earliest case-based planners and used the Szechwan cooking

as the application domain. CHEF used memory structures and indexes in order to store

successful plans, failed plans and repairs along with general conditions allowing it to reuse

past experience. PRIAR is a more general case-based system for plan modification and reuse

that uses hierarchical non-linear planning, allowing abstraction and least-commitment.

 Apart from learning control knowledge there has been a number of works focusing on

learning domain knowledge. For example, Wang’s OBSERVER [33] is a learning system,

build on top of the PRODIGY system, that uses expert’s hints and past knowledge in order to

extract and refine the full description of the operators for a new domain. The description of

the operators include preconditions and effects (negative and positive), allowing also

conditional effects and preconditions. Knoblock [18] presented another learning module for

the PRODIGY system, called ALPINE, that learns abstraction hierarchies and thus reducing

the required search.

 MULTI-TAC [24] is a learning system which uses a library of heuristics and generic

algorithms and automatically fine tunes itself in order to synthesize the most appropriate

constraint satisfaction program to solve a problem. The methodology we followed in this

paper presents some similarities with MULTI-TAC.

 6

 Probably, the only approach to the direction of adaptive planning done in the past is

the work presented in [15,16]. They have created a system called BUS, which incorporates six

state-of-the-art planners (STAN, IPP, SGP, BlackBox, UCPOP and Prodigy) and runs them

using a round-robin schema, until one of them finds a solution. BUS is adaptable in the sense

of deciding the ordering of the six planners and the duration of the time slices dynamically

based on the values of five problem characteristics and some rules extracted from a statistical

analysis on past runs. The system achieved more stable behavior but it was not as fast as one

may have expected.

 This paper extends and completes previous research by the authors on learning

domain knowledge in the form of rules for adaptive planning [32]. In that work the method of

classification based on association rules was followed to learn rules for configuring a previous

version of HAP. That work used a limited number of problem attributes that were not

adequate enough to capture the dynamics of certain problems and the learning methodology

required discrete values which had an impact on the accuracy of the model. Furthermore, the

experimental results covered only a few aspects of the methodology potentials. A related

approach also examined by the authors concerns the customization of the planning parameters

through a variation of the the k Nearest Neighbour machine learning algorithm. This method

enables the incremental enrichment of its knowledge and allows users to specify their level of

importance on the criteria of plan quality and planning speed [27,28].

 The third option of learning for Planning (optimization learning) concerns the

extraction of knowledge that will assist in the modification of the extracted plans. Ambite,

Knoblock and Minton [1] have presented an approach for the automatic learning of Plan

Rewriting Rules, that can be utilized along with some local search, in order to improve easy-

to-generate low quality plans.

 7

 Zimmerman and Kambhampati [34] have presented a very detailed and analytical

survey of past approaches combining Planning and Machine Learning. Additional information

about learning-powered adaptive planners can be found in [11].

3. Methodology Outline

We will here briefly sketch the methodology we followed for learning a rule base, embedding

it in HAP and evaluating the performance of the adaptive system. All the steps that are

outlined here will be described in more detail in the following sections.

The steps followed for building the rule-configurable HAP are outlined in Figure 1.

We have initially created the learning data by running 30 planning problems from each of 15

planning domains, using all 864 possible configurations of the parameters of our HAP

planner. This led to a total of 450*864 rows of data, each row consisting of problem

characteristics, planner parameters, steps of the resulting plan and computation time.

 450 planning
problems

864 parameter
configurations

training
data

Rule
Learning

Statistical
Analysis

HAPRC

best default
setting

rules

HAPMC

Figure 1. Methodology for building HAPRC

 8

We then classified these data into good and bad planning examples, based on the

resulting steps and time. A rule learning algorithm was then applied to this dataset, in order to

produce rules that distinguish good from bad plans, based on problem characteristics and

planner configurations. These classification rules were used to embed a rule base that

automatically decides at run-time which is the best configuration for our planner based merely

on the input problem characteristics. Since the rule base may not always have an answer on

how to optimally configure the planner's parameters, default values are assumed for unset

parameters. These default values were obtained from statistical analysis of the original

training data.

In order to evaluate the induced knowledge of the planner, four comprehensive sets of

experiments were performed. In these experiments we a) split the original data into training

and test data, b) used the training data to learn a rule base for HAPRC and to perform statistical

analysis in order to obtain the best static configuration and c) compared the performance in

steps and time of the static configuration with the adaptive planner on the test data. This

experimental methodology is depicted in Figure 2.

test data train data

all data
450 problems

Rule
Learning

Statistical
Analysis

HAPRC

best default
setting

rules

HAPMC

compare

Figure 2. Methodology for evaluating HAPRC

 9

The purposes of the four experiments were to evaluate:

a) The planner's performance on problems from known domains

b) The planner's performance on unknown domains

c) The scalability of the adaptive system from easy to difficult problems

d) The performance difference between specific models, learned from a single domain,

and general ones

We also conducted another set of experiments comparing our planner with the state-

of-the-art planners in domain independent heuristic planning.

4. The HAP Planning System

HAP (Highly Adjustable Planner) is a domain-independent, state-space heuristic planning

system, which can be customized through a number of parameters. HAP is a general planning

platform which integrates the search modules of the BP planner [30], the heuristics of AcE

[31] and several techniques for speeding up the planning process. Apart from the selection of

the planning direction, which is the most important feature of HAP, the user can also set the

values of 6 other parameters that mainly affect the search strategy and the heuristic function.

The seven parameters along with their value sets are outlined in Table 1.

Name Value Set
Direction {0,1}
Heuristic {1,2,3}
Weights (w1 and w2) {0,1,2,3}
Penalty {10,100,500}
Agenda {10,100,1000}
Equal_estimation {0,1}
Remove {0,1}

Table 1 The value sets for planning parameters

 HAP is capable of planning in both directions (progression and regression). The

system is quite symmetric and for each critical part of the planner, e.g. calculation of mutexes,

discovery of goal orderings, computation of the heuristic, search strategies etc., there are

 10

implementations for both directions. The Direction of search is the first adjustable parameter

of HAP used in tests, with the following values: a) 0 (Regression or Backward chaining) and

b) 1 (Progression or Forward chaining). The planning direction is a very important factor for

the efficiency of a planning system, since it strongly depends on the morphology of the

problem in hand and there is no clear answer to which direction should be generally preferred.

 The HAP system employs the heuristic function of the AcE planner, as well as two

variations. There are implementations of the heuristic functions for both planning directions.

All the heuristic functions are constructed in a pre-planning phase by performing a relaxed

search in the direction opposite to the one used in the search phase. During this relaxed search

the heuristic function computes estimations for the distances of all grounded actions of the

problem. The initial heuristic function, i.e. the one used in the AcE planning system, is

described by the following formula:

(())

1, ()
()

1 (), ()
X MPS prec A

if prec A I
dist A

dist X if prec A I�
�� � �

�� �	�

where A is the action under evaluation, I is the initial state of the problem and MPS(S) is a

function returning a set of actions, with near minimum accumulated cost, achieving state S.

The algorithm of MPS is outlined in Figure 3.

 Apart from the initial heuristic function described above, HAP embodies two

variations, which are generally more fine-grained. The general idea behind these variations

lies in the fact that when we select a set of actions in order to achieve the preconditions of an

action A, we also achieve several other facts (denoted as implied(A)), which are not mutually

exclusive with the preconditions of A. Supposing that this set of actions was chosen in the

plan before A, then after the application of A, the facts in implied(A) would exist in the new

state, along with the ones in the add-list of A. Taking all these into account, we produce a new

 11

list of facts for each action (named enriched_add) which is the union of the add-list and the

implied list of this action.

 �����������
	�����
����������
������������ ��"!
#"#��
$���� �%&�����
���'�����&
�"!�#"�
$��
(�!&���)�
$�*�(� �+�(&��,"-/.0(��&*"��
��1/20(���(�2��&23�
$�$&�&2���4
���
 &5"5�(
���
-�
�"6)7"8
� 7 �/93�;:=<>
 &��
��� ? (
�)�&*� "#
(�1��&�"#
��$
�"(�� �@

�"A ����B ?�C�D "��*� ��&
�"!�#"�
$��
(�!&���)�
$�*�(� �+�(&��, ?#�!
1" ��
$�*E�
$��
(�!&��F�(��EA �
�'B ?�C 5
!G A�H B F C 7�I ��J���B F C�K)L A�I
I B F C : � M L

@

�)FON D "���E�
$��
(�!&�E(��EA �
�'B ?�C ��*����/20(���(�20(
P�
� G A
H-�
�"6)7"Q)R3FSN
-�
� ��TE�"U A�I
I B FON C :V�W�����(
4 ��T 8>

����1��E6

Figure 3. Function MPS(S)

 The first variation of the heuristic function uses the enriched instead of the traditional

add-list in the MPS function but only in the second part of the function that updates state S.

So the command (')Set S S add A SXZY [is altered to _ (')Set S S enriched add A S\Z] ^ .

This enables the heuristic to produce smaller estimations on average, which usually lead to

shorter plans, but in complex problems with many interactions the heuristic may loose its

guiding power.

 The second variation of the heuristic function pushes the above ideas one step further.

The enriched_add list is also used in the first part of function MPS, which ranks the candidate

actions. So, it additionally alters the command val(A)=dist(A)/| ()add A S_ | to

val(A)=dist(A)/ | _ ()enriched add A S` |. With this enhancement, the heuristic becomes very

informative in problems where it manages to capture the interactions among the actions.

 12

However, as the first variation, it risks loosing its ability to guide the search in complex

problems, since it depends strongly on the interactions among the actions.

 The user may select the heuristic function by configuring the Heuristic parameter.

The three acceptable values are: a) 1 for the initial heuristic, b) 2 for the first variation and c)

3 for the second variation.

 As for the search itself, HAP adopts a weighted A* strategy with two independent

weights: w1 for the estimated cost for reaching the final state and w2 for the accumulated cost

of reaching the current state from the starting state (initial or goals depending on the selected

direction). For the tests with HAP, we used four different assignments for the variable weights

which correspond to different assignments for w1 and w2: a) 0 (w1 =1, w2 =0), b) 1 (w1 =3, w2

=1), c) 2 (w1 =2, w2 =1) and d) 3 (w1 =1, w2 =1). By selecting different value sets for the

weights one can simulate a large number of search strategies such as Best-First-Search (w1

=1, w2 =0) or Breadth-First-Search (w1 =0, w2 =1). It is known that although certain search

strategies perform better in general, the ideal treatment is to select the strategies which bests

suits the morphology of the problem in hand.

 The HAP system embodies two fact-ordering techniques (one for the initial state I

and another one for the goals G), which try to find strong orderings in which the facts (of

either I or G) should be achieved. In order to find these orderings the techniques make

extensive use of mutual exclusions between facts and also perform a limited search. These

orderings are utilized during search, in order to identify possible violations. For each violation

contained in a state, the estimated value of this state that is returned by the heuristic function,

is increased by Penalty, which is a constant number supplied by the user. For the experiments

of this work we tested the HAP system with three different values of Penalty: a) 10, b) 100

and c) 500. The reason for not being very strict with states containing violations of orderings,

is the fact that sometimes the only path to the solution is through these states.

 13

The HAP system allows the user to set an upper limit in the number of states in the

planning agenda. This enables the planner to handle very large problems, since the memory

requirements will not grow exponentially to the size of the problem. However, in order to

keep a constant number of states in the agenda, the algorithm prunes branches, which are less

likely to lead to a solution, and thus the algorithm cannot guarantee completeness. It is

obvious therefore that the size of the planning agenda significantly affects the search strategy.

For example, if we set Agenda to 1 and w2 to 0, the search algorithm becomes pure Hill-

Climbing, while by setting Agenda to 1, w1 to 1 and w2 to 1 the search algorithm becomes A*.

Generally, by increasing the size of the agenda we reduce the risk of not finding a solution,

even if at least one exists, while by reducing the size of the agenda the search algorithm

becomes faster and we ensure that the planner will not run out of memory. For the tests we

used three different settings for the size of the agenda: a) 10, b) 100 and c) 1000.

Another parameter of HAP is Equal_estimation that defines the way in which states

with the same estimated distances are treated. If Equal_estimation is set to 0 then between

two states with the same value in the heuristic function, the one with the largest distance from

the starting state (number of actions applied so far) is preferred. If Equal_estimation is set to

1, then the search strategy will prefer the state that is closer to the starting state.

HAP also embodies a technique for simplifying the definition of the sub-problem at

hand. This technique eliminates from the definition of the sub-problem (current state and

goals) all the goals that have already been achieved in the current state and do not interfere

with the achievement of the remaining goals. In order to do this, the technique performs off-

line before the search process, a dependency analysis on the goals of the problem. Although

the technique is very useful in general, the dependency analysis is not complete. In other

words, there are cases where an already achieved sub-goal should be temporarily destroyed in

order to continue with the achievement of the rest of the goals. Therefore, by removing this

 14

fact from the current state the algorithm may risk completeness. The parameter Remove is

used to turn on (value 1) and off (value 0) this feature of the planning system.

The parameters presented above are specific to the HAP planner. However, the

methodology followed for building the adaptive system, is general enough and can be applied

to other planners as well. Most of the modern planning systems support or can be modified to

support all or some of the parameterized aspects presented in this section.

 Moreover, most of the planning systems presented during the last years can be

customized through their own set of parameters. For example, the GRT planning system [25]

allows the user to customize the search strategy (Best-first or Hill-climbing) and to select the

way the goals of the problem are enriched (this affects the heuristic function). LPG [10] can

also be customized through a large number of planning parameters. MIPS [6] is another

planning system that allows some customization. It uses a weighted A* search strategy, the

weights of which can be set by the user, in a manner similar to HAP. Furthermore the user

can also set the optimization level.

5. Problem Attributes

The purpose of this research effort was to discover interesting knowledge that associates the

characteristics of a planning problem with the parameters of HAP and leads to good

performance. Therefore, a first necessary step that we performed was a theoretical analysis of

a planning problem, in order to discover salient characteristics that could potentially influence

the choice of parameters of HAP.

The problem of decoding the structure of planning problems and domains is not new

in the literature of AI Planning. There has been a great deal of research during the last decade,

which mainly focused on ways to extract information from the specification of the planning

problem and use it during planning in order to speed up the search. Examples of this trend

 15

include the work of McCluskey and Porteous [22, 23], the discovering of state invariants in

the TIM system [9] and the recent research of Hoffmann [13] on the area of Local Search

Topologies. The work done so far has resulted in better understanding of the nature of

planning domains, in the identification of a number of properties (e.g. dead ends, local

minima, benches) and even in the classification of domains into categories such as

transportation, manufacturing e.t.c.

Taking the above into consideration we resulted in a set of 30 measurable

characteristics that are presented in Table 2. In the attributes presented in Table 2, h(I) refers

to the number of steps needed to reach I (initial state) by regressing the goals, as this distance

is estimated by the backward heuristic. Similarly, h(G) refers to the number of steps needed to

reach the goals by progressing the initial state, as this is estimated by the forward heuristic.

Our main concern was to select simple attributes rather than complex ones that the

calculation of their values would cause a large overhead in the total time. Therefore, most of

the attributes come from the input files (PDDL) and their values can be calculated during the

standard parsing process. We also included a small number of attributes which are related to

specific features of the HAP system such as the heuristics or the fact-ordering techniques. In

order to calculate the values of these attributes, the system must perform a limited search but

the overhead is negligible compared to the total planning time.

A second concern which influenced the selection of attributes was the fact that the

attributes should be general enough to be applied to all domains and their values should not

depend so much on the size of the problem. Otherwise the knowledge learned from easy

problems would not be applied effectively to difficult ones. For example, instead of using the

number of mutexes (mutual exclusions between facts) in the problem as an attribute that

strongly depends on the size of the problem (larger problems tend to have more mutexes), we

divide it by the total number of dynamic facts (attribute A10) and this attribute (mutex

 16

density) identifies the complexity of the problem without taking into account whether it is a

large problem or a not. This is a general solution followed in all situations where a problem

attribute depends nearly linearly on the size of the problem.

Name Description
A1 Percentage of dynamic facts in Initial state over total dynamic facts
A2 Percentage of static facts
A3 Percentage of goal facts over total dynamic facts
A4 Ratio between dynamic facts in Initial state and goal facts
A5 Average number of actions per dynamic fact
A6 Average number of facts per predicate
A7 Standard deviation of the number of facts per predicate
A8 Average number of actions per operator
A9 Standard deviation of the number of actions per operator
A10 Number of mutexes divided by the square number of facts
A11 Standard deviation of the number of mutexes divided by the square number of facts
A12 Average number of actions requiring a fact
A13 Standard deviation of the number of actions requiring a fact
A14 Standard deviation of the number of actions adding a fact
A15 Standard deviation of the number of actions deleting a fact
A16 Average number of objects per object class
A17 Standard deviation of the number of objects per object class
A18 Ratio between the number of actions requiring an initial fact and those adding a goal (Relaxed

branching factors)
A19 Ratio between the branching factors for the two directions
A20 h(I)/h(G) [1st heuristic] - h(I)/hG) [2nd heuristic]
A21 h(I)/h(G) [1st heuristic] - h(I)/hG) [3rd heuristic]
A22 h(I)/h(G) [2nd heuristic] - h(I)/hG) [3rd heuristic]
A23 Average number of goal orderings per goal
A24 Average number of initial orderings per initial fact
A25 Average distance of actions / h(G) [forward direction]
A26 Average distance of actions / h(I) [backward direction]
A27 A25/A26
A28 Percentage of standard deviation of the distance of actions over the average distance of actions

[Forward direction]
A29 Percentage of standard deviation of the distance of actions over the average distance of actions

[Backward direction]
A30 Heuristics deviation [A28/A29]

Table 2. Problem characteristics

The attributes can be divided in three categories: The first category (attributes A01-

A9, A12-A19) refer to simple and easily measured characteristics of planning problems that

source directly from the input files (PDDL). The second category (attributes

A10,A11,A23,A24) consists of more sophisticated characteristics that arise from features of

 17

modern planners, such as mutexes or orderings (between goals and initial facts). The last

category (attributes A20-A22, A25-A30) contains attributes that can be instantiated after the

calculation of the heuristic functions.

6. Learning Rules

This section describes the steps of our methodology for discovering rules that associates the

characteristics of a planning problem with the parameters of HAP.

6.1 Data Preparation

A necessary initial step in most data mining applications is data preparation. In our case, the

data were collected from the execution of HAP using all 864 parameter configurations on 30

problems from each of the 15 planning domains of Table 3. The recorded data for each run

contained the 30 problem attributes presented in Section 5, the 7 planner parameters presented

in Section 4, the number of steps in the resulting plan and the required time for building it. In

the case where the planner didn't manage to find a solution within the upper time limit of 60

seconds that was imposed for all runs, a special value (999999) was recorded for both steps

and time. This led to a dataset of 388.800 (450 problems * 864 parameter configurations)

instances.

This dataset did not explicitly provide information on which run of HAP can be

considered as "good" and which one as "bad". Therefore, a data pre-processing stage was

necessary that would distinguish good from bad performance from all the recorded runs of

HAP based on the number of plan steps and the required time for finding it. However, it is

known within the planning community, that giving a solution quickly and finding a short plan

are contradicting directives for a planning system. There were two choices in dealing with this

problem: a) create two different models, one for fast planning and one for short plans, and

 18

then let the user decide which one to use or b) find a way to combine these two metrics and

produce a single model which uses a trade-off between planning time and length of plans. We

tested both scenarios and noticed that in the first one the outcome was a planner that would

either create short plans after too long a time, or create awfully large plans quickly. Since

none of these cases are acceptable in real-time situations, we decided to adopt the second

scenario.

Domain Source
Assembly New domain
Blocks-world (3 operators) Bibliography
Blocks-world (4 operators) AIPS 98, 2000
Driver AIPS 2002
Ferry FF collection
Freecell AIPS 2000, 2002
Gripper AIPS 98
Hanoi Bibliography
Sokoban New domain
Logistics AIPS 98, 2000
Miconic-10 AIPS 2000
Mystery AIPS 98
Tsp FF collection
Windows New domain
Zeno AIPS 2002

Table 3. Domains used for the creation of the learning data

In order to combine the two metrics we first normalized the plan steps and planning

time according to the following transformation:

� Let Sij be the number of plan steps and Tij be the required time to build it for problem i

(i=1..450) and planner configuration j (j=1..864).

� We first found the shortest plan and minimum planning time for each problem among the

tested planner configurations.

min min()
i ij

j

SS � , min min()
i ij

j

T T�

 19

� We then normalized the results by dividing the minimum plan length and minimum

planning time of each run with the corresponding problem value. For the cases where the

planner had not managed to find a solution, the normalized values of steps and time were

set to zero.

�
min

, 999999

0,

i

norm

ijij

ij

S

SS
S

otherwise

�
� ��� �� ,

min

, 999999

0,

i

norm

ijij

ij

T

TT
T

otherwise

�
� 	
�
�

 We finally created a combined attribute about plan quality:

,

,

norm norm
ij ij

ij

good S T c
Q

bad otherwise

� � �
��� �

where c, is a threshold constant controlling the quality of the "good" plans.

For example, for c equal to 1.6 the above equation means that "a plan is good if its

combined steps and time are at most 40% worse (bigger) than the combined minimum plan

steps and time for the same problem". Since normalized steps and time are combined with a

1:1 ratio, the above 40% limit could also be interpreted as an average of 20% for each steps

and time. This is a flexible definition that would allow a plan to be characterized as good even

if its steps are for example 25% worse than the minimum steps as long as its time is at most

15% worse than the minimum time, provided that their combination is at most 40% worse

than the combined minimum steps and time. In the general case the combined steps and time

must be at most (2-c)*100% worse than the combined minimum steps and time.

In order to decide for the threshold that discriminates between good and bad performance,

we conducted a large number of experiments with different values for c. Values smaller than

1.4 led to a large portion of the runs to be classified as good and therefore the learned models

could not result in actual good configurations. On the other hand, values larger than 1.8

narrowed the subset of good runs, so it was very difficult to induce a model with adequate

 20

precision. Among the rest of the tested values the models that were extracted with c set to 1.6,

resulted in relatively better performance and therefore 1.6 was the threshold adopted for

HAPRC. However, we noticed that other values in the range of 1.5 to 1.7 resulted in

comparative results and if one was to apply the method to other planning systems, he/she

should consider tuning this parameter.

 Another point that must be noticed is the rough Boolean classification to "good" and

"bad" performance. The issue here is that some good planning solutions might fall into the

"bad" class and some bad planning solutions might find their way into the "good" class. This

is always a problem when discretizing a continuous variable, that could potentially be dealt

with fuzzy learning methods. Another solution could be the adoption of a finer grain of

classifications (e.g. "very good", "good", "average", "bad", "very bad"). This however would

increase the complexity of the resulting rule base and require a more advanced rule execution

strategy with no guaranteed benefits.

6.2 Modeling

The next step was to apply a suitable machine learning algorithm in order to discover a model

of the dependencies between problem characteristics, planner parameters and good planning

performance. A first requirement was the interpretability of the resulting model, so that the

acquired knowledge would be transparent and open to the inquiries of a planning expert.

Apart from developing an adaptive planner with good performance to any given planning

problem, we were also interested in this work to study the resulting model for interesting new

knowledge and justifications for its performance. Therefore, symbolic learning approaches

were at the top of our list.

 Mining association rules from the resulting dataset was a first idea, which however

was turned down due to the fact that it would produce too many rules making it extremely

 21

difficult to produce all the relevant ones. In our previous work [32], we have used the

approach of classification based on association rules [19], which induces association rules that

only have a specific target attribute on the right hand side. However, such an approach was

proved inappropriate for our current much more extended dataset.

We therefore turned towards classification rule learning approaches, and specifically

decided to use the SLIPPER rule learning system [5] which is fast, robust, easy to use, and its

hypotheses are compact and easy to understand. SLIPPER generates rule sets by repeatedly

boosting a simple, greedy rule learner. This learner splits the training data, grows a single rule

using one subset of the data and then prunes the rule using the other subset. The metrics that

guide the growing and pruning of rules is based on the formal analysis of boosting algorithms.

The implementation of SLIPPER that we used handles only two-class classification problems.

This suited fine our two-class problem of "good" and "bad" performance. The output of

SLIPPER is a weighted rule set, in which each rule R is associated with a confidence CR,

where all rules predict membership in only one of the two classes. There is also one default

rule that predicts the complementary class in case no rule satisfies the example to be

classified. In our case we always set SLIPPER to learn rules that predict "good" performance.

7. The Rule-Based Planner Tuner

The next step was to embed the learned rules in HAP as a rule-based system that decides the

optimal configuration of planning parameters based on the characteristics of a given problem.

In order to perform this task certain issues had to be addressed:

7.1 Rule-Base Construction

The rules that could actually be used for adaptive planning are those that associated, at the

same time, problem characteristics, planning parameters and the quality field. So, the first

 22

step was to filter out the rules that included only problem characteristics as their antecedents.

This process filtered out 21 rules from the initial set of 79 rules. We notice here that there

were no rules that included only parameters. If such rules existed, then this would mean that

certain parameter values are good regardless of the problem and the corresponding parameters

should be fixed.

The remaining 58 rules modeling good performance were subsequently transformed

so that only the attributes concerning problem characteristics remained as antecedents and the

planning parameters were moved on the right-hand side of the rule as conclusions, omitting

the rule quality attribute. In this way, a rule decides one or more planning parameters based

on one or more problem characteristics. For example, assume that the following is a rule

produced by SLIPPER, where Pi are problem characteristics and Cj are planner parameters:

IF P1 and ... and Pn and C1 and ... and Cm THEN good

If we interpret this rule as a backward chaining rule, then in order to achieve good

performance it suffices to have all Pi problem characteristics and all Cj planner parameters. If

all the problem characteristics Pi are met, then the only way to achieve good performance

(using this rule) is to set the Cj planner parameters. This can be interpreted as a production

(forward chaining) rule having all Pi at the rule condition and all Cj at the rule action:

IF P1 and ... and Pn THEN C1 and ... and Cm

 We notice here that the conditions of rules produced by SLIPPER are not mutually

exclusive and may cover common data sets; therefore, the production rules generated using

the above transformation are disjunctive and can be fired independently from each other. For

any given problem several rules may simultaneously apply. Sometimes these rules are

complimentary while other times are contradicting since they suggest different settings for the

same parameter. The rule execution strategy used is discussed in the next subsection.

 23

7.2 Rule Execution

Each rule was accompanied by a confidence metric, indicating how valid a rule is, i.e. what

percentage of the relevant data in the condition confirms the conclusion-action of the rule. A

100% confidence indicates that it is absolutely certain that when the condition is met, then the

action should be taken.

 The performance of the rule-based system is one concern, but it occupies only a tiny

fragment of the planning procedure, therefore it is not of primary concern. That is why the

rule execution strategy used in our rule-based system is based on the total ordering of rules

according the confidence factor, in descending order. This decision was based on our primary

concern to use the most certain (confident) rules for configuring the planner, because these

rules will most likely lead to a better planning performance.

 Rules are appropriately encoded so that when a rule fires and sets one or more

parameters, then all the other rules that might also set one (or more) of these parameters to a

different setting are “disabled”. In this way, each parameter is set by the most confident rule

(examined first), while the rest of the rules that might affect this parameter are skipped. For

example, assume the following ordered rules R1, R2 and R3 that affect planner parameters C1,

C2, C3 and C4, where Pj
i is the i-th problem characteristic condition of the j-th rule and ci are

constants:

 R1: IF P1
1 and ... and P1

n

 THEN C1=c1 and C2=c2

 R2: IF P2
1 and ... and P2

m

 THEN C1=c1 and C3=c3

 R3: IF P3
1 and ... and P3

k

 THEN C1=c1’ and C4=c4

 24

 If all Pj
i conditions are satisfied then all three rules would fire and set planner

parameters accordingly. However, rules R1 and R3 produce different settings on parameter C1.

In order to prevent rule R3 to re-set parameter C1 the rules are transformed as follows:

 R1’ : IF P1
1 and ... and P1

n and C1=<unset> and C2=<unset>

 THEN C1=c1 and C2=c2

 R2’ : IF P2
1 and ... and P2

m and C1=<unset> and C3=<unset>

 THEN C1=c1 and C3=c3

 R3’ : IF P3
1 and ... and P3

k and C1=<unset> and C4=<unset>

 THEN C1=c1’ and C4=c4

 Using the above transformation rule R3’ will not fire after rule R1’ has fired.

However, rule R2’ is also disabled under this transformation, while it should not, because its

setting on parameter C1 is the same with rule R1’. The following transformation allows both

rules to fire while it prevents rule R3 at the same time:

 R1’ ’ : IF P1
1 and ... and P1

n and (C1=<unset> or C1=c1) and (C2=<unset> or C2=c2)

 THEN C1=c1 and C2=c2

 R2’ ’ : IF P2
1 and ... and P2

m and (C1=<unset> or C1=c1) and (C3=<unset> or C3=c3)

 THEN C1=c1 and C3=c3

 R3’ ’ : IF P3
1 and ... and P3

k and (C1=<unset> or C1=c1’) and (C4=<unset> or C4=c4)

 THEN C1=c1’ and C4=c4

7.3 Default Parameter Values

The experiments with the system showed that on average the rule based system would affect

approximately 4 planning parameters, leaving at the same time 3 parameters unset. According

to the knowledge model, if a parameter is left unset, its value should not affect the

performance of the planning system. However, since the model is not complete, this behavior

 25

could also be interpreted as an inability of the learning process to extract a rule for the

specific case. In order to deal with this problem we performed a statistical analysis in order to

find the best settings for each independent parameter.

 For dealing with situations where the rule-based system leaves all parameters unset

we calculated the average normalized steps and time for each planner configuration:

1

norm

ij
avg i

j

i

S

S �

�

� ,
1

norm

ii
avg i

j

i

T

T �

�

�

and recorded the configuration with the best sum of the above metrics, which can be seen in

Table 4.

 For dealing with situations where the rule-based configuration cannot set one or more

parameters, but not all of them, we repeated the above calculations for each planner parameter

individually, in order to find out if there is a relationship between individual settings and

planner performance. Again for each parameter we recorded the value with the best sum of

the average normalized steps and time. These settings are illustrated in Table 4.

Name Best Configuration Best Individual Value
Direction 0 0
Heuristic 1 1
Weights (w1 and w2) 2 2
Penalty 10 100
Agenda 100 10
Equal_estimation 1 1
Remove 0 1

Table 4: Best combined and individual values of parameters

 In the future we will explore the possibility of using learned rules that predict bad

performance as integrity constraints that guide the selection of the unset planner parameters in

order to avoid inappropriate configurations.

The rule configurable version of HAP, which is outlined in Figure 4 contains two

additional modules, compared to the manually configurable version of the system, that are run

 26

in a pre-planning phase. The first module, noted as Problem Analyzer, uses the problem’s

representation, constructed by the Parser, to calculate the values of the 30 problem

characteristics used by the rules. These values are then passed in the Rule System module,

which tunes the planning parameters based on the embedded rule base and the default values

for unset parameters. The values of the planning parameters along with the problem’s

representation are then passed to the planning module, in order to solve the problem.

Figure 4. HAPRC Architecture

8. Experimental Results

We conducted four sets of comprehensive experiments in order to evaluate the potential gain

in performance offered by the adaptive way in which the parameters are configured and

another one that compares the adaptive planner with the state-of-the art.

All the runs of HAPRC and HAPMC, including those used in the statistical analysis and the

machine learning process, were performed on a SUN Enterprise Server 450 with 4 ULTRA-2

processors at 400 MHz and 2 GB of shared memory. The Operating system of the computer

was SUN Solaris 8. For all experiments we counted CPU clocks and we had an upper limit of

60 sec, beyond which the planner would stop and report that the problem is unsolvable.

Problem file Domain file

Parser

Problem Analyzer

Rule system

Planner

Problem representation

Values of A1 to A35

Values of planning parameters

 27

8.1 Adapting to problems of known domains

This experiment aimed at evaluating the generalization of the adaptive planner's knowledge to

new problems from domains that have already been used for learning. Examining this

learning problem from the viewpoint of a machine learner we notice that it is quite a hard

problem. Its multi-relational nature (problem characteristics and planner parameters) resulted

in a large dataset, but the number of available problems (450) was small, especially compared

to the number of problem attributes (30). This gives rise to two problems with respect to the

evaluation of the planner: a) Since the training data is limited (450 problems), a proper

strategy must be followed for evaluating the planner performance, b) evaluating on already

seen examples must definitely be avoided, because it will lead to rather optimistic results due

to over-fitting.

 For the above reasons we decided to perform 10-fold cross-validation. We have split

the original data into 10 cross-validation sets, each one containing 45 problems (3 from each

of the 15 domains). Then we repeated the following experiment 10 times: In each run, one of

the cross-validation sets was withheld for testing and the 9 rest were merged into a training

set. The training set was used for learning the rules of HAPRC (HAP with rule configuration)

and the test set for measuring its performance. Specifically, we calculated the sum of the

average normalized steps and time. In addition we calculated the same metric for the best

static configuration based on statistical analysis of the training data (HAPMC), in order to

calculate the gain in performance. Finally, we calculated the same metric for the best

configuration for any given problem (HAPORACLE) in order to compare with the maximum

performance that the planner could achieve if it had an oracle predicting the best

configuration. The results of each run, were averaged and thus a proper estimation was

obtained, which is presented in Table 5.

 28

We notice a difference of 0.11 which can be translated as a 7% average gain

combining both steps and time. Moreover, the rule-configurable version outperformed the

static one in all folds, exhibiting a consistently good performance. This shows that the

learning methodology we followed was fruitful and resulted in a rule-base that successfully

adapts HAP to unknown problems of known domains. In addition, we believe that the

performance of HAPRC will increase with the use of more training problems.

Fold HAPMC HAPRC HAPORACLE
1 1,45 1,60 1,92
2 1,63 1,70 1,94
3 1,52 1,60 1,94

4 1,60 1,70 1,94
5 1,62 1,67 1,92
6 1,66 1,67 1,92

7 1,48 1,69 1,91
8 1,47 1,57 1,91
9 1,33 1,47 1,91

10 1,43 1,65 1,92
 Average 1,52 1,63 1,92

Table 5 Comparative results for adapting to problems of known domains

8.2 Adapting to problems of unknown domains

The second experiment aimed at evaluating the generalization of the system to problems of

new domains that have not been used for learning. This would give an estimation of the

behaviour of the planner when confronted with an unknown problem of a new domain.

This is an even harder learning problem considering the fact that there are very few

domains that have been used for learning (15), especially compared again to the 30 problem

attributes. To evaluate the performance of HAPRC we used leave-one-(domain)-out cross-

validation. We split the original data into 15 cross-validation sets, each one containing the

problems of a different domain. Then we repeated the following experiment 15 times: In each

 29

run, one of the cross-validation sets was withheld for testing and the 14 rest were merged into

a training set.

Both the manual and the rule-based configurable versions of HAP performed worse

than the previous experiment. Still HAPRC managed to increase the performance over HAPMC,

as it can be seen in Table 6.

Test Domain HAPMC HAPRC HAPORACLE
Assembly 1,31 1,46 1,89

Blocks 1,13 1,10 1,98
Blocks_3op 1,69 1,52 1,99

Driver 1,52 1,49 1,92
Ferry 1,03 1,66 2,00

Freecell 1,43 1,39 1,96
Gripper 1,75 1,62 1,99
Hanoi 1,08 1,03 1,87

Logistics 1,66 1,69 1,91
Miconic 1,79 1,71 1,96
Mystery 1,21 1,11 1,97
Sokoban 1,20 1,57 1,96

Tsp 1,56 1,56 1,74
Windows 1,30 1,26 1,78

Zeno 1,26 1,34 1,93

Average 1,39 1,43 1,92

Table 6. Comparative results for adapting to problems of unknown domains

We notice a difference of 0.04 which can be translated as a 3% average gain in the combined

metric. This is a small increase in performance, but it is still a success considering that there

were only 15 domains available for training. The enrichment of data from more domains will

definitely increase the accuracy of the rule-base, resulting in a corresponding increase in the

performance of HAPRC.

8.3 Scalability of the methodology

The third experiment aimed at showing the ability of the adaptive system to learn from easy

problems (problems that require little time to be solved) and to use the acquired knowledge as

 30

a guide for difficult problems. It is obvious that such a behavior would be very useful, since

according to the methodology each problem in the training set must be attacked with every

possible combination of the planner’s parameters and for hard problems this process may take

enormous amounts of time.

 In order to test the scalability of the methodology we have split the initial data set into

two sets: a) the training set containing the data for the 20 easiest problems from each domain

and b) the test set containing the 10 hardest problems from each domain. The metric used for

the discrimination between hard and easy problems was the average time needed by the 864

different planner setups to solve the problem. We then used the training set in order to learn

the rule model and statistically find the best static configuration of HAP and tested the two

planners HAPRC and HAPMC on the problems of the test set. For each problem we have also

calculated the performance of HAPORACLE in order to show the maximum performance that

could have been achieved by the planner.

 The results of the experiments, which are presented in Table 7, are quite impressive.

The rule based version managed to outperform the best static version in 11 out of the 15

domains and its performance was approximately 40% better on average. There are some very

interesting conclusions that can be drawn from the results:

� With the exception of a small number of domains, the static configurations which are

effective for easy problems do not perform well for the harder instances of the same

domains.

� There are some domains (e.g. Hanoi) where there must be great differences between

the morphology of easy and hard problems and therefore neither the statistical nor the

learning analyses can effectively scale up.

� It is clear that some domains present particularities in their structure and it is quite

difficult to tackle them without any specific knowledge. For example, in Freecell

 31

both HAPRC and HAPMC trained from the rest of the domains only, did not perform

well (see Table 6), while the inclusion of Freecell’s problems in their training set,

gave them a boost (see Table 7).

� There are domains where there is a clear trade-off between short plans and small

planning time. For example, the low performance of HAPORACLE in the Tsp domain

shows that the configurations that result in short plans require a lot of planning time

and the ones that solve the problems quickly produce bad plans.

� The proposed learning paradigm can scale up very well and the main reason for this is

the general nature of the selected problem attributes.

Test Domain HAPMC HAPRC HAPORACLE
Blocks 0,90558 1,63644 1,85691
Freecell 1,85257 1,87332 1,96179
Blocks_3op 1,86280 1,71858 1,97812
Driver 1,21519 1,72369 1,91871
Ferry 0,31231 1,89045 2,00000
Gripper 1,68127 1,75790 1,98726
Logistics 1,67755 1,80162 1,87129
Miconic 1,92840 1,92633 1,96556
Hanoi 0,45150 1,18859 1,79617
Assembly 0,90558 1,63644 1,85691
Mystery 0,66707 1,72642 1,93710
Sokoban 0,79345 1,65920 1,92238
Windows 1,51738 1,48593 1,64870
Tsp 1,35425 1,32454 1,53859
Zeno 0,89067 1,77630 1,91307
Average 1,20104 1,67505 1,87684

Table 7. Scalability of the methodology

8.4 Ability to learn a specific domain

The fourth experiment aimed at comparing general models, which have been learned from a

variety of domains versus specific models that have been learned from problems of a specific

domain. The reason for such an experiment is to have a clear answer to the question of

whether the planning system could be adapted to a target domain just by using problems of it

 32

as a train set without having to hand code the planner in order to suit the specific domain.

Furthermore, the experiment can also show how misleading the knowledge from other

domains can be.

In order to carry out this experiment we created 15 train sets, each one containing the

20 easiest problems of a specific domain and 15 test sets with the 10 hardest instances. The

next step was to learn the 15 models, one for each domain, and test them on the hardest

problems of the same domain. For each domain we compared the performance of the

specialized model versus the performance of a general model, which have been trained from

the 20 easier problems from all 15 domains (see previous subsection). The results from the

experiment are presented in Table 8, where HAPMC corresponds to the manually configured

version according to the statistical analysis on the 20 easy problems of each domain,

HAPRC(spec.) to the rule configurable version trained only from the 20 easier problems of

each domain, HAPRC(gen.) to the rule configurable version trained from the 300 problems (20

easier problems from each one of the 15 domains) and HAPOracle to the ideal configuration.

 According to the results presented in Table 8, the machine learning powered version

outperforms the best static one in 13 out of the 15 domains and on average it is approximately

7% better. This shows that we can also induce efficient models that perform well in difficult

problems of a given domain when trained on easy problems of this domain only.

Comparing the specialized model with the general one, we see that it is on average

4% better. This shows that in order to adapt to a single domain, it is better to train the planner

exclusively from problems of that domain. However, such an approach would compromise

the generality of the adaptive planner.

 33

Test Domain HAPMC HAPRC(spec.) HAPRC(gen.) HAPORACLE
Blocks 1,68211 1,74216 1,63644 1,85691
Freecell 1,87686 1,85480 1,87332 1,96179
Blocks_3op 1,85469 1,88090 1,71858 1,97812
Driver 1,68233 1,78141 1,72369 1,91871
Ferry 1,83155 1,84822 1,89045 2,00000
Gripper 1,66087 1,78274 1,75790 1,98726
Logistics 1,80311 1,80904 1,80162 1,87129
Miconic 1,92700 1,92638 1,92633 1,96556
Hanoi 0,99866 1,37621 1,18859 1,79617
Assembly 1,68211 1,71725 1,63644 1,85691
Mystery 1,64937 1,82995 1,72642 1,93710
Sokoban 1,60788 1,87623 1,65920 1,92238
Windows 1,35121 1,47576 1,48593 1,64870
Tsp 1,35969 1,37754 1,32454 1,53759
Zeno 1,42974 1,80195 1,77630 1,91307

Average 1,62648 1,73870 1,67505 1,87677

Table 8. General vs. specialized models

8.5 Comparison with the state-of-the-art

In order to further investigate the actual improvement on the performance of HAP offered by

the learning module, we decided to experimentally compare our system with the state-of-the-

art planning systems according to the 3rd International Planning Competition co-held with the

AIPS-2002 international conference. The purpose of this comparison is to show that our

system is competitive with the best planning systems.

 For the experiments we used a set of 150 problems equally distributed in the 15

domains presented in Table 3. Our planner (HAPRC) was compared on these problems with

LPG1 [10], FF2 [13] and MIPS3 [6]. We also include the performance of HAPMC in order to

see how much of the gain in performance of HAPRC was due to its learning subsystem. For

each problem we reported the time in msecs needed for each planner to solve it and the

1 The LPG system can be downloaded from : http://prometeo.ing.unibs.it/lpg/
2 The FF system can be downloaded from: http://www.informatik.uni-freiburg.de/~hoffmann/ff.html
3 The MIPS system can be downloaded from: http://www.informatik.uni-freiburg.de/~mmips/

 34

number of sequential steps in the resulting plans. Note that the upper limit of 60 seconds CPU

time was also applied in these experiments.

 The experimental results are outlined in Table 9. The first row in this table presents

the number of problems that were solved by each planner given the memory (physical limit)

and cpu time (user limit) limitations. The second and third lines report the number of times

that each planner found the shortest plan or required the minimum time to solve the problem,

respectively. The next two lines present the averages concerning plan length and planning

time. These averages were extracted from only a subset (88 out of 150) problems that were

solved by all four planners, for the shake of fairness. Finally, the last row presents the values

of the combined metric used extensively in our research, which normalizes plan steps and

planning time before calculating the averages.

Planner LPG FF MIPS HAPRC HAPMC
Solved Problems 117 143 111 144 133
Shortest plan 26 82 41 90 46
Less time 6 119 9 16 19
Avg. Steps 43,97 32,84 33,67 30,61 33,28
Avg. Time 807,49 959,2 2069,7 490,3 662,5
Combined Metric 0,8231 1,7122 0,8747 1,2564 1,0350

Table 9. Comparative Results

 According to the experimental results, HAPRC and FF solved the majority of the

problems, while LPG and MIPS had a significant number of fails. Moreover, HAPRC managed

to produce shortest plans in 90 problems out of the 144 and on average found shorter plans in

less time than all the other planners. However, the value for the combined metric is

significantly less than the one of FF and this is mainly due to the time needed by the two

planners to solve the problems. Although FF was faster than HAPRC in the vast majority of

the problems and this is clear from Table 9, since FF took less time than any planner in 119

problems, in some of the remaining problems FF needed extremely large amount of time to

solve them. These negative peaks in the performance of FF, concerning planning time, are

 35

responsible for the large average time. Our metric however, manages to smooth these peaks

due to normalization and the resulting combined metric comparison is quite different.

Concluding, HAPRC seems to be at least a fair match to three of the best domain independent

planners, generally producing shorter plans and exhibiting a more stable performance.

9. Discussion

This section presents an experimental analysis performed on the output of the learning tool, in

order to assess the appropriateness of the set of attributes (A1-A30) and its co-relation with

the parameters of HAPRC and discuss the 58 rules that were finally produced.

9.1 Attribute Discussion
Table 10 outlines the distribution of rules over the attributes and the parameters. The number

in a cell Cij refers to the number of rules associating attribute i with parameter j. From the data

presented in Table 10 it is clear that the most important parameter of the planning system is

the direction of search, which proves a well known fact in problem solving and planning , i.e.

that the best direction for solving a problem strongly depends on the nature of the problem [2,

21].

Table 11 presents the results of a statistical analysis on the set of the 58 rules, which

was performed in order to measure the impact of each attribute on the planner’s configuration.

The second column presents the number of rules in which the corresponding attribute

appeared (note that the total number of rules was 58) while the third column presents the

average number of planning parameters that were set by these rules. The fourth column

presents the total number of parameters that were associated (in one or more rules) with the

specific attribute.

 36

Attribute Direction Heuristic Search strategy Penalty Agenda Closer Remove
A1 6 2 2 2 3 3 2
A2 2 1 0 1 1 1 0
A3 7 1 1 0 2 3 1
A4 7 1 2 1 0 2 0
A5 15 2 2 1 2 4 0
A6 11 0 3 0 4 4 1
A7 7 0 1 0 3 3 0
A8 4 1 1 1 3 1 0
A9 10 1 1 1 2 3 0
A10 3 3 0 1 3 1 0
A11 7 1 1 1 0 1 0
A12 4 1 0 0 2 1 2
A13 11 1 2 0 2 5 3
A14 3 0 0 0 3 1 1
A15 3 1 1 1 0 0 1
A16 7 2 0 0 2 4 0
A17 7 0 3 0 1 1 2
A18 15 1 3 1 1 5 0
A19 12 4 2 1 2 4 1
A20 7 0 1 2 2 2 1
A21 8 1 0 3 0 2 0
A22 4 2 0 1 0 1 0
A23 2 0 0 0 1 1 1
A24 13 0 4 0 2 5 2
A25 10 4 1 2 3 1 0
A26 10 4 0 1 1 5 2
A27 15 3 2 1 2 5 5
A28 10 2 1 1 1 3 0
A29 13 5 0 3 2 5 0
A30 15 2 3 0 3 3 4

Total 248 46 37 26 53 80 29

Table 10. Distribution of rules over problem attributes and planning parameters

According to the results in Table 11, attributes A29, A5, A18, A30 and A27 were the

most referenced ones and this is an indication of their significance in capturing the hidden

dynamics of the problems. A5 and A18 refer to simple attributes capturing the shape of the

search space (relaxed branching factor and distribution of actions on facts), while the other

three source from the construction of the heuristic functions for the two directions and the

relation between them (A27 and A30). Among the least referenced ones where A23, A2 and

A15, which do not seem to play an important role in the automatic configuration of the

HAPRC system. It is worth saying here that apart from the 30 attributes presented in Table 2,

 37

the initial set of attributes contained 5 more attributes that were excluded because the learning

tool did not find any association between them and the planning parameters.

Attribute Number of Rules Parameters per Rule Related Parameters
A29 20 1,40 5
A5 20 1,30 6
A18 19 1,37 6
A30 19 1,58 6
A27 19 1,74 7
A24 17 1,53 5
A19 17 1,53 7
A25 16 1,31 6
A6 14 1,64 5
A26 14 1,64 6
A13 13 1,85 6
A28 13 1,38 6
A9 13 1,38 6
A1 13 1,54 7
A21 12 1,17 4
A7 12 1,17 4
A3 12 1,25 6
A20 10 1,50 6
A16 9 1,67 4
A10 9 1,22 5
A8 9 1,22 6
A11 8 1,38 5
A17 8 1,75 5
A4 8 1,63 5
A14 7 1,14 4
A22 6 1,33 4
A12 6 1,67 5
A15 5 1,40 5
A2 4 1,50 5
A23 3 1,67 4

Table 11. Evaluation of attributes

 Concerning the number of planning parameter that were co-related with the attributes

we notice that A27 A19 and A1 were somewhat related to all 7 parameters of HAP and these

attributes concern the branching factors and the heuristic statistics for the two directions,

which apparently are general attributes that should be taken under consideration for the setup

of any planning parameter.

 38

9.2 Rule Discussion
In order to give the reader a clearer view of how the rules look like and if there are any

lessons learned by each one of them separately, we present and discuss a portion of the 58

rules that were finally included in the rule system of HAPRC. The discussion is limited to 5 of

the most representative examples due to space limitations.

���������	��
�������������������	����������������	���� 	��!	"��$#%
&#

The above rule proposes the backward direction for problems where the average

estimated backward distance of the actions is more than 34% of the estimated number of

steps needed to reach the initial state starting from the goals (a31>=0.34) and the standard

deviation of the estimated backward distances of the actions is relatively low

(a34<=43.36). Although the knowledge induced from the rule is not straightforward, it is

reasonable enough since it associates the choice of planning direction with statistics

extracted from the backward heuristic function.

')(�*�+-,�.�/�0%1&2�(�1�3�4	.�*0�56.�4�7�8�9	:�;�<	8�=	>�.$?�/?

The second rule proposes the forward direction for problems where there is a small

number of actions (the number of actions is 1.2 times the number of facts) and there are a

lot of reasonable orderings among the facts of the initial state. The above two

preconditions indicate that the forward branching factor is tractable, since there is a large

number of interactions among the initial facts and there are not many actions in the

problem.

@ (�A�/�,�.�*0�*�*�56.�4�7�8�9	:�;�<	8�=	>�.$?�/?	2�9	:CBD=FE�:�.$?�/?

This rule can be seen as an opposite to the first one, since it proposes the forward

direction for problems where the average estimated backward distance of the actions is

less than 0.7% of the estimated number of steps needed to reach the initial state starting

from the goals (a31<=0.007). Small values for a31 indicate that according to the

 39

backward heuristic function, the actions are considered to be close to the initial state and

at the same time a large number of actions are needed in order to achieve the initial state

by regressing the goals. At the same time, the rule proposes the use of the problem

simplification technique. This seems reasonable enough, since the impression given by

the conditions of the rule is that it refers to problems that require a lot of actions, but there

are not many action chains. In other words, each goal can be easily achieved but there are

many goals (probably independent) and the total number of required actions is large.

Consider for example, the case of a logistics problem with many packages. This is exactly

the case for which the problem simplification technique was developed.

���������
	��
����������
����	��
������������������	���������	�� ��!�"
#�$�%
!�&
'�)(�*+(
��"
#-,.&0/�#�)(�*+(

The a12 and a13 attributes referenced by the above rule, concern the average number of

actions that have each fact in their precondition lists and therefore they are closely related

to the forward branching factor. The first precondition of the rule (a12>=98.6) indicates

that each fact is a precondition of approximately 99 actions on average and this among

with the limit in the standard deviation (a13) imply a large branching factor for the

forward direction. Moreover, the rule uses the a35 attribute which compares the deviation

of the heuristic functions used in the two directions. The rule proposes not to use the

problem simplification technique and this implies that there are many interactions among

the actions. This can be explained since the large number of actions (99) having each fact

in their preconditions, shows that each actions affects a large number of facts and there

are strong connections among the facts of the problem (high complexity).

�����
*
�
	������ ��������	�*���*���� ����*
�
	�*���*���� �����1��	�*���*�2�� ����2��
	�2��+��*�� 	��

3 #�'���4�%056)(���*�*+(
�876#:9�"�!�;�%
!�$
)(<�=(

This is a more complex rule that proposes a large penalty for ordering violations and the

adoption of the second heuristic function. The preconditions of the rule reference the a10

 40

attribute which shows the average number of mutexes between the facts; a10>=19 means

that each fact is mutually exclusive with at least 19 others. Furthermore, four other

attributes (a27, a30, a31 and a34) are mentioned in the conditions that refer to the

heuristic functions. The connection between a27 and the choice for the heuristic

parameter seems very reasonable, as the attribute serves as a comparison between the

second and the third heuristic functions.

10. Conclusions and Future Work

This paper presented HAPRC, an adaptive planning system that uses Machine Learning and

Rule-based techniques in order to infer and utilize domain knowledge. The learned

knowledge consists of rules that associate specific values or value ranges of measurable

problem attributes with the best values for one or more planning parameter, such as the

direction of search or the heuristic function. The knowledge is learned offline and it is

embedded in HAPRC as a rule system, which is executed in a pre-processing phase in order to

decide for the best setup of the planner according to the values of the given problem

attributes.

In order to extract these rules, we experimented with all possible combinations of the

values of the planning parameters of HAP, on over 450 problems of 15 domains. For each run

we recorded the values of the problem attributes, the values of the planning parameters and

the performance of the planner (in terms of planning time and plan length). The two

performance metrics were then normalized and combined in a single one. The next step was

to apply a criterion on the performance metric in order to specify whether a run is considered

to be good or bad. This yielded a very large dataset of approximately 389,000 records,

containing the values of the problem attributes, the values of the planning parameters and a

Boolean field for performance. The dataset was then fed in a machine learning tool in order to

 41

learn rules associating good performance with planning parameters and problem attributes.

The classification rules were then transformed into production rules that tune planner

parameters in the presence of certain problem characteristics and were embedded in the

planner. The whole system was thoroughly tested using various experiments and according to

the results managed to offer a significant increase in the performance of the planner.

The experimental results, presented in the paper, have shown that the adaptive

planning system performs on average better than any statistically found static configuration.

The speedup improves significantly, when the system is tested on unseen problems of known

domains, even when the knowledge was induced by far easier problems than the tested ones.

Such a behavior can prove very useful in customizing HAP for specific domains using only a

small number of easy-to-solve problems for training, when it cannot be afforded to reprogram

the planning system.

Although the focus of this paper was the adaptation of a specific planner, HAP, the

learning methodology is general and could be used for the customization of other planning

systems. A similar approach [28], using a different learning methodology and a subset of the

same planning attributes presented here has already been used for the effective customization

of the LPG planner. This is an indication that the general idea presented in this paper can be

generalized to other planners.

The speedup of our approach compared to the statistically found best configuration

can be attributed to the fact that it treats planner parameters as associations of the problem

characteristics, whereas the statistical analysis tries to associate planner performance with

planner settings, ignoring the problem morphology.

 In the future we plan to expand the application of Machine Learning to include more

measurable problem characteristics in order to come up with vectors of values that represent

the problems in a unique way and manage to capture all the hidden dynamics. We also plan to

 42

add more configurable parameters of planning, such as parameters for time and resource

handling and enrich the HAP system with other heuristics and speed up techniques.

 In addition, we will explore the applicability of different rule-learning algorithms,

such as decision-tree learning that could potentially provide knowledge of better quality. We

will also investigate the use of alternative automatic feature selection techniques that could

prune the vector of input attributes thus giving the learning algorithm the ability to achieve

better results. The interpretability of the resulting model and its analysis by planning experts

will also be a point of greater focus in the future.

11. References

1. J. L. Ambite, C. Knoblock, and S. Minton, Learning Plan Rewriting Rules. In
Proceedings of the 5th International Conference on Artificial Intelligence Planning
and Scheduling Systems, Breckenridge, CO, USA, 2000, pp. 3-12.

2. B. Bonet, and H. Geffner, Planning as Heuristic Search: New Results, In Proceedings
of the5th European Conference on AI Planning, 1999, pp. 360-372.

3. D. Borrajo, and M. Veloso, Lazy Incremental Learning of Control Knowledge for
Efficiently Obtaining Quality Plans. Artificial Intelligence Review 10 (1996), 1-34.

4. J. Carbonell, C. Knoblock and S. Minton, PRODIGY: An integrated architecture for
planning and learning, Architectures for Intelligence, K. VanLehn, eds, Lawrence
Erlbaum Associates, 1991, 241-278.

5. W. Cohen and Y. Singer, A Simple, Fast, and Effective Rule Learner. In Proceedings
of the 16th National Conference on Artificial Intelligence, 1999, pp. 335-342.

6. S. Edelkamp and M. Helmert, The Model Checking Integrated Planning System. AI-
Magazine Fall (2001), 67-71.

7. O. Etzioni, Acquiring Search-Control Knowledge via Static Analysis. Artificial
Intelligence 62 (2) (1993), 265-301.

8. R. Fikes, P. Hart and N. Nilsson, Learning and Executing Generalized Robot Plans.
Artificial Intelligence 3 (1972), 251-288.

9. M. Fox and D. Long, The Automatic Inference of State Invariants in TIM. Journal of
Artificial Intelligence Research 9 (1998), 367-421.

10. Gerevini, A. Saetti and I. Serina, Planning through Stochastic Local Search and
Temporal Action Graphs, Journal of Artificial Intelligence Research 20 (2003), 239-
290.

11. K. Gopal, An Adaptive Planner based on Learning of Planning Performance. Master
Thesis 2000, Office of Graduate Studies, Texas A&M University.

12. K. Hammond, Case-Based Planning: Viewing Planning as a Memory Task.
Academic Press, Boston, MA., 1989.

 43

13. J. Hoffmann, Utilizing Problem Structure in Planning: A Local Search Approach,
LNAI 2854, Springer-Verlag, 2003.

14. J. Hoffmann and B. Nebel, The FF Planning System: Fast Plan Generation Through
Heuristic Search. Journal of Artificial Intelligence Research 14 (2001), 253 – 302.

15. A. Howe and E. Dahlman, A critical assessment of Benchmark comparison in
Planning. Journal of Artificial Intelligence Research, 1 (1993), 1-15.

16. A. Howe, E. Dahlman, C. Hansen, A. vonMayrhauser and M. Scheetz, Exploiting
Competitive Planner Performance. In Proceedings of the 5th European Conference
on Planning, Durham, UK, 1999, pp. 62-72.

17. S. Kambhampati and H. Hendler, A Validation-Structure-Based Theory of Plan
Modification and Reuse. Artificial Intelligence 55 (1992), 193-258.

18. G. Knoblock, Learning Abstraction Hierarchies for Problem Solving. In Proceedings
of the 8th National Conference on Artificial Intelligence. Menlo Park, California,
1990, pp. 923-928.

19. B. Liu, W. Hsu and Y. Ma, Y. (1998). Integrating Classification and Association Rule
Mining. In Proceedings of the 4th International Conference on Knowledge Discovery
and Data Mining (Plenary Presentation).

20. M. Martin, and H. Geffner, Learning Generalized Policies in Planning Using Concept
Languages. In Proceedings of the 7th International Conference on Knowledge
Representation and Reasoning. San Francisco, California, 2000, pp. 667-677.

21. B. Massey, Directions In Planning: Understanding the Flow of Time in Planning,
Available as a Technical Report from the University of Oregon, 1999.

22. T. L. McCluskey and J. M. Porteous, Engineering and compiling planning domain
models to promote validity and efficiency, Artificial Intelligence Journal 95, (1997),
1-65.

23. T.L. McCluskey and J.M.Porteous. Two Complementary Techniques in Knowledge
Compilation for Planning, Proceedings of the ML'93 Workshop on Knowledge
Compilation and Speedup Learning, University of Massechussetts, USA, (1993).

24. S. Minton, Automatically Configuring Constraint Satisfaction Programs: A Case
Study. Constraints 1 (1/2) (1996), 7 - 43.

25. I. Refanidis, and I. Vlahavas, The GRT Planner: Backward Heuristic Construction in
Forward State-Space Planning, Journal of Artificial Intelligence Research 15, (2001),
115-161.

26. R. Sutton, Integrated Architectures for learning, planning and reacting based on
approximating dynamic programming. In Proceedings of the 7th International
Conference on Machine Learning, Austin, Texas. 1990, pp. 216-224.

27. G. Tsoumakas, D. Vrakas, N. Bassiliades and I. Vlahavas, Using the k nearest
problems for adaptive multicriteria planning. In Proceedings of the 3d Hellenic
Conference on Artificial Intelligence, SETN 2004, Samos, Greece, 2004. pp. 132-
141.

28. G. Tsoumakas, D. Vrakas, N. Bassiliades and I. Vlahavas, Lazy Adaptive
Multicriteria Planning, In Proceedings of the 16th European Conference on Artificial
Intelligence, Valencia, Spain, 2004, pp. 693-697.

29. M. Veloso, J. Carbonell, A. Perez, D. Borrajo, E. Fink and J. Blythe, Integrating
planning and learning: The prodigy architecture. Journal of Experimental and
Theoretical Artificial Intelligence 7 (1) (1995), 81-120.

 44

30. D. Vrakas, and I. Vlahavas, Combining progression and regression in state-space
heuristic planning. In Proceedings of the 6th European Conference on Planning,
Toledo, Spain, 2001, pp. 1-12.

31. D. Vrakas and I. Vlahavas, A heuristic for planning based on action evaluation. In
Proceedings of the 10th International Conference on Artificial Intelligence:
Methodology, Systems and Applications, Varna Bulgaria, 2002, pp. 61-70.

32. D. Vrakas, G. Tsoumakas, N. Bassiliades and I. Vlahavas, Learning rules for
Adaptive Planning. In Proceedings of the 13th International Conference on
Automated Planning and Scheduling. Trento, Italy, 2003, pp. 82-91.

33. X. Wang, A Multistrategy Learning System for Planning Operator Acquisition. In
Proceedings of the 3rd International Workshop on Multistrategy Learning. Harpers
Ferry, West Virginia, 1996, pp. 23-25.

34. T. Zimmerman, and S. Kambhampati, Learning-Assisted Automated Planning:
Looking Back, Taking Stock, Going Forward. AI Magazine 24 (2) (2003), 73-96.

