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Abstract Ensemble pruning deals with the reduction of an ensemble of pre-
dictive models in order to improve its efficiency and predictive performance.
The last 12 years a large number of ensemble pruning methods have been
proposed. This work proposes a taxonomy for their organization and reviews
important representative methods of each category. It abstracts their key
components and discusses their main advantages and disadvantages. We hope
that this work will serve as a good starting point and reference for researchers
working on the development of new ensemble pruning methods.

1 Introduction

Ensemble methods [5, 13] has been a very popular research topic during the
last decade. It has attracted the interest of scientists from several fields in-
cluding Statistics, Machine Learning, Pattern Recognition and Knowledge
Discovery in Databases. The success of ensemble methods arises largely from
the fact that they offer an appealing solution to several interesting learning
problems of the past and the present, such as improving predictive perfor-
mance, learning from multiple physically distributed data sources, scaling
inductive algorithms to large databases and learning from concept-drifting
data streams.

Typically, ensemble methods comprise two phases: the production of mul-
tiple predictive models and their combination. Recent work [2, 4, 7, 9, 15, 18,
16, 29, 21, 22, 35] considers an additional intermediate phase that deals with
the reduction of the ensemble size prior to combination. This phase is com-
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monly called ensemble pruning, while other names include selective ensemble,
ensemble thinning and ensemble selection.

Ensemble pruning is important for two reasons: efficiency and predictive
performance. Having a very large number of models in an ensemble adds a lot
of computational overhead. For example, decision tree models may have large
memory requirements [16] and lazy learning methods have a considerable
computational cost during execution. The minimization of run-time overhead
is crucial in certain applications, such as stream mining. In addition, when
models are distributed over a network, the reduction of models leads to the
reduction of communication costs.

Equally important is the second reason, predictive performance. An en-
semble may consist of both high and low predictive performance models. The
latter may negatively affect the overall performance of the ensemble. In ad-
dition, an ensemble may contain many models that are very similar to each
other. This reduces its diversity and capability for error correction. Pruning
low performance models while maintaining a high diversity among the re-
maining members of the ensemble is typically considered a proper recipe for
an effective ensemble.

Note that ensemble pruning is different from ensemble weighting [34],
where the decisions of all models in the ensemble are considered, but with a
different weight. Ensemble weighting is concerned solely with increasing the
predictive performance, as it needs to maintain all models of the ensemble.

One of the first ensemble pruning approaches is discussed in [24]. The
12 years that followed have witnessed the development of several diverse
methods for ensemble pruning. This work proposes a taxonomy for their or-
ganization and reviews important representative methods of each category. It
steers clear of a mere enumeration of particular approaches in the related lit-
erature and instead attempts to abstract their key components, discuss their
main advantages and disadvantages and analyze their complexity whenever
possible. We hope that this work will serve as a good starting point and ref-
erence for researchers working on the development of new ensemble pruning
methods.

The remainder of this chapter is structured as follows. Section 2 con-
tains background material on ensemble production and combination. Section
3 presents the proposed taxonomy, introduces notation and discusses issues
that are common for all methods. Sections 4 to 7 review important represen-
tative methods of each category in the taxonomy. Finally, the conclusions of
this work are presented in Section 8.
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2 Background

This section provides background material on ensemble methods. More specif-
ically, information about the different ways of producing models are presented
as well as different methods for combining the decisions of the models.

2.1 Producing the Models

An ensemble can be composed of either homogeneous or heterogeneous models.
Homogeneous models derive from different executions of the same learning
algorithm. Such models can be produced by using different values for the
parameters of the learning algorithm, injecting randomness into the learning
algorithm or through the manipulation of the training instances, the input
attributes and the model outputs [6]. Popular methods for producing homo-
geneous models are bagging [3] and boosting [25].

Heterogeneous models derive from running different learning algorithms
on the same data set. Such models have different views about the data, as
they make different assumptions about it. For example, a neural network is
robust to noise in contrast with a k-nearest neighbor classifier.

2.2 Combining the Models

Common methods for combining an ensemble of predictive models include
voting, stacked generalization and mixture of experts.

In voting, each model outputs a class value (or ranking, or probability
distribution) and the class with the most votes is the one proposed by the
ensemble. When the class with the maximum number of votes is the winner,
the rule is called plurality voting and when the class with more than half
of the votes is the winner, the rule is called majority voting. A variant of
voting is weighted voting where the models are not treated equally as each
of them is associated with a coefficient (weight), usually proportional to its
classification accuracy.

Let x be an instance and mi, i = 1..k a set of models that output a
probability distribution mi(x, cj) for each class cj , j = 1..n. The output of
the (weighted) voting method y(x) for instance x is given by the following
mathematical expression:

y(x) = arg max
cj

k∑

i=1

wimi(x, cj),
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where wi is the weight of model i. In the simple case of voting (unweighted),
the weights are all equal to one, that is, wi = 1, i = 1..k.

Stacked generalization [32], also known as stacking is a method that com-
bines models by learning a meta-level (or level-1) model that predicts the
correct class based on the decisions of the base level (or level-0) models.
This model is induced on a set of meta-level training data that are typically
produced by applying a procedure similar to k-fold cross validation on the
training data. The outputs of the base-learners for each instance along with
the true class of that instance form a meta-instance. A meta-classifier is then
trained on the meta-instances. When a new instance appears for classifica-
tion, the output of the all base-learners is first calculated and then propagated
to the meta-classifier, which outputs the final result.

The mixture of experts architecture [12] is similar to the weighted voting
method except that the weights are not constant over the input space. Instead
there is a gating network which takes as input an instance and outputs the
weights that will be used in the weighted voting method for that specific
instance. Each expert makes a decision and the output is averaged as in the
method of voting.

3 A Taxonomy of Ensemble Pruning Methods

We propose the organization of the various ensemble pruning methods into
the following categories:

• Ranking based. Methods of this category are conceptually the simplest.
They order the models of the ensemble once according to an evaluation
function and select models in this fixed order.

• Clustering based. Methods of this category comprise two stages. Initially,
they employ a clustering algorithm in order to discover groups of mod-
els that make similar predictions. Subsequently, each cluster is separately
pruned in order to increase the overall diversity of the ensemble.

• Optimization based. Ensemble pruning can be posed as an optimization
problem as follows: find the subset of the original ensemble that optimizes
a measure indicative of its generalization performance (e.g. accuracy on a
separate validation set). Exhaustive search of the space of ensemble subsets
is infeasible for a moderate ensemble size.

• Other. This category includes methods that don’t fall into one of the pre-
vious categories.

Before proceeding to the description of the main characteristics of each
category, some common notation is introduced. The original ensemble is de-
noted as H = {ht, t = 1, 2, . . . , T}. All methods employ a function that
evaluates the suitability of single models, model pairs or ensembles of more
than two models for inclusion in the final ensemble. Evaluation is typically
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based on the predictions of the models on a set of data, which will be called
the pruning set. The role of the pruning set can be performed by the training
set, a separate validation set, or even a set of - naturally existing or artifi-
cially produced - instances with unknown value for the target variable. The
pruning set will be denoted as D = {(xi, yi), i = 1, 2, . . . , N}, where xi is a
vector with feature values and yi is the value of the target variable, which
may be unknown.

4 Ranking-based Methods

The main point of differentiation among the methods of this category is the
evaluation measure used for model ranking. Using the predictive performance
of individual models is too simplistic and does not achieve satisfying results
[24, 33]. Information-theoretic measures were also used in [33] for the evalu-
ation of Bayesian models, with equally disappointing results.

Kappa pruning [16] employs a diversity measure for evaluation. It ranks all
pairs of classifiers in H based on the κ statistic of agreement calculated on the
training set. Its time complexity is O(T 2N). Kappa pruning could be gener-
alized by accepting a parameter to specify any pairwise diversity measure for
either classification or regression models, in place of the κ statistic. However,
it would still beg for one fundamental theoretical question: Do two diverse
pairs of models, lead to one diverse ensemble of four models? The intuitive
answer is no. In fact, kappa pruning has been shown to be non-competitive
for pruning classifier ensembles produced via bagging [17].

An efficient and effective ranking-based pruning method for ensembles of
classifiers is orientation ordering [19]. A key concept in orientation ordering is
the signature vector of a classifier ht; an N -dimensional vector with elements
taking the value +1 if ht(xi) = yi and -1 if ht(xi) 6= yi. The average signature
vector of all classifiers in an ensemble is called the ensemble signature vector.
It is indicative of the ability of the ensemble to correctly classify each example
in the pruning set (the training set in this method) using majority voting
for classifier combination. The reference vector is a vector perpendicular to
the ensemble signature vector that corresponds to the projection of the first
quadrant diagonal onto the hyper-plane defined by the ensemble signature
vector.

Orientation ordering ranks the classifiers by increasing value of the angle
between their signature vector and the reference vector. Essentially this or-
dering gives preference to models that correctly classify those examples that
are incorrectly classified by the full ensemble. Orientation ordering is among
the fastest methods for ensemble pruning, with time complexity of O(TN).
In addition, its predictive performance is not significantly worse than state-
of-the-art methods for pruning classifier ensembles produced via bagging [17].



6 Grigorios Tsoumakas, Ioannis Partalas, and Ioannis Vlahavas

Another interesting issue in ranking-based ensemble pruning methods con-
cerns the choice of the final number of models from the obtained ranking. One
approach is to use a fixed user-specified amount or percentage of models. In
kappa pruning for example, classifier pairs are selected in ascending order of
agreement until a specified number of models has been reached. If the goal of
pruning is to improve efficiency, then this approach can be used in order to
obtain the desired amount of models, which may be dictated by constraints
(memory and speed) in the application environment.

A second approach is to dynamically select the size based on the evalu-
ation measure or the predictive performance of ensembles of different size.
In orientation ordering for example, only the classifiers whose angle is less
than π/2 are included in the final ensemble, while in [33], the models whose
evaluation measure is lower than the average of all models are pruned. This
approach is more preferable when the goal of pruning is to improve predictive
performance, as it is more flexible and can sacrifice efficiency for effectiveness.

5 Clustering-based Methods

A first issue for the methods of this category is the choice of clustering algo-
rithm. Past approaches have used hierarchical agglomerative clustering [9], k
means [8, 15] and deterministic annealing [1].

Clustering algorithms are based on the notion of distance. Therefore, a
second issue for clustering based methods is the choice of an appropriate
distance measure. The probability that classifiers don’t make coincident er-
rors in a separate validation set was used as a distance measure in [9]. This
measure is actually equal to one minus the double fault diversity measure
[14]. The Euclidean distance in the training set is used in [8, 15]. Actually,
any distance measure suitable for nominal (classifiers) or numeric (regressors)
output could be used. Note that there is no need for a labeled pruning set in
this case [1]. Artificially generated data could be used instead.

Another important issue concerns the process of pruning each cluster. An
elegant approach was used in [1], where a new model is trained for each
cluster, using the cluster centroids as values of the target variable. Another
interesting approach is to select from each cluster the single classifier that
is most distant to the rest of the clusters [9]. The approach followed in [15]
was to iteratively remove models from the least to the most accurate, until
the accuracy of the entire ensemble starts to decrease. This, however, does
not guarantee the selection of a single model from each cluster. The most
accurate model of each cluster was selected in [8].

A final issue worth mentioning is the choice of the number of clusters.
This could be determined based on the performance of the method on a
validation set [8]. In [15], the number of clusters was gradually increased
until the disagreement between the cluster centroids started to deteriorate.
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6 Optimization-based Methods

In the following subsections we look into ensemble pruning methods that are
based on three different optimization approaches: genetic algorithms, semi-
definite programming and hill climbing. The last approach is examined at a
greater level of detail, as a large number of this kind of ensemble pruning
methods have been recently proposed.

6.1 Genetic Algorithms

The Gasen-b method [36] performs stochastic search in the space of model
subsets using a genetic algorithm. The ensemble is represented as a bit string,
using one bit for each model. Models are included or excluded from the en-
semble depending on the value of the corresponding bit. Gasen-b performs
standard genetic operations such as mutations and crossovers and uses de-
fault values for the parameters of the genetic algorithm. The fitness function
for an individual S ⊆ H is the accuracy of S on a separate validation set
using voting for model combination.

6.2 Semi-Definite Programming

Zhang et al. [35] formulate the ensemble pruning problem as a mathematical
problem and apply semi-definite programming (SDP) techniques. In specific,
the authors initially formulated the ensemble pruning problem as a quadratic
integer programming problem that looks for a fixed-size subset of k classifiers
with minimum misclassification and maximum divergence.

They subsequently found that this quadratic integer programming problem
is similar to the max cut with size k problem, which can be approximately
solved using an algorithm based on SDP. Their algorithm requires the number
of classifiers to retain as a parameter and runs in polynomial time.

6.3 Hill Climbing

Hill climbing search greedily selects the next state to visit from the neigh-
borhood of the current state. States, in our case, are the different subsets of
models and the neighborhood of a subset S ⊆ H consists of those subsets
that can be constructed by adding or removing one model from S. We focus
on the directed version of hill-climbing that traverses the search space from
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one end (empty set) to the other (complete ensemble). An example of the
search space for an ensemble of four models is presented in Figure 1.
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Fig. 1 An example of the search space of hill climbing ensemble pruning methods for an
ensemble of 4 models.

Depending on the direction of search, we have forward selection [16, 7, 18,
4, 33] and backward elimination [2, 22, 33] methods. In both cases, the traver-
sal requires the evaluation of T (T+1)

2 subsets, leading to a time complexity
of O(T 2g(T, N)). The term g(T, N) concerns the complexity of the evalua-
tion process, which is linear with respect to N and ranges from constant to
quadratic with respect to T , as we shall see in the rest of this section.

Similarly to ranking-based methods, the main component that differen-
tiates hill climbing ensemble pruning methods is the evaluation measure.
Evaluation measures can be grouped into two major categories: performance
based and diversity based.

The goal of performance based measures is to find the model ht that max-
imizes the performance of the ensemble produced by adding (removing) ht to
(from) the current ensemble. Their calculation depends on the method used
for ensemble combination, which usually is voting. Accuracy was used as an
evaluation measure in [16, 7, 33], while [4] experimented with several metrics,
including accuracy, root-mean-squared-error, mean cross-entropy, lift, preci-
sion/recall break-even point, precision/recall F-score, average precision and
ROC area. Another measure is benefit which is based on a cost model and
has been used in [7].
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The calculation of performance-based metrics requires the decision of the
current ensemble S on all examples of the pruning set. Therefore, the com-
plexity of these measures is O(|S|N). However, this complexity can be opti-
mized to O(N) if the predictions of the current ensemble are updated incre-
mentally each time a model is added to/removed from it.

It is generally accepted that an ensemble should contain diverse models
in order to achieve high predictive performance. However, there is no clear
definition of diversity, neither a single measure to calculate it. In their in-
teresting study, Kuncheva and Whitaker [14], could not reach into a solid
conclusion on how to utilize diversity for the production of effective classifier
ensembles. In a more recent theoretical and experimental study on diversity
measures [27], the authors reached to the conclusion that diversity cannot be
explicitly used for guiding the process of hill climbing methods. Yet, certain
approaches have reported promising results [18, 2, 22].

One issue worth mentioning here is how to calculate the diversity during
the search in the space of ensemble subsets. For simplicity we consider the
case of forward selection only. Let S be the current ensemble and ht ∈ H \S
a candidate classifier to add to the ensemble.

One could compare the diversities of ensembles S′ = S∪ht for all candidate
ht ∈ H\S and select the one with the highest diversity. Any pairwise and non-
pairwise diversity measure can be used for this purpose. The time complexity
of most non-pairwise diversity measures is O(|S′|N), while that of pairwise
diversity measures is O(|S′|2N). However, a straightforward optimization can
be performed in the case of pairwise diversity measures. Instead of calculating
the sum of the pairwise diversity for every pair of classifiers in each candidate
ensemble S′, one can simply calculate the sum of the pairwise diversities only
for the pairs that include the candidate classifier ht. The sum of the rest of
the pairs is equal for all candidate ensembles. The same optimization can be
achieved in backward elimination too. This reduces their time complexity to
O(|S|N).

Several methods [18, 2, 27, 22] use a different approach to calculate diver-
sity during the search. They use pairwise measures to compare the candidate
classifier ht with the current ensemble S, which is viewed as a single classi-
fier that combines the decisions of its members with voting. This way they
calculate the diversity between the current ensemble as a whole and the can-
didate classifier. Such an approach has time complexity O(|S|N), which can
be optimized to O(N) if the predictions of the current ensemble are updated
incrementally each time a model is added to/removed from it.

In the past, the widely known diversity measures disagreement, double
fault, Kohavi-Wolpert variance, inter-rater agreement, generalized diversity
and difficulty were used for hill climbing ensemble pruning in [27]. Four di-
versity measures designed specifically for hill climbing ensemble pruning are
introduced in [18, 2, 22]. We next present these measures using a common
notation.
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We can distinguish four events concerning the decision of the current en-
semble and the candidate classifier:

etf (xi) : y = ht(xi) ∧ y 6= S(xi)
eft(xi) : y 6= ht(xi) ∧ y = S(xi)
ett(xi) : y = ht(xi) ∧ y = S(xi)

eff (xi) : y 6= ht(xi) ∧ y 6= S(xi)

The complementariness [18] of a model hk with respect to an ensemble S
and a pruning set D is calculated as follows:

COMD(hk, S) =
N∑

i=1

I(etf (xi)),

where I(true) = 1, I(false) = 0 and S(xi) is the classification of instance
xi from the ensemble S. This classification is derived from the application of
an ensemble combination method to S, which usually is voting. The comple-
mentariness of a model with respect to an ensemble is actually the number of
examples of D that are classified correctly by the model and incorrectly by
the ensemble. A selection algorithm that uses the above measure, tries to add
(remove) at each step the model that helps the ensemble classify correctly
the examples it gets wrong.

The concurrency [2] of a model hk with respect to an ensemble S and a
pruning set D is calculated as follows:

COND(hk, S) =
N∑

i=1

(
2 ∗ I(etf (xi)) + I(ett(xi))− 2 ∗ I(eff (xi))

)

This measure is very similar to complementariness with the difference that
it takes into account two extra cases.

The focused ensemble selection method [22] proposes a measure that uses
all the events and also takes into account the strength of the current ensem-
ble’s decision:

FES(hk, S) =
N∑

i=1

(
NTi ∗ I(etf (xi))−NFi ∗ I(eft(xi)) +

+NFi ∗ I(ett(xi))−NTi ∗ I(eff (xi))
)
,

where NTi denotes the proportion of models in the current ensemble S
that classify example (xi, yi) correctly, and NFi = 1 − NTi denotes the
number of models in S that classify it incorrectly.

The margin distance minimization method [18] is based on the same con-
cepts as the orientation ordering ranking-based method (see Section 4). It
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searches for the ensemble S with the minimum distance between its signa-
ture vector cS and a predefined vector o placed in the first quadrant of the
N -dimensional hyperplane. Vector o corresponds to an ideal vector that cor-
rectly classifies all examples.

The method is based on a measure called margin. The margin, MARD(hk, S),
of classifier hk with respect to an ensemble S and a pruning set D is calculated
as follows:

MARD(hk, S) = d

(
o,

1
|S|+ 1

(
cS∪{hk}

))

where d is the Euclidean distance.

7 Other Methods

This category includes three approaches that don’t belong to any of the
previous categories. The first one is based on statistical procedures for directly
selecting a subset of classifiers, the second is based on reinforcement learning
and the third on boosting.

7.1 Statistical Procedures

Tsoumakas et al. [29, 28] prune an ensemble of heterogeneous classifiers using
statistical tests that determine whether the differences in predictive perfor-
mance among the classifiers of the ensemble are significant. Only the clas-
sifiers with significantly better performance than the rest are retained and
subsequently combined with the method of (weighted) voting.

Such statistical tests are called multiple comparisons procedures [10]. Three
of those that were used in [28] are Tukey’s test [30], Hsu’s test [11] and Scott
& Knott’s procedure [26], with the last one offering the largest benefit.

The disadvantage of these methods is that they don’t take the diversity
of the ensemble into consideration. However, they could potentially play the
role of a first fast filtering of low performing models in a large ensemble,
followed by a more advanced diversity-aware method.

7.2 Reinforcement Learning

Partalas et al. [21, 23] take a reinforcement learning approach to ensemble
pruning. In specific, the problem of pruning an ensemble of T classifiers is
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modeled as an episodic task, where an agent takes T sequential actions, each
one corresponding to either the inclusion or exclusion of classifier ht, t =
1 . . . T from the final ensemble. The Q-learning [31] algorithm is then used to
approximate the optimal policy for this task.

7.3 Boosting

An approach similar to boosting was used for pruning an ensemble of clas-
sifiers produced via bagging in [20]. The algorithm iteratively selects the
classifier with the lowest weighted error on the training set. Instance weights
are initialized and updated according to the AdaBoost algorithm. The only
difference is that instead of terminating the process when the weighted error
is larger than 0.5, the algorithm resets all instance weights and continues
selecting models. The complexity of this approach is O(T 2N).

This approach ranks individual classifiers, but it does so based on their
weighted error on the training set. Since at each step of the algorithm the in-
stance weights depend on the classifiers selected up to that step, we refrained
from categorizing this approach to ranking-based methods, where each model
can be independently evaluated and ranked independently of the currently
selected models.

8 Conclusions

This work presented a taxonomy of ensemble pruning methods. We believe
that such a taxonomy is necessary for researchers working on new meth-
ods. It will help them identify the main categories of methods and their key
points, and avoid duplication of work. Due to the large amount of existing
methods and the different parameters of an ensemble selection framework
(heterogeneous/homogeneous ensemble, algorithms used, size of ensemble,
etc), it is possible to devise a new method, which may only differ in small,
perhaps unimportant, details from existing methods. A generalized view of
the methods, as offered from this work, will help avoid work towards such
small differences, and perhaps may lead to more novel methods.

We do not argue that the proposed taxonomy is perfect. On the contrary,
it is just a first step in abstracting and categorizing the different methods. We
made an effort to include most of the important ensemble pruning methods,
but no doubt, some high quality methods may have been left outside this
study. For example, we haven’t considered instance-base ensemble pruning
methods that dynamically prune the ensemble for each test instance.

This work refrained from performing experimental comparisons between
the methods. However, we would like to stress the importance of the following
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guidelines for empirical ensemble pruning studies. Firstly the ensemble should
consist of a moderate size of models (e.g. 100 or more). For small ensemble
sizes (e.g. 10 models), an exhaustive search for the best subset of models is
computationally feasible, and perhaps even faster than some more complex
methods of the literature. Secondly the study should include a large number
of datasets, and include appropriate statistical tests for the comparison of
different methods, in order to derive safe and useful conclusions.
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