
Using the k Nearest Problems for Adaptive

Multicriteria Planning

Grigorios Tsoumakas, Dimitris Vrakas, Nick Bassiliades, and Ioannis Vlahavas

Department of Informatics, Aristotle University of Thessaloniki
54124 Thessaloniki, Greece

{greg, dvrakas, nbassili, vlahavas}@csd.auth.gr
http://lpis.csd.auth.gr/

Abstract. This paper concerns the design and development of an adap-
tive planner that is able to adjust its parameters to the characteristics of a
given problem and to the priorities set by the user concerning plan length
and planning time. This is accomplished through the implementation of
the k nearest neighbor machine learning algorithm on top of a highly
adjustable planner, called HAP. Learning data are produced by running
HAP offline on several problems from multiple domains using all value
combinations of its parameters. When the adaptive planner HAPNN is
faced with a new problem, it locates the k nearest problems, using a set
of measurable problem characteristics, retrieves the performance data
for all parameter configurations on these problems and performs a mul-
ticriteria combination, with user-specified weights for plan length and
planning time. Based on this combination, the configuration with the
best performance is then used in order to solve the new problem. Com-
parative experiments with the statistically best static configurations of
the planner show that HAPNN manages to adapt successfully to unseen
problems, leading to an increased planning performance.

1 Introduction

In domain independent heuristic planning there is a number of systems that their
performance varies between best and worse on a number of toy and real-world
planning domains. No planner has been proved yet to be the best for all kinds of
problems and domains. Similar instability in their efficiency is also noted when
different variations of the same planner are tested on the same problem, when
the value of one or more parameters of the planner is changed. Although most
planners claim that the default values for their options guarantee a stable and
averagely good performance, in most cases fine tuning the parameters by hand
improves the performance of the system for the given problem.
Few attempts have been made to explain which are the specific dynamics of

a planning problem that favor a specific planning system and even more, which
is the best setup for a planning system given the characteristics of the planning
problem. This kind of knowledge would clearly assist the planning community
in producing flexible systems that could automatically adapt themselves to each
problem, achieving best performance.

2 Grigorios Tsoumakas et al.

Some promising past approaches towards this goal, followed the methodology
of utilizing Machine Learning in order to infer rules for the automatic config-
uration of planning systems [1],[2]. However, these approaches exhibited two
important problems. The first one is that they used a fixed policy for what can
be considered as a good solution to a planning problem and didn’t allow users to
specify their own priorities concerning the speed of the planner and the quality
of the plans, which are frequently contradictious. The second one is that learning
is very computationally expensive and thus extending the knowledge base of the
planner is a non-trivial task.

This paper presents a different approach to adaptive planning that is based on
instance-based learning in order to deal with the two aforementioned problems.
Specifically, the k nearest neighbor machine learning algorithm is implemented
on top of the HAP highly adjustable planner. Learning data are produced by
running HAP offline on 30 problems from each one of 15 domains (i.e. 450 prob-
lems) using 864 combinations of values for its 7 parameters. When the adaptive
planner HAPNN is faced with a new problem, it retrieves the steps and time
performance data for all parameter configurations of the k nearest problems
and performs a multi-criteria combination, with user-specified weights. The best
configuration is then used for running the planner on the new problem. Most
importantly, the planner can store new problems and train incrementally from
them, making the system highly extensible.

The performance of HAPNN was thoroughly evaluated through experiments
that aimed at showing the behavior of the adaptive system in new problems.
The results showed that the system managed to adapt quite well and the use
of different weights for steps and time had the expected effect on the resulting
plan length and planning time of the adaptive planner.

The rest of the paper is organized as follows: Section 2 overviews related work
combining Machine Learning and Planning. The planning system used for the
purposes of our research and the problem analysis done for deciding the problem
attributes are presented in Section 3 and 4 respectively. Section 5 describes in
detail the methodology we followed for designing the adaptive planner. The
experimental results are presented and discussed in the Section 6 and finally,
Section 7 concludes the paper and poses future research directions.

2 Related Work

Machine learning has been exploited extensively in the past to support Planning
systems in many ways. There are three main categories of approaches based on
the phase of planning that learning is applied to and the consequent type of
knowledge that is acquired.

Domain knowledge is utilized by planners in pre-processing phases in order
to either modify the description of the problem in a way that will make it easier
for solving it or make the appropriate adjustments to the planner to best attack
the problem [1].

Lecture Notes in Computer Science 3

Control knowledge can be utilized during search in order to either solve the
problem faster or produce better plans. For example, the knowledge extracted
from past examples can be used to refine the heuristic functions or create a guide
for pruning non-promising branches [3].
Finally, optimization knowledge is utilized after the production of an initial

plan, in order to transform it in a new one that optimizes certain criteria, e.g.
number of steps or resources usage [4].

A concise survey of related work on learning-powered adaptive planners can
be found in [2]. Furthermore, a very detailed and analytical survey of past ap-
proaches on Machine Learning and Planning has been presented in [5].

3 The HAP Planner

The proposed methodology has been applied to HAP (Highly Adjustable Plan-
ner), a customizable planning system, embodying the search modules of the BP
planner [6], the heuristics of AcE [7] and several add-ons that improve the speed
and the accuracy of the planner. The customization of the system is feasible
through the 7 planning parameters, outlined in Table 1, which can be set by the
user.
The first one refers to the planning direction, which can be either backward

(0) or forward (1). The second parameter allows the user to select one of the
three available heuristic functions in order to use it as a guide during the search.
The third parameter sets the values for the weights used during planning in the
weighted A∗ search technique. The fourth parameter sets the penalty put on
states violating pre-computed fact orderings, while the next one sets the size
of the planning agenda (maximum number of states in the frontier set). The
last two parameters enable or disable techniques for overcoming plateaus in the
search space and simplifying the definition of subproblems, respectively. More
details about the planning parameters and their possible setups can be found in
[2].

Table 1. The seven planning parameters and their valuesets

Name Value Set

Direction {0, 1}
Heuristic {1, 2, 3}
Weights (w1 and w2) {0, 1, 2, 3}
Penalty {10, 100, 500}
Agenda {10, 100, 1000}
Equal Estimation {0, 1}
Remove {0, 1}

4 Grigorios Tsoumakas et al.

4 Problem Characteristics

The purpose of this research effort was to discover interesting knowledge that
associates the characteristics of a planning problem with the parameters of HAP
and leads to good performance. Therefore, a first necessary step that we per-
formed was a theoretical analysis of a planning problem, in order to discover
salient features that could influence the choice of parameters of HAP.
Our main concern was to select attributes that their values are easily cal-

culated and not complex attributes that would cause a large overhead in the
total planning time. Therefore, most of the attributes come from the PDDL
files, which are the default input to planning systems, and their values can be
calculated during the standard parsing process. We also included a small number
of attributes which are closely related to specific features of the HAP planning
system such as the heuristics or the fact-ordering techniques. In order to calcu-
late the values of these attributes, the system must perform a limited search but
the overhead is negligible compared to the total planning time.
A second concern which influenced the selection of attributes was the fact

that the attributes should be general enough to be applied to all domains and
their values should not depend so much on the size of the problem. Otherwise
the knowledge learned from easy problems would not be applied effectively to
difficult ones. For example, instead of using the number of mutexes (mutual
exclusions between facts) in the problem as an attribute that strongly depends
on the size of the problem (larger problems tend to have more mutexes), we
divide it by the total number of dynamic facts and this attribute (mutex density)
identifies the complexity of the problem without taking into account whether it
is a large problem or a not. This is a general solution followed in all situations
where a problem attribute depends nearly linearly on the size of the problem.
Taking all the above into consideration we resulted in a large set of 35 measur-

able characteristics, which can be divided in three categories: The first category
refer to simple and easily measured characteristics of planning problems, e.g.
number of actions per operator, that source directly from the input files. The
second category consists of more sophisticated characteristics that arise from
features of modern planners, such as mutexes or orderings (between goals and
initial facts). The last category contains attributes that can be instantiated af-
ter the calculation of the heuristic functions, such as the estimated distance
between the initial state and the goals. The list of the attributes and a more
detailed analysis on their purpose can be found in [2].

5 The HAPNN Adaptive Multi-criteria Planner

HAPNN, is an extension of HAP that implements the k Nearest Neighbor (kNN)
machine learning algorithm in order to learn the necessary knowledge for auto-
tuning its planning parameters to best fit the morphology of each planning prob-
lem. This section presents the process of preparing the learning data for the kNN
algorithm, the adaptation functionality of the planner when faced with a new
problem and its offline incremental training capability.

Lecture Notes in Computer Science 5

5.1 Preparing the Training Data

Training data were produced by running the HAP planner on 450 planning
problems (30 problems from each one of 15 domains) using all 864 combinations
of values for its 7 planning parameters. For each run of HAP, we recorded the
features of the problem, the performance of the planner (steps of the resulting
plan and required planning time) and the configuration of parameters. This
process is illustrated in Figure 1.

Problems,

performances,
parameters

Batch of stored
problems

All parameter
configurations

HAP

Fig. 1. Preparing the training data

The training data were organized as a multi-relational data set, consisting of
2 primary tables, problems (450 rows) and parameters (864 rows), and a relation
table performances (450*864 rows), in order to save storage space and enhance
the search for the k nearest neighbors and the retrieval of the corresponding per-
formances. The tables were implemented as binary files, with the performances
table being sorted on both the problem id and the parameter id.
One issue that had to be dealt is how to record the cases where HAP failed

to find a solution due to memory or time limitations. Note here that an upper
limit of 60 seconds was imposed on all runs of the planner. In such cases a special
number (999999), was recorded for both plan steps and planning time.

5.2 Online Planning Mode

Given a new planning problem, HAPNN first calculates the values of the problem
characteristics. Then the kNN algorithm is engaged in order to retrieve the ids
of the k nearest problems from the problems file. k is an input parameter of
HAPNN whose default value is set to 7 (see section 6.1). In the implementation
of kNN we use the Euclidean distance measure with the normalized values of
the problem attributes to calculate the nearest problem.
Using the retrieved ids and taking advantage of the sorted binary file, HAPNN

promptly retrieves the performances for all possible configurations in a k*864
2-dimensional matrix. The next step is to combine these performances in order
to suggest a single parameter configuration with the optimal performance, based
on past experience of the k nearest problems.
Optimal is however susceptible to user preferences, i.e. a shorter plan is usu-

ally preferred than a longer one, but there are cases (e.g. real time systems)

6 Grigorios Tsoumakas et al.

where the planner must respond promptly even if the plan isn’t very good.
Since, these two criteria (fast planning, short plans) are contradicting, it is up
to the domain expert to set up his/her priorities. HAPNN has the advantage of
letting the user express his/her priorities through two parameters: ws (weight
of steps) and wt (weight of time). The overall planner performance is calculated
as a multi-criteria combination of the steps and time based on these weights.
Specifically, the straightforward Weighted Average method is used to obtain an
overall score from steps and time. This requires the normalization of the crite-
ria. For each problem and planner configuration, we normalize time and steps
according to the following transformation:

– Let Sij be the number of plan steps and Tij be the required time to build it
for problem i (i=1..k) and planner configuration j (j=1..864).

– First, we find the shortest plan and minimum planning time for each problem
among the tested planner configurations:

Smin
i = argmin

i

Sij Tmin
i = argmin

i

Tij

– Then, we normalized the results by dividing the minimum plan length and
minimum planning time of each run with the corresponding problem value.
For the cases where the planner had not managed to find a solution, the
normalized values of steps and time were set to zero.

Snorm
ij =

{

0 if Sij = 999999
Smin

i

Sij
otherwise

Tnorm
ij =

{

0 if Tij = 999999
T min

i

Tij
otherwise

– Subsequently HAPNN calculates an overall score as the average of the nor-
malized criteria weighted by the user-specified weights:

Scoreij = ws ∗ Snorm
ij + wt ∗ Tnorm

ij

We can consider the final k*864 2-dimensional matrix as a classifier com-
bination problem, consisting of k classifiers and 864 classes. We can combine
the decisions of the k classifiers, using the average Bayes rule, which essentially
comes down to averaging the planner scores across the k nearest problems and
selecting the decision with the largest average. Thus, HAP uses the parameter
configuration j (j=1..864) with the largest C:

Cj =
1

k

k
∑

i=1

Scoreij

The whole process for the online planning mode of HAPNN is depicted in
Figure 2. It is worth noting that HAPNN actually outputs an ordering of all
parameter configurations and not just one parameter configuration. This can be
exploited for example in order to output the top 10 configurations and let the

Lecture Notes in Computer Science 7

user decide amongst them. Another useful aspect of the ordering, is that when
the first parameter configuration fails to solve the problem within certain time,
then the second best could be tried. Another interesting alternative in such a
case is the change of the weight setting so that time has a bigger weight. The
effect of the weights in the resulting performance is empirically explored in the
experimental results section that follows.

criteria weights

ws, wt

new problem

Problems,

performances,
parameters

k nearest
neighbor

k*
86

4
n

o
rm

al
iz

ed

st
ep

s
an

d
 t

im
e

multicriteria

weighted
average k*

86
4

sc
o

re
s

average
Bayes
rule

HAP

b
es

t
sc

o
re

d
p

ar
am

et
er

s

Fig. 2. Online planning mode

The computational cost of training the HAPNN planner is zero, as no training
is involved in lazy learning approaches such as the kNN algorithm. However,
there is some cost involved during classification, which is however negligible (1
second on a typical Pentium III system at 1Ghz), and can be reduced using
a suitable data indexing structure. In contrast, past rule learning approaches
[1], [2] exhibit a very large training time (a few hours on a typical Pentium
III system at 1Ghz) and a negligible classification time (20 milliseconds on a
typical Pentium III system at 1Ghz). Our approach sacrifices a small amount
of response time, but gains tremendously in training performance. This way
it solves the impractical problems of rule learning approaches, like incremental
training and training with user-specified weights for steps and time.

5.3 Offline Incremental Mode

HAPNN can be trained incrementally with each new planning problem that
arises. Specifically, the planner stores each new planning problem that it ex-
amines, so that it can later train from it offline. As in the training data prepara-
tion phase, training consists of running the HAP planner on the batch of newly
stored problems using all 864 value combinations of the 7 parameters. For each
run, the features of the problem, the performance of the planner (steps of the
resulting plan and required planning time) and the configuration of parameters
are recorded as before.
The incremental training capability is an important feature of HAPNN, stem-

ming from the use of the kNN algorithm. As the generalization of the algorithm
is postponed for the online phase, learning actually consists of just storing past
experience. This is an incremental process that makes it possible to constantly

8 Grigorios Tsoumakas et al.

enhance the performance of the adaptive planner with the advent of new prob-
lems. In comparison, rule-based adaptive planning approaches, require the re-
computation of the rule-base, which is a computationally expensive task.

6 Experimental Results

The experiments presented here focus at evaluating the generalization of the
adaptive planner’s knowledge to new problems and the effect of the weight set-
tings to the resulting plan length and time. These issues are discussed in the
following subsections.
For the purpose of the experiments all the runs of HAP were performed on a

SUN Enterprise Server 450 with 4 ULTRA-2 processors at 400 MHz and 2 GB
of shared memory. The operating system of the computer was SUN Solaris 8.
For all experiments we counted CPU clocks and we had an upper limit of 60 sec,
beyond which the planner would stop and report that the problem is unsolvable.

6.1 Evaluating the adaptation of the planner

Examining the problem of learning to adapt HAP to new problems from the
viewpoint of a machine learner we notice that it is quite a hard problem. The
number of available problems (450) is small, especially compared to the number
of problem attributes (35). Since the training data were limited, a proper strategy
should be followed for evaluating the planner performance.
For the above reason, we decided to perform 10-fold cross-validation. We split

the original data into 10 cross-validation sets, each one containing 45 problems
(3 from each of the 15 domains). Then we repeated the following experiment
10 times: In each run, one of the cross-validation sets was withheld for testing
and the 9 rest (405 problems) were merged into a training set. The training
set was used for finding the k nearest problems, and the test set for measuring
the adaptive planner’s performance. Specifically, we calculated the sum of the
average normalized steps and time. In order to evaluate the learning approach,
we calculated the same metric for all 864 static planner configurations based
on the training set and chose the one that performs best for comparison on the
test set. This is even better than having an expert choose the default parameter
configuration for the planner. We also calculated the same metric with the best
configuration that an ”oracle” adaptive planner could achieve if it would always
use the best configuration on the test set. 3 sets of weights were used at each run:
a) ws=1, wt=1, b) ws=2, wt=1 and c) ws=1, wt=2. The results of each run,
were averaged and thus a proper estimation was obtained, which is presented in
Figure 3.
We notice that for all sets of weights and all numbers of nearest neighbors

the adaptive planner exceeded the best static planner configuration. The average
difference for all three settings and for the best average adaptive planner (k=7)
was 0.274 which can be translated as an approximate 14% average gain combin-
ing both steps and time. If we notice the performance of the oracle planner we

Lecture Notes in Computer Science 9

1,450

1,550

1,650

1,750

1,850

1,950

0 5 10 15 20k

sc
o

re

1-1 oracle static

2,1

2,25

2,4

2,55

2,7

2,85

3

0 5 10 15 20k

sc
o

re

1-2 oracle static

 (a) (b)

2,35

2,45

2,55

2,65

2,75

2,85

2,95

0 5 10 15 20k
sc

o
re

2-1 oracle static

 (c)

Fig. 3. Average score of static, adaptive and oracle HAP for a) ws=1 and wt=1, b)
ws=1 and wt=2, and c) ws=2 and wt=1

can see that the adaptive planner has still the potential to improve with the use
of more training problems, but it managed to reach approximately half the gain
in performance of an ”oracle” planner.

6.2 Evaluating the effect of weights

In order to evaluate the effect that the change of weights have in the result-
ing plans we produced the graphs depicted in Figure 4 that show the average
normalized steps and time respectively for the three different weight settings.

0,80

0,85

0,90

0,95

0 5 10 15 20
k

n
o

rm
al

iz
ed

 s
te

p
s

1-1 1-2 2-1

0,75

0,80

0,85

0,90

0 5 10 15 20
k

n
o

rm
al

iz
ed

 t
im

e

1-1 1-2 2-1

 (a) (b)

Fig. 4. Average normalized steps (a) and time (b) for three different weight settings

Figure 4a shows that giving more weight to steps (2-1), reduces the average
steps of the adaptive planner, in comparison with giving equal weights to both
steps and time (1-1). In addition giving more weight to time, further increases
the steps in comparison to equal weight setting. Similar conclusions can be drawn
from Figure 4b, which concerns planning time. These graphs empirically show
that tuning the weights has the user-desired effect on the planner behavior.

10 Grigorios Tsoumakas et al.

7 Conclusions and Future Work

This work has presented a methodology for multicriteria adaptive planning, using
the k nearest neighbor algorithm on top of a highly adjustable planner. The
planner consults past runs on similar problems and selects the most promising
configuration. The results show that the planner manages to adapt quite well
to new problems. One very interesting aspect is the capability of the planner
to also adapt to user preferences. The priorities of users for steps and time are
quantified through two respective weights. Experimental results show that the
use of weights results to tuning the planner towards the preferences of the users.
In the future we intend to explore the performance of the proposed method-

ology various other interesting learning problems for the planning community,
like learning from a single domain, learning from easy problems of a domain and
adapting to unknown domains. We will also investigate the exploitation of fea-
ture selection and weighting techniques to enhance the performance of the kNN
algorithm. It is widely known that kNN is prone to irrelevant attributes and the
large dimensionality of our problem (35) with respect to the small training set
(450) may give rise to overfitting and reduce the potential performance of our
methodology.

Acknowledgements

This work is partly funded from the eCONTENT FP5 European Programme
under the EUROCITIZEN project, contract No. 22089.

References

1. Vrakas, D., Tsoumakas, G., Bassiliades, N., Vlahavas, I.: Learning rules for Adap-
tive Planning. In: Proceedings of the 13th International Conference on Automated
Planning and Scheduling, Trento, Italy (2003) 82–91

2. Vrakas, D., Tsoumakas, G., Bassiliades, N., Vlahavas, I.: Rule Induction for Auto-
matic Configuration of Planning Systems. Technical report, Dept. of Informatics,
Aristotle University of Thessaloniki (2003)

3. Carbonell, J., Knoblock, C.A., Minton, S.: PRODIGY: An integrated architecture
for planning and learning. In: Architectures for Intelligence. Volume K. VanLehn,
ed. Lawrence Erlbaum Associates (1991) 241–278

4. Ambite, J., Knoblock, C., Minton, S.: Learning Plan Rewriting Rules. In: Pro-
ceedings of the 5th International Conference on Artificial Intelligence Planning and
Scheduling Systems, AAAI Press (2000) 3–12

5. Zimmerman, T., Kambhampati, S.: Learning-Assisted Automated Planning: Look-
ing Back, Taking Stock, Going Forward. AI Magazine 24 (2003) 73–96

6. Vrakas, D., Vlahavas, I.: Combining progression and regression in state-space heuris-
tic planning. In: Proceedings of the 6th European Conference on Planning. (2001)
1–12

7. Vrakas, D., Vlahavas, I.: A heuristic for planning based on action evaluation. In: Pro-
ceedings of the 10th International Conference on Automated Planning and Schedul-
ing. (2002) 61–70

