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Abstract

There are two main paradigms in combining different classification

algorithms: Classifier Selection and Classifier Fusion. The first one

selects a single model for classifying a new instance, while the lat-

ter combines the decisions of all models. The work presented in this

paper stands in between these two paradigms aiming to tackle the dis-

advantages and benefit from the advantages of both. In particular,

this paper proposes the use of statistical procedures for the selection

of the best subgroup among different classification algorithms and the

subsequent fusion of the decision of the models in this subgroup with

simple methods like Weighted Voting. Extensive experimental results

show that the proposed approach, Selective Fusion, improves over sim-

ple selection and fusion methods, leading to performance comparable

with the state-of-the-art heterogeneous classifier combination method

of Stacking, without the additional computational cost and learning

problems of meta-training.

1 Introduction

A very active research area during the recent years involves methodologies

and systems for the combination of multiple predictive models. It has at-

tracted scientists from several fields including Statistics, Machine Learning,
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Pattern Recognition and Knowledge Discovery. Within the Machine Learn-

ing community this area is commonly referred to as Ensemble Methods [8].

The main motivation for combining multiple predictive models is the

improvement over the accuracy of a single classification or regression model.

Another reason is the scaling of inductive algorithms to very large databases.

Most inductive algorithms are too computationally complex and suffer from

memory problems when applied to very large databases. A solution to this

problem is to horizontally partition the database into smaller parts, train a

predictive model in each of the smaller manageable part and combine the

predictive models. Finally, the problem of learning from multiple physically

distributed data sets that can’t be collected to a single site due to privacy or

size reasons, can also be tackled with the combination of multiple predictive

models, each trained on a different distributed data set.

Models that have been derived from different executions of the same

learning algorithm are often called Homogeneous. Such models can be in-

duced by injecting randomness into the learning algorithm or through the

manipulation of the training instances, the input attributes and the model

outputs [9]. On the other hand, models that have been derived from running

different learning algorithms on the same data set are often called Hetero-

geneous.

This paper deals with the combination of heterogeneous classification

models for accuracy improvement. There are two main paradigms in com-

bining different classification algorithms: classifier selection and classifier

fusion. The first one selects a single algorithm for classifying a new instance,

while the latter combines the decisions of all algorithms.

A very simple but effective method of the first paradigm is Evaluation

and Selection. This method evaluates each of the models (typically using
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10-fold cross-validation) on the training set and selects the best one for ap-

plication to the test set. Dzeroski and Zenko [10] have argued that this

method should be considered as a base line for comparison with other meth-

ods, because it is simple and shows good performance. However, it does not

always manage to select the most accurate model [27].

A very simple and widely-used method of the second paradigm is Voting.

According to this procedure, each model outputs a class value (or ranking,

or probability distribution) and the class with the most votes (or the highest

average ranking, or average probability) is the one proposed by the ensemble.

This method is expected to have better accuracy than that of the best in-

dividual model, due to the correction of uncorrelated errors through voting.

However, the fact that all models (even the less accurate ones) participate

with equal vote, has eventually an overall negative effect on the performance

of the method. In Weighted Voting, the classification models are not treated

equally. Each model is associated with a coefficient (weight), usually pro-

portional to its classification accuracy. This partly amends the problem of

inferior models, but it does not eliminate it completely as it still allows them

to affect the final decision.

The main idea of this work is to completely exclude learning algorithms

with low performance which may produce misleading results. It seems more

reasonable to select a subset of algorithms that perform significantly better

than the rest, than to use the whole initial set of algorithms. In particular,

this paper proposes: a) the use of statistical techniques for the selection

of the best subgroup among different classification algorithms and b) the

subsequent fusion of the decision of the models in this subgroup with a

simple method like Weighted Voting. For this reason the approach is dubbed

Selective Fusion.
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For the first part of the approach, we adapt three multiple comparisons

procedures (Tukey’s test, Hsu’s test, Scott & Knott’s procedure) to the prob-

lem of finding the best subgroup of algorithms and apply them to estimates

of the algorithm’s errors obtained by k-fold cross-validation. For the second

part we experiment with Voting and Weighted Voting for the fusion of the

subgroup’s decisions.

Extensive experimental results with 10 different classification algorithms

and 40 data sets show that the proposed approach improves significantly

simple combination methods, leading to predictive performance comparable

with the state-of-the-art method of Stacking with Multi-Response Model

Trees [10] without the additional computational cost of meta-training.

In addition, we varied the number of algorithms from 3 to 10 and noticed

that the accuracy of the proposed approach is not affected negatively by the

number of learning algorithms, in contrast to other effective approaches.

This is an important advantage of Selective Fusion that allows for the in-

crease of its predictive performance with the addition of more, accurate and

diverse learning algorithms in the framework.

The rest of this paper is organized as follows. Section 2 presents related

work on combining multiple classification algorithms and Section 3 describes

the details of the proposed approach. Section 4 presents the experimental

setup for comparing Selective Fusion with other established algorithm com-

bination methods and Section 5 discusses the results. Section 6 studies the

computational complexity and predictive performance of Selective Fusion

and other methods with respect to the number of algorithms. Finally, Sec-

tion 7 summarizes and concludes this work.

4



2 Combining Multiple Classification Algorithms

The combination of multiple classification algorithms is based on the idea

that no single algorithm can be universally optimal for all learning problems

[24]. As already mentioned, there are two main paradigms for handling an

ensemble of different classification algorithms: Classifier Selection and Clas-

sifier Fusion. This section reviews several methods from both categories.

2.1 Classifier Selection

A very simple method of this category is found in the literature as Evaluation

and Selection or SelectBest. This method evaluates each of the classification

algorithms (typically using 10-fold cross-validation) on the training set and

selects the best one for application on the test set. Although this method

is simple, it has been found to be highly effective and comparable to other

more complex state-of-the-art methods [10].

Another line of research proposes the selection of a learning algorithm

based on its performance on similar learning domains. Several approaches

have been proposed for the characterization of learning domain, including

general, statistical and information-theoretic measures [5], landmarking [21],

histograms [16] and model-based data characterizations [2]. Apart from the

characterization of each domain, the performance of each learning algorithm

on that domain is recorded. When a new domain arrives, the performance of

the algorithms in the k-nearest neighbors of that domain are retrieved and

the algorithms are ranked according to their average performance. In [5],

algorithms are ranked based on a measure called Adjusted Ratio of Ratios

(ARR), that combines accuracy and learning time of algorithm, while in [17],

algorithms are ranked based on Data Envelopment Analysis, a multicriteria

evaluation technique that can combine various performance metrics, like
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accuracy, storage space, and learning time.

In [11, 31], the accuracy of the algorithms is estimated locally on a

number of examples that surround each test example. Such approaches

belong to the family of Dynamic Classifier Selection [12] and use a different

algorithm in different parts of the instance space.

Two similar, but more complicated approaches that were developed by

Merz [20] are Dynamic Selection and Dynamic Weighting. The selection

of algorithms is based on their local performance, but not around the test

instance itself, rather around the meta-instance comprising the predictions

of the classification models on the test instance. Training meta-instances

are produced by recording the predictions of each algorithm, using the full

training data both for training and for testing. Performance data are pro-

duced by running m k-fold cross-validations, and averaging for each training

instance the m evaluations.

2.2 Classifier Fusion

Unweighted and Weighted Voting are two of the simplest methods for com-

bining not only Heterogeneous but also Homogeneous models. In Voting,

each model outputs a class value (or ranking, or probability distribution)

and the class with the most votes (or the highest average ranking, or aver-

age probability) is the one proposed by the ensemble. Note that this type of

Voting is in fact called Plurality Voting, in contrast to the frequently used

term Majority Voting, as the latter implies that at least 50% (the majority)

of the votes should belong to the winning class. In Weighted Voting, the

classification models are not treated equally. Each model is associated with

a coefficient (weight), usually proportional to its classification accuracy.

Stacked Generalization [30], also known as Stacking, is a method that
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combines multiple classifiers by learning a meta-level (or level-1) model that

predicts the correct class based on the decisions of the base-level (or level-0)

classifiers. This model is induced on a set of meta-level training data that are

typically produced by applying a procedure similar to k-fold cross-validation

on the training data:

Let D be the level-0 training data set. D is randomly split into k disjoint

parts D1 . . . Dk of equal size. For each fold i=1..k of the process, the base-

level classifiers are trained on the set D \ Di and then applied to the test

set Di. The output of the classifiers for a test instance along with the true

class of that instance form a meta-instance.

A meta-classifier is then trained on the meta-instances and the base-level

classifiers are trained on all training data D. When a new instance appears

for classification, the output of all base-level classifiers is first calculated and

then propagated to the meta-level classifier, which outputs the final result.

Ting and Witten [26] have shown that Stacking works good when meta-

instances are formed by probability distributions for each class instead of

just a class label. A recent study [10] has shown that Stacking with Multi-

Response Model Trees as the meta-level learning algorithm and probabil-

ity distributions, is the most accurate heterogeneous classifier combination

method of the Stacking family.

3 Selective Fusion

Selective Fusion stands in between the paradigms of Selection and Fusion

aiming to deal with the disadvantages and benefit from the advantages of

both. Instead of selecting a single algorithm or fusing all algorithms, Selec-

tive Fusion initially selects a subset of algorithms with significantly better

performance than the rest and then combines their decision with a simple

7



combination method.

The critical part of the approach is the first one and is essentially a solu-

tion to the problem of finding the most accurate algorithms for a particular

data set. It is clear that such a problem cannot have a unique solution as the

notion of best is quite subjective and depends on the criterion used. In fact,

one can always order the algorithms according to their accuracy, but then

the critical question is: how many of them are truly the best in the sense

that they differ significantly from all the others? So, the problem of finding

the best classifiers can be rephrased as the problem of finding a subset sat-

isfying certain criteria ensuring that: a) all the classifiers in the subset have

similar good performance and b) the performance of at least one classifier

in the subset differs significantly from those not in the subset.

In order to deal with this problem, we employ statistical analysis tech-

niques that can produce groups of classifiers, homogeneous with respect to

their performance. The techniques used for this task belong to the broader

class of statistical procedures under the generic name multiple comparisons

procedures. There exists a vast statistical literature on the subject and a

large amount of different methods [13]. Here we adapt three of the most

representative ones (Tukey’s test, Hsu’s test, Scott & Knott’s procedure) to

our problem of finding just one group, the one with the lowest error rate

means. These three procedures are described in the following subsections.

Statistical methods require data. In our case, we need to collect several

independent error estimates for each of the classification algorithms in order

to select the best subgroup. For this purpose we employ stratified k-fold

cross-validation. Let Li, i=1..n be an ensemble of different classification

algorithms and D a data set containing training examples di(xi, yi), where

xi is the feature vector and yi the class of example i. D is broken into k
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disjoint parts D1 . . . Dk of equal size and equal class distribution. Each part

Dj is used in turn as a test set, while the rest of the parts are merged into a

training set D′j = D \Dj . Each of the classification algorithms Li is used to

build a classifier Cij based on each of the training set D′j . Each classifier Cij

is evaluated on the corresponding test set Dj . This results in k error-rate

estimates eij , i=1..n, j=1..k for each of the n classification algorithms Li.

All three statistical procedures that follow initially calculate for each

algorithm the mean error rate across all estimations:

ēi =
1
k

k∑
j=1

eij (1)

3.1 Tukey’s test

This is the most known and widely used test and can be considered as a

representative of the whole class of statistical tests known as multiple range

tests. The general purpose of these tests is to make all pairwise compar-

isons between the levels of a factor affecting a response variable in order

to identify the most significant differences between them. This is achieved

by computing confidence intervals for each difference of the true means and

then characterizing the difference significant if the interval does not contain

the zero value.

In our setup, the factor levels (or treatments) are the different classifiers

while the response variable is the error rate. The multiple range tests put

together in homogeneous groups all classifiers that do not have significant

difference between them. It is clear that these groups are not disjoint, i.e.

a classifier can belong to more than one groups. However, in our case this

is not a problem since we are interested only in one of the groups, the one

with the smallest mean error rates.
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Tukey’s honestly significant difference (HSD) or wholly significant dif-

ference (WSD) test is used to make all of the m =
(
n
2

)
pairwise comparisons

between the mean of the n algorithms. The significance of any pairwise dif-

ference between treatments (i1, i2) is tested using the 100(1-α)% confidence

interval for the differences of the unknown mean errors:

µi1 − µi2 ∈
[
ēi1 − ēi2 ±Qn,ν;αS/

√
k
]

for 1 ≤ i1 < i2 ≤ n (2)

where

S =

√∑n
i=1

∑k
j=1(eij − ēi)2

n(k − 1)
(3)

andQn,ν;α is the upper α point of the Studentized range distribution with

parameter n and ν = n(k−1) degrees of freedom. For more details and tables

of critical values for that distribution we refer to Hochberg & Tamhane [13].

The difference is not significant if the above confidence interval contains the

0. Tukey’s test is more powerful when testing a large number of pairs of

means (as in our case).

Regarding the implementation of this method for our case, the procedure

involves the following steps (note that for our case it is not necessary to

conduct all pairs of comparisons since we want to derive only one group

with the best classifiers):

1. Sort the mean errors in ascending order:

ē1 ≤ ē2 ≤ . . . ≤ ēn (4)

2. Set the group of classifiers to contain the algorithm with the lowest

error mean: G← {L1}
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3. For each algorithm Li, i=2..n do the following:

• Calculate the upper bound of the confidence interval:

u = ē1 − ēi +Qn,ν;αS/
√
k (5)

• if u > 0 then no significant difference is detected and therefore we

include Li in the subgroup with the best algorithms G = G
⋃
Li,

otherwise goto step 4

4. Return subset of algorithms G

3.2 Hsu’s test

The adaptation of Hsu’s approach [14] to our problem is an attempt to

find the true best algorithm. Although in a sample there is only one best

algorithm, others which do not differ significantly should also be considered

as candidates, since the true best algorithm is unknown. Hsu’s approach

considers the largest values as best and for this reason we formalize its

description based on the notion of accuracy and the mean accuracy:

aij = 1− eij āi =
1
k

k∑
j=1

aij (6)

For each algorithm i=1..n, Hsu’s approach calculates the following 100(1-

α)% simultaneous confidence interval:

µi −max
j
µj ∈

[
(āi −max

j 6=i
āj − d)−, (āi −max

j 6=i
āj + d)+

]
(7)

where

11



d = Tn−1,ν,ρ;αS

√
2
k

S =

√∑n
i=1

∑k
j=1(aij − āi)2

n(k − 1)
(8)

x− = min (x, 0) and x+ = max (x, 0) (9)

Tn−1,ν;α is the critical value of the n-variate equicorrelated t-distribution

with parameters n-1, ν = n(k − 1) and significance level α. A table with

critical values can be found in Hochberg & Tamhane [13].

If the upper bound of the above simultaneous confidence interval is 0

then we can reject algorithm i from the candidates for the most accurate

classifier.

3.3 Scott and Knott’s procedure

Scott and Knott [25] developed a procedure for obtaining homogeneous

groups of n treatments (here n algorithms) based on the means of the re-

sponse variable. We assume that each treatment has replications of the

response variable (for each algorithm we have k=10 replications of the error

rate). In our case we are interested only in the homogeneous group with the

smallest mean values of the error rate. The procedure of Scott and Knott is

given in the following steps:

1. Sort the mean errors in ascending order:

ē1 ≤ ē2 ≤ . . . ≤ ēn (10)

2. For each i=1..n-1 separate the group of ordered error means E into

2 subgroups E1 = {ē1..ēi} and E2 = {ēi+1..ēn} and compute the

between-groups sum of squares:
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Bi = k(|E1|(ēE1 − ēE)2 + |E2|(ēE2 − ēE)2) (11)

where |E1|, |E2| are the cardinalities of the two subgroups (i.e. |E1| = i

and |E2| = n− i), and ēE , ēE1 , ēE2 are the means of groups E, E1 and

E2:

ēE =
1
n

n∑
i=1

ēi ēE1 =
1
|E1|

∑
i∈E1

ēi ēE2 =
1
|E2|

∑
i∈E2

ēi (12)

3. Find the partition that maximizes the value of the above sum of

squares:

Bi∗ = max
{
k(|E1|(ēE1 − ēE)2 + |E2|(ēE2 − ēE)2)

}
(13)

4. Compute:

s2 =

∑n
i=1

∑k
j=1(eij − ēE)2

nk
(14)

and the statistic λ:

λ =
π

2(π − 2)
Bi∗

s2
(15)

which has approximately a χ2
ν distribution where the degrees of free-

dom are given by ν = k/(π − 2) (rounded).

5. If λ > χ2
ν;α (where α is a predefined level), then set n = |E1|, E = E1

and return to step 1 (i.e. repeat the procedure with the first group
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with the smallest means). If λ < χ2
ν;α then all the means fall in the

same homogeneous group.

4 Experimental Setup

This section provides information on the datasets, combination methods and

participating algorithms that were used for the experiments. The WEKA

machine learning software [29] was used as the platform for all the experi-

ments.

4.1 Datasets

The predictive performance of the combination methods was evaluated on

40 data sets from the UCI Machine Learning repository [4]. Table 1 presents

the details of the datasets (Folder in UCI server, number of instances, classes,

continuous and discrete attributes, percentage of missing values).

4.2 Combination Methods and Participating Algorithms

We compared the following classifier combination methods: Stacking with

Multi-Response Model Trees (SMT), Voting (V), Weighted Voting (WV),

Evaluation and Selection (ES) and the proposed combination method, Se-

lective Fusion (SF), using the procedures of Tukey (Tuk), Hsu (Hsu) and

Scott and Knott (S&K) and combining the selected models with Voting and

Weighted Voting.

These methods are used in conjunction with the WEKA implementations

of the following 10 base-level classification algorithms, which are run with

default parameter values unless otherwise stated:

• DT: the decision table algorithm of Kohavi [18].
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Table 1: Data sets used in the experiments: Id, folder in UCI server, num-
ber of instances, classes, continuous and discrete attributes, percentage of
missing values

Id UCI Folder Inst Cls Cnt Dsc MV

01 annealing 898 6 6 32 64.98
02 audiology 226 24 0 69 2.03
03 autos 205 7 15 10 1.15
04 balance-scale 625 3 4 0 0.00
05 breast-cancer 286 2 0 9 0.35
06 breast-cancer-wisconsin 699 2 9 0 0.25
07 car 1728 4 0 6 0.00
08 chess (kr-vs-kp) 3196 2 0 36 0.00
09 cmc 1473 3 2 7 0.00
10 dermatology 366 6 1 33 0.01
11 ecoli 336 8 7 0 0.00
12 glass 214 7 9 0 0.00
13 heart-disease (cleveland) 303 5 6 7 0.18
14 heart-disease (hungary) 294 5 6 7 20.46
15 heart-disease (switzerland) 123 5 6 7 17.07
16 heart-disease (va) 200 5 6 7 26.85
17 hepatitis 155 2 6 13 5.67
18 horse-colic 368 2 7 15 23.80
19 image 2310 7 19 0 0.00
20 ionosphere 351 2 34 0 0.00
21 iris 150 3 4 0 0.00
22 labor 57 2 8 8 35.75
23 lymphography 148 4 3 15 0.00
24 pima-indians-diabetes 768 2 8 0 0.00
25 primary-tumor 339 22 0 17 3.90
26 soybean 683 19 0 35 9.78
27 statlog (australian) 690 2 6 9 0.65
28 statlog (german) 1000 2 7 13 0.00
29 statlog (heart) 270 2 13 0 0.00
30 statlog (satimage) 6435 6 36 0 0.00
31 statlog (segment) 2310 7 19 0 0.00
32 statlog (vehicle) 846 4 18 0 0.00
33 thyroid-disease 3772 4 7 22 5.54
34 tic-tac-toe 958 2 0 9 0.00
35 undocumented (sonar) 208 2 60 0 0.00
36 undocumented (vowel-context) 990 11 10 3 0.00
37 voting-records 435 2 0 16 5.63
38 waveform 5000 3 40 0 0.00
39 wine 178 3 13 0 0.00
40 zoo 101 7 1 16 0.00
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• JRip: the RIPPER rule learning algorithm [7].

• PART: the PART rule learning algorithm [28].

• J48: the decision tree learning algorithm C4.5 [23], using Laplace

smoothing for predicted probabilities.

• IBk: the k nearest neighbor algorithm [1].

• K*: an instance-based learning algorithm with entropic distance mea-

sure [6].

• NB: the Naive Bayes algorithm [15] using the kernel density estimator

rather than assume normal distributions for numeric attributes.

• SMO: the sequential minimal optimization algorithm for training a

support vector classifier using polynomial kernels [22].

• RBF: WEKA implementation of an algorithm for training a radial

basis function network [3].

• MLP: WEKA implementation of an algorithm for training a multi-

layer perceptron [3].

The meta-level training data for Stacking are produced using 10-fold

stratified cross-validation on the training set. Exactly the same procedure

is used for estimating the accuracy of the above base-level algorithms. All

combination methods operate on probability distributions of the base-level

classifiers.

5 Results and Discussion

For the comparison of the different classifier combination methods we use

two main approaches: a) we repeat 4 times a 10-fold stratified cross-validation
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experiment with different splits, and b) we make statistical significance tests

for all pairs of combination methods based on each of the 10-fold experi-

ments. The two above strategies are suggested in the literature as the most

reliable ways for comparing learning schemes [28]. Some other methods

for performance evaluation are hold-out, bootstrap, leave-one-out, [28] and

leave-one-batch-out [19].

Table 2, shows the average error rate of the combining methods for each

data set, averaged over the 10 folds of all four cross-validation experiments.

The last line presents the geometric mean, which is a normalized version of

the standard mean. The geometric mean is considered more robust for com-

parison over several data sets that give error values not normally distributed

with many outliers.

As far as the standard methods are concerned we notice that Voting has

the highest geometric mean of error, followed by Evaluation and Selection,

Weighted Voting and Stacking with Multi-Response Model Trees. As ex-

pected, the complex state-of-the-art method of Stacking is the best among

these four considering the geometric mean. Also, as expected, Weighted

Voting was found to give better results than Voting.

Looking at the results of Selective Fusion, we notice that combining with

(Weighted) Voting the subgroups produced by the 3 statistical procedures

lead to better results than combining all algorithms. Comparing the perfor-

mance of the 3 statistical procedures, we notice that Scott & Knott’s gives

the best results in both Voting and Weighted Voting, followed by Tukey’s,

while the worst results are obtained using Hsu’s test. Tukey’s procedure

selects 6.99 algorithms on average over the 40 data sets and 4 experiments,

while Hsu’s selects 6.11 and Scott & Knott’s 5.53.

The most important finding in the results is that Selective Fusion with
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Table 2: Average error rate of combination methods on the 40 data sets
Voting Weighted Voting

Id ES All Tuk Hsu S&K All Tuk Hsu S&K SMT

01 0.0145 0.0253 0.0109 0.0134 0.0134 0.0240 0.0106 0.0128 0.0128 0.0100
02 0.1776 0.1578 0.1577 0.1588 0.1632 0.1566 0.1577 0.1588 0.1643 0.2409
03 0.2097 0.1770 0.1683 0.1756 0.1817 0.1757 0.1658 0.1719 0.1792 0.2023
04 0.0897 0.1096 0.1020 0.1024 0.1009 0.1076 0.1016 0.1024 0.1013 0.0428
05 0.2909 0.2637 0.2681 0.2725 0.2619 0.2637 0.2672 0.2716 0.2619 0.2980
06 0.0247 0.0290 0.0293 0.0293 0.0300 0.0293 0.0297 0.0293 0.0300 0.0315
07 0.0058 0.0278 0.0058 0.0058 0.0058 0.0259 0.0058 0.0058 0.0058 0.0058
08 0.4681 0.4606 0.4515 0.4474 0.4501 0.4582 0.4521 0.4477 0.4499 0.4581
09 0.1495 0.1441 0.1489 0.1462 0.1475 0.1454 0.1482 0.1462 0.1468 0.1645
10 0.1460 0.1319 0.1370 0.1359 0.1435 0.1312 0.1370 0.1355 0.1435 0.1482
11 0.2520 0.2305 0.2373 0.2390 0.2450 0.2318 0.2378 0.2390 0.2453 0.2368
12 0.0279 0.0245 0.0287 0.0293 0.0280 0.0245 0.0293 0.0293 0.0280 0.0279
13 0.2334 0.2340 0.2366 0.2356 0.2369 0.2337 0.2363 0.2347 0.2363 0.2382
14 0.1324 0.1293 0.1338 0.1367 0.1375 0.1293 0.1330 0.1351 0.1375 0.1433
15 0.2547 0.2533 0.2497 0.2555 0.2590 0.2544 0.2485 0.2554 0.2602 0.2417
16 0.1717 0.1684 0.1708 0.1733 0.1625 0.1684 0.1717 0.1725 0.1633 0.1966
17 0.1504 0.1716 0.1733 0.1716 0.1724 0.1725 0.1742 0.1716 0.1716 0.1759
18 0.6527 0.6433 0.6537 0.6497 0.6579 0.6599 0.6599 0.6558 0.6641 0.6155
19 0.1630 0.1676 0.1657 0.1630 0.1602 0.1676 0.1648 0.1630 0.1593 0.1759
20 0.6863 0.6438 0.6438 0.6425 0.6513 0.6500 0.6500 0.6463 0.6575 0.7363
21 0.1544 0.1545 0.1545 0.1577 0.1545 0.1529 0.1529 0.1561 0.1529 0.1793
22 0.0050 0.0203 0.0039 0.0039 0.0039 0.0179 0.0039 0.0039 0.0039 0.0038
23 0.0312 0.0172 0.0166 0.0166 0.0167 0.0165 0.0165 0.0166 0.0167 0.0209
24 0.0919 0.0747 0.0719 0.0669 0.0683 0.0740 0.0712 0.0669 0.0683 0.0790
25 0.0433 0.0483 0.0483 0.0483 0.0483 0.0483 0.0483 0.0483 0.0483 0.0433
26 0.0070 0.0054 0.0052 0.0052 0.0050 0.0053 0.0052 0.0052 0.0050 0.0062
27 0.1058 0.0558 0.0517 0.0475 0.0475 0.0558 0.0558 0.0475 0.0475 0.0658
28 0.1742 0.1623 0.1638 0.1570 0.1555 0.1639 0.1621 0.1554 0.1538 0.1773
29 0.5119 0.5406 0.5434 0.5398 0.5258 0.5436 0.5419 0.5383 0.5229 0.5833
30 0.0943 0.0833 0.0848 0.0854 0.0875 0.0822 0.0848 0.0855 0.0875 0.0813
31 0.0300 0.0158 0.0161 0.0165 0.0173 0.0158 0.0160 0.0163 0.0171 0.0207
32 0.1593 0.1499 0.1439 0.1402 0.1474 0.1427 0.1439 0.1402 0.1402 0.1655
33 0.0699 0.0622 0.0615 0.0615 0.0629 0.0626 0.0615 0.0619 0.0633 0.0747
34 0.0144 0.0175 0.0175 0.0177 0.0177 0.0170 0.0175 0.0177 0.0177 0.0060
35 0.1781 0.2426 0.1781 0.1781 0.1781 0.2379 0.1752 0.1781 0.1781 0.1643
36 0.0431 0.0391 0.0391 0.0391 0.0385 0.0391 0.0391 0.0391 0.0385 0.0374
37 0.0098 0.0164 0.0096 0.0093 0.0091 0.0116 0.0096 0.0093 0.0091 0.0109
38 0.1351 0.1543 0.1554 0.1406 0.1352 0.1538 0.1554 0.1406 0.1352 0.1453
39 0.0196 0.0098 0.0098 0.0126 0.0098 0.0084 0.0098 0.0126 0.0098 0.0252
40 0.0516 0.0391 0.0391 0.0391 0.0368 0.0391 0.0391 0.0391 0.0368 0.0914

Avg. 0.0832 0.0847 0.0749 0.0754 0.0749 0.0828 0.0749 0.0752 0.0747 0.0796
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(Weighted) Voting exhibit lower error rate than Stacking with Multi-Response

Model Trees. The latter is considered the state-of-the-art in Stacking which

is in turn considered the state-of-the-art in heterogeneous classifier combi-

nation. What is more interesting is the fact that the computational cost

of Selective Fusion is much less than that of Stacking. A computational

complexity analysis follows in Section 6.

In order to detect whether the above described performance differences

are significant, we applied a paired t-test to the errors of the methods in

the 10 folds of one of the 10 cross-validation experiments with a significance

level of 0.05. From the outcome of this test on all data sets we report the

statistically significant wins and losses for each pair of methods.

Table 3 shows the significant wins and loses for each pair of combination

methods, averaged over the 4 experiments and rounded to the closest integer.

The results show that Selective Fusion improves significantly over simple

Voting, Weighted Voting and Evaluation and Selection, and slightly over

the state-of-the-art method of Stacking with Multi-Response Model-Trees.

In addition, as already mentioned, Selective Fusion is a much simpler and

less computationally expensive method.

6 Varying the number of classifiers

In this section we will study the relationship of the number of classifiers

with the computational complexity and the predictive performance of the

methods that participated in the experiments.

6.1 Computational Complexity

Consider a set of Classification Algorithms Ci, i=1..n and a training set

D, with m instances and f features. The computational cost of training
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Table 3: Significant wins and losses (w:l) for each pair of methods
Voting Weighted Voting

ES All Tuk Hsu S&K All Tuk Hsu S&K SMT

ES 6:6 2:5 1:6 1:4 5:6 2:5 2:6 1:5 4:5
Vot. All 6:6 1:4 0:5 1:6 0:2 1:4 0:5 1:6 4:7

” Tuk 5:2 4:1 0:1 0:1 4:1 0:0 0:1 0:1 4:2
” Hsu 6:1 5:0 1:0 0:1 4:0 1:0 0:0 1:1 4:2
” S&K 4:1 6:1 1:0 1:0 5:1 1:0 0:0 0:0 5:2

W.Vot. All 6:5 2:0 1:4 0:4 1:5 1:4 0:4 1:5 4:6
” Tuk 5:2 4:1 0:0 0:1 0:1 4:1 0:1 0:1 3:2
” Hsu 6:2 5:0 1:0 0:0 0:0 4:0 1:0 0:0 5:2
” S&K 5:1 6:1 1:0 1:1 0:0 5:1 1:0 0:0 5:3

SMT 5:4 7:4 2:4 2:4 4:5 5:3 2:4 2:5 3:5

each algorithm Ci using D is cost(Ci, D). The lower bound of any classifier

combination method is:

n∑
i=1

cost(Ci,m, f) (16)

This is actually the cost of Voting. Evaluation and Selection, Weighted

Voting and Selective Fusion require an estimation of accuracy, which is typ-

ically obtained by k-fold cross-validation. This demands another k training

sessions for each algorithm on data sets of size (rows) equal to k−1
k m. If we

make the assumption that the complexity of the inductive algorithms used

for base-level learning is linear to the instances of the data set, then the

total computational cost for these methods is:

n∑
i=1

cost(Ci,m, f) + k

n∑
i=1

cost(Ci,
k − 1
k

m, f) ≈ k
n∑
i=1

cost(Ci,m, f) (17)

Stacking requires a further step of meta-level training. The data for the

next level of training are obtained with a process similar to k-fold cross-
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validation. The rows of the meta-level data are m. The number of meta-

level features is n for Stacking with class labels and nc for Stacking with

probability distributions. Therefore the cost of Stacking is:

k

n∑
i=1

cost(Ci,m, f) + cost(MC,m, nc) (18)

where MC is the meta-classifier. This extra cost of learning might be

small compared to the previous k+1 training processes, although it depends

on the learning algorithm used for MC and the number of base-level algo-

rithms and classes. Some algorithms have square complexity with respect to

the number of features. Therefore if nc >> f , then the cost of meta-training

could dominate the total cost of Stacking.

Another known problem of Stacking that shows up with this analysis is

the high-dimensionality of the meta-level training data for problems with

many classes and many base-level classifiers. Stacking will have a severe

problem to generalize well from the meta-level training data for a large

ensemble size.

6.2 Predictive Performance

Figure 1, shows the average geometric mean of the error of the participating

methods (vertical axis) on all data sets and experiments, using different

number of classifiers (horizontal axis). SF denotes Selective Fusion and is

the average geometric mean for all six Selective Fusion approaches. We

start with the 10 classifiers and in turn remove one algorithm, the one with

the largest error rate on the test sets, until only 3 remain. By removing

the algorithm with the largest error rate, we are actually being less fair to

Selective Fusion and Evaluation and Selection that can discard algorithms

of poor performance automatically.
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Figure 1: Mean error of combining methods with a varying ensemble size

As far as the standard methods are concerned, we notice that Weighted

Voting is consistently better than Voting and that Stacking with Multi-

Response Model Trees is consistently better than both. An interesting result

is the performance of Evaluation and Selection. For ensemble sizes of 3 to 5

classifiers, it is better than the rest of the standard methods and especially in

the beginning it has the lowest error from all methods. For 6 classifiers and

more it’s performance starts to degrade and for 8 and 9 classifiers it becomes

the method with the highest mean error. One should expect ideally that the

performance of Evaluation and Selection will never decrease with ensemble

size. However with more (and more noisy) classifiers in the ensemble, the

probability of selecting the most suitable classifier decreases and that of

accidentally selecting a much worse one increases. In addition, Evaluation

and Selection fails to benefit from the diversity of the different algorithms

by selecting only one of them.
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The most interesting result is that Selective Fusion is consistently the

best method for combining more than 3 classifiers. Although the perfor-

mance of Stacking consistently increases with the addition of classification

algorithms, it does not increase with the same rate as the performance of

Selective Fusion. As mentioned in the previous subsection, the problem with

Stacking is the high dimensionality of the meta-data for many classifiers.

Overall, the best results are obtained with large numbers of classifiers,

with the best geometric mean obtained for 9 classifiers by Selective Fusion.

This shows that in order to obtain the best possible performance from a

heterogeneous ensemble, one should equip it with many diverse algorithms

in order to ensure that some of them will be appropriate for this data set

and at the same time exclude the ones not suitable using a process like the

one proposed in this paper.

7 Conclusions and Future Work

This paper has presented Selective Fusion, an approach for combining differ-

ent classification algorithms that uses statistical methods to select the most

accurate subgroup among an ensemble of classifiers and then combines their

decisions through weighted voting. Through a large and thorough experi-

mental study we showed that the proposed method isn’t worse in accuracy to

recent state-of-the-art heterogeneous classifier combination methods, such as

Stacking with Multi-Response Model Trees having at the same time reduced

computational cost.

Selective Fusion is actually a generalization of selection and fusion as

it contains the simple methods of Evaluation and Selection and Weighted

Voting as special cases. Indeed, if for a data set a single algorithm is by

far the best then Selective Fusion will use just this, as would Evaluation
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and Selection. In another data set where all algorithms exhibit the same

performance, with no algorithm being significantly better than another, then

Selective Fusion becomes the method of Weighted Voting.

The concept of using statistical tests for selecting the best subset of algo-

rithms, could be considered as a pre-processing step for any fusion method.

Such an approach could also be applied to homogeneous models, for filter-

ing of potentially bad-performing models produced by procedures, such as

bagging and randomization [9].

As a general conclusion, we believe that it is worth researching more

into advancing simple heterogeneous ensemble methods such as evaluation

and selection, voting and weighted voting instead of complex methods that

require more input parameters and a lot more computational cost with ques-

tionable results.

For future work, we intend to research into alternative methods for classi-

fier performance evaluation, in order to further improve the Selective Fusion

framework. In addition we intend to investigate the applicability of the pro-

posed ideas to more complex Classifier Evaluation methods such as those

that are based on local accuracy estimates.

We would also like to explore the role that domain experts could play in

the process of Selective Fusion. Classifier combination methods are generally

complex and usually don’t give explanations for their decisions. Therefore

domain experts should participate in this process to validate these decisions.

For example, in our case, domain experts could look into the group of algo-

rithms that our method selected and decide on expanding or shrinking the

group based on their expertise on the specific domain and algorithms.
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