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Abstract. Multi-target regression is concerned with the simultaneous
prediction of multiple continuous target variables based on the same set
of input variables. It arises in several interesting industrial and envi-
ronmental application domains, such as ecological modelling and energy
forecasting. This paper presents an ensemble method for multi-target
regression that constructs new target variables via random linear com-
binations of existing targets. We discuss the connection of our approach
with multi-label classification algorithms, in particular RAKEL, which
originally inspired this work, and a family of recent multi-label classi-
fication algorithms that involve output coding. Experimental results on
12 multi-target datasets show that it performs significantly better than
a strong baseline that learns a single model for each target using gradi-
ent boosting and compares favourably to multi-objective random forest
approach, which is a state-of-the-art approach. The experiments further
show that our approach improves more when stronger unconditional de-
pendencies exist among the targets.
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1 Introduction

Multi-target regression, also known as multivariate or multi-output regression,
aims at simultaneously predicting multiple continuous target variables based on
the same set of input variables. Such a learning task arises in several interesting
application domains, such as predicting the wind noise of vehicle components
[1], ecological modelling [2], water quality monitoring [3], forest monitoring [4]
and more recently energy-related forecasting!, such as wind and solar energy
production forecasting and load/price forecasting.

Multi-target regression can be considered as a sibling of multi-label classi-
fication [5,6], the latter dealing with multiple binary target variables, instead
of continuous ones. Recent work [7] stressed the close connection among these

! http://www.gefcom.org
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two tasks and argued that ideas from the more popular and developed area of
multi-label learning could potentially be transferred to multi-target regression.
Following up this argument, we present here a multi-target regression algorithm
that was conceived as analogous to the RAKEL [8] multi-label classication algo-
rithm. In particular, the proposed method creates new target variables by con-
sidering random linear combinations of k original target variables. Experiments
on 12 multi-target datasets show that our approach is significantly better than
a strong baseline that learns a single model for each target using gradient boost-
ing [9] and compares favourably to the state-of-the-art multi-objective random
forest approach[10]. The experiments further show that our approach improves
more when stronger unconditional dependencies exist among the targets.

The rest of this paper is organized as follows. Section 2 discusses related
work on multi-target regression, as well as on output coding, a family of multi-
label learning algorithm of similar nature to our approach, which is presented in
Section 3. Section 4 presents the setup of our empirical study (methods and their
parameters, implementation details, evaluation process, datasets) and Section 5
discusses our experimental results. Finally, section 6 summarizes the conclusions
of this work and points to future work directions.

2 Related Work

2.1 Multi-Target Regression

Multivariate regression was studied many years ago by statisticians and two of
the earliest methods were reduced-rank regression [11] and C&W [12]. A large
number of methods for multi-target regression are derived from the predictive
clustering tree (PCT) framework [13]. These are presented in more detail in
subsequent paragraphs. An approach for learning multi-target model trees was
proposed in [14]. One can also find methods that deal with multi-target regression
problems in the literature of the related topics of transfer learning [15] and
multi-task learning [16]. Undoubtedly, the simplest approach to multi-target
regression is to independently construct one regression model for each of the
target variables.

The main difference between the PCT algorithm and a standard decision tree
is that the variance and the prototype functions are treated as parameters that
can be instantiated to fit the given learning task. Such an instantiation for multi-
target prediction tasks are the multi-objective decision trees (MODTSs), where
the variance function is computed as the sum of the variances of the targets,
and the prototype function is the vector mean of the target vectors of the train-
ing examples falling in each leaf [13,17]. Bagging and random forest ensembles
of MODTs were developed in [10] and found significantly more accurate than
MODTs and equally good or better than ensembles of single-objective decision
trees for both regression and classification tasks. In particular, multi-objective
random forest (MORF) yielded better performance than multi-objective bag-

ging.
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Motivated by the interpretability of rule learning algorithms, other researchers
developed multi-target rule learning algorithms that again fall in the PCT frame-
work. Focusing on multi-label classification problems, [18] proposed the predic-
tive clustering rules (PCR) method that extends the PCT framework by combin-
ing a rule learning algorithm with a search heuristic that derives from clustering.
PCR yielded comparable accuracy to using multiple single-target rule learners
using a much smaller and interpretable collection of rules. Later, the FIRE rule
ensemble algorithm [19] was proposed, specifically designed for multi-target re-
gression. FIRE works by first transforming an ensemble of decision trees into a
collection of rules and then using an optimization procedure that assigns proper
weights to individual rules in order to prune the initial rule set without compro-
mising its accuracy. The connection of this method to the PCT framework lies
in the fact that the ensemble of trees comes from the MORF method of [10].
Recently, [20] presented FIRE++, an improved version of FIRE, which among
other optimizations, offers the ability to combine rules with simple linear func-
tions. FIRE4++ was found better than FIRE, but slightly worse than the less
interpretable MORF.

2.2 Output Coding

Linear combinations of targets have been recently used by a number of output
coding approaches [21,22,23,24] for the related task of multi-label classification
[5,6]. The motivation of the methods in [21] and [24] was the reduction of large
output spaces for improving computational complexity, which goes towards the
opposite direction of our approach. The methods in [22] and [23] on the other
hand, aimed at improving the prediction accuracy similarly to our approach.

The approach most similar to ours is the chronologically first one [21], which
is based on the technique of compressed sensing and consideres random linear
combinations of the labels. This is also the only output coding method from the
ones mentioned here, where the dimensionality of the new output space is allowed
to be larger than the original output space, as in our case. Besides the opposite
motivation (compression of output space) compared to our approach, [21] starts
from the concept of output sparsity (sparsity of the output conditioned on the
input), while in multi-target data, the output space is generally non-sparse. The
encoding step of [21] is therefore based on compression matrices that satisfy a
restricted isometry property, based on a sparsity level defined by the user and
the decoding step is based on sparse approximation algorithms. In contrast, our
approach uses uniform non-zero random weights for a user-defined number of
targets in the encoding step, and standard unregularized least squares in the
decoding step.

3 Random Linear Target Combinations

Consider a set of p input variables x € RP and a set of ¢ target variables y € RY.
We have a set of m training examples: D = (X,Y) = {(x®, y@d)}m where X
and Y are matrices of size m x p and m X ¢, respectively.
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Our approach constructs r >> ¢ new target variables via corresponding
random linear combinations of y. To achieve this, we define a coefficient matrix C
of size ¢ x r filled with random values uniformly chosen from [0..1]. Each column
of this matrix contains the coefficients of a linear combination of the target
variables. Multiplying Y with C leads to a transformed multi-target training set
D’ = (X,Z), where Z = YC is a matrix of size m x r with the values of the
new target variables. A user-specified multi-target regression learning algorithm
is then applied to D’ in order to build a corresponding model.

Note that our approach expects that the original target variables take values
from the same domain, as otherwise their linear combinations could be domi-
nated by the values of targets with a much wider domain than the others. To
ensure this, it applies 0-1 normalization in order to bring the values of all targets
into the range [0..1].

We consider an additional parameter k € {2,...,q} for specifying the num-
ber of original target variables involved in each random linear combination, by
setting the coefficients for the rest of the target variables to zero. Higher k means
that potential correlations among more targets are being considered. However,
at the same time, it means that the new targets are more difficult to predict,
especially in the absence of actual correlations among the targets. We therefore
hypothesize that low k values will lead to the best results. In practice, when
k < g, for each linear combination our approach selects k targets at random, but
with priority to targets with the lowest frequency of participation to previously
considered linear combinations. This ensures that all targets will participate in
C as equivallently (i.e. with similar frequency) as possible.

Given a new test instance, x’, the multi-target regression model is first in-
voked to obtain a vector z’ with r predictions. The estimates y’ for the original
target variables are then obtained by solving for ¥’ the following overdetermined
(as r >> q) system of linear equations: CTy’ =

As an example of our approach, consider a multi-target training set with
q = 6 targets and m = 10 training examples. Figure 1(a) shows the normalized
targets, Y of such a dataset, based on the first 10 training examples of the atpld
dataset (see Section 4.4 for a description of this dataset). Figure 1(b) shows a
potential coefficient matrix C for r = 8 and k = 2. Finally, Figure 1(c) shows
the values of the new targets Z.

Our approach was inspired from recent work on drawing parallels between
multi-label classification and multi-target regression [7] and conceived as the twin
of the multi-label classification algorithm RAKEL [8] for multi-target regression
tasks. Similarly to RAKEL, our approach aims to exploit correlations among
target variables on one hand and to achieve the error-correction effect of ensemble
methods on the other hand, as it implicitly pools multiple estimates for each
original target variable (one for each linear combination that it participates in).
We therefore expect that the larger r is, the better the estimate of the original
target variables. Our approach follows the randomness injection paradigm of
ensemble construction [25] at a larger degree than RAKEL, as it may combine the
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Fig.1. An example of our approach. The ¢ = 6 targets of a multi-target regression
dataset with m = 10 examples is shown in (a). A coefficient matrix for k = 2 and r = 8
is shown in (b). The values of the new targets is shown in (c).

same target variables twice, but with different random coeflicients. Randomness
is a key component for improving supervised learning methods [26,27].

After inventing our approach, we realized that linear target combination
approaches have been used for multi-label data in the past. From this viewpoint,
our approach could also be considered as a sibling of multi-label compressed
sending [21], if we set aside the different goal and the technical differences among
the two approaches discussed in Section 2.2.

4 Experimental Setup

This section offers details on the setup of the experiments that we conducted.
We first present the participating methods and their parameters, then provide
implementation details, followed by a description of the evaluation measure and
process that was followed. We conclude this section by presenting the datasets
that were used, their main statistics, as well as statistics of the pairwise corre-
lations among their target variables.

4.1 Methods and Parameters

Our approach (dubbed RLC) is parameterized by the number of new target
variables, r, the number of original target variables to combine, k, the multi-
target regression algorithm that is used to learn from the transformed multi-
target training set D’ and the approach used to solve the overdetermined system
of linear equations during prediction. The first two we discuss together with the
results in Section 5. The multi-target regression algorithm we employ is to learn a
single independent regression model for each target (dubbed ST). Each regression
model is built using gradient boosting [9] with a 4-terminal node regression tree
as the base learner, a learning rate of 0.1 and 100 boosting iterations. The system
of linear equations is solved by the unregularized least squares approach.

The multi-target regression algorithm employed by our approach, ST with
gradient boosting, is also directly used on the original target variables as a
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baseline. We further compare our approach against the state-of-the-art multi-
objective random forest algorithm [10] (dubbed MORF). We used an ensemble
size of 100 trees and the values suggested in [10] for the rest of the parameters.

4.2 Implementation

The proposed method was implemented within the open-source multi-label learn-
ing Java library Mulan? [28], which has been recently expanded to handle multi-
target prediction tasks and includes an implementation of ST too, as well as a
wrapper of the CLUS software?, including support for MORF. Mulan is built
on top of Weka* [29], which includes an implementation of gradient boosting.
Therefore, the comparative evaluation of all methods was achieved using a single
Java-based software framework.

In support of open science, Mulan includes a package called exrperiments,
which contains experimental setups of various algorithms based on the corre-
sponding papers. To ease replication of the experimental results of this paper,
we have included a class called FzperimentRLC in that package.

4.3 Evaluation

We use the average Relative Root Mean Squared Error (ARRMSE) as evaluation
measure. The RRMSE for a target is equal to the Root Mean Squared Error
(RMSE) for that target divided by the RMSE of predicting the average value
of that target in the training set. This standardization facilitates performance
averaging across non-homogeneous targets.

The aRRMSE of a multi-target model h that has been induced from a train
set Dygrain 1S estimated based on a test set Dyiest according to the following
equation:

1< 1 N h(x); — y;)2
GRRMSE(h, Dyest) = ~ S RRMSE = -3 2 () €D (X5 12)
1 Z(xvy)eDtest (yj - yj)

J=1 Jj=1

where 7; is the mean value of target variable y; within Dyrain and h(x); is the
output of h for target variable y;.

The aRRMSE measure is estimated using the hold-out approach for large
datasets, while 10-fold cross-validation is employed for small datasets.

4.4 Datasets

Our experiments are based on 12 datasets®. Table 1 reports the name (1st col-
umn), abbreviation (2nd column) and source (3rd column) of these datasets, the

2 http://mulan.sourceforge.net

3 http://dtai.cs.kuleuven.be/clus/

4 http://www.cs.waikato.ac.nz/ml/weka

® http://users.auth.gr/espyromi/datasets.html
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number of instances of the train and test sets or the total number of instances
if cross-validation was used (4th column), the number, p, of input variables (5th
column) and the number, ¢, of output variables (6th column).

Table 1. Name, abbreviation, source, number of train and test examples or total
number of examples in the case of cross-validation, number of input variables and
number of output variables per dataset used in our empirical study.

Name Abbreviation Source Examples p ¢

Airline Ticket Price 1 atpld [7] 337 411 6
Airline Ticket Price 2 atp7d [7] 296 411 6
Electrical Discharge Machining edm [30] 154 16 2
Occupational Employment Survey 1 0es1997 [7] 334 26316
Occupational Employment Survey 2  0es2010 [7] 403 298 16
River Flow 1 rfl [7] 4165/5065 64 8

River Flow 2 rf2 [7]  4165/5065 576 8

Solar Flare 1 sf1969 [31] 323 26 3

Solar Flare 2 sf1978 [31] 1066 27 3

Supply Chain Management 1 scmld [7] 8145/1658 280 16
Supply Chain Management 2 scm20d [7] 7463/1503 61 16
Water Quality wq 3] 1060 16 14

One of the motivations of our approach is the exploitation of potential depen-
dencies among the targets. We hypothesize that our approach will do better in
datasets where target dependencies exist. To facilitate the discussion of results
in this context, Figure 2 shows box-plots summarizing the distribution of the
correlations among all pairs of targets for all datasets, while Figure 3 shows a
heat-map of the pairwise target correlations for a sample dataset with a rela-
tively large number of targets (scm20d). The rest of this section provides a short
description for each of the datasets.

Airline Ticket Price The airline ticket price dataset [7] was constructed for the
prediction of airline ticket prices for a specific departure date. There are two ver-
sions of this datasets. The target attributes are the next day price (atpld) or the
minimum price within the next 7 days (atp7d) for 6 characteristics: any airline
with any number of stops, any airline non-stop only, Delta Airlines, Continen-
tal Airlines, Airtran Airlines and United Airlines. The input attributes are the
number of days between the observation and departure date, 7 binary attributes
that refer to the day-of-the-week of the observation date and the complete enu-
meration of: 1) the minimum price, mean price and number of quotes from, 2)
all airlines and from each airline quoting more than 50% of the observation days,
3) for non-stop, one-stop and two-stop flights, 4) for the current day, previous
day and two days before. There are 411 input attributes in total.
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Original Datasets
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Fig. 2. Box-plots summarizing the distri- Fig. 3. Heat-map of the pairwise target
bution of all pairwise target correlations correlations for the scm20d dataset.
for all datasets.

Electrical Discharge Machining The electrical discharge machining dataset
[30] represents a two-target regression problem. The task is to shorten the ma-
chining time by reproducing the behavior of a human operator which controls
the values of two variables. Each of the target variables takes 3 distinct numeric
values (1,0,1) and there are 16 continuous input variables.

Occupational Employment Survey The occupational employment survey
dataset [7] was obtained from the annual occupational employment survey that
is performed by the US Bureau of Labor Statistics. Every instance contains the
aproximate number of full-time equivalent employees of different employment
positions for a specific city. There are two versions of this datasets, one with
data for 334 cities in the year 1997 (0es1997) and one with data for 403 cities
in the year 2010 (0es2010). The employment types that were present in at least
50% of the cities were considered as variables. From these, the targets are 16
randomly selected variables, while the rest constitute the input variables.

River Flow The river flow dataset [7] was constructed for the prediction of
the flow in a river network at 8 specific sites, 48 hours in the future. Those sites
are located in the Mississippi River in the USA. There are two versions of this
dataset. River Flow 1 (rfl) contains 64 input variables that refer to the most
recent observations of the 8 sites and the observations from 6, 12, 18, 24, 36, 48
and 60 hours in the past. River Flow 2 (rf2) contains additional input variables
that refer to precipitation forecasts for 6 hour windows up to 48 hours in the
future for each gauge site. The target attributes are 8, each one corresponding to
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each of the 8 sites. The data were collected from September 2011 to September
2012.

Solar Flare The solar flare dataset [31] has 3 target variables that correspond
to the number of times 3 types of solar flare (common, moderate, severe) are
observed within 24 hours. There are two versions of this dataset. Solar Flare 1
(sf1969) contains data from year 1969 and Solar Flare 2 (sf1978) from year 1978.

Water Quality The water quality dataset [3] has 14 target attributes that refer
to the relative representation of plant and animal species in Slovenian rivers and
16 input attributes that refer to physical and chemical water quality parameters.

Supply Chain Management The supply chain management dataset [7] is
obtained from the Trading Agent Competition in Supply Chain Management
(TAC SCM) tournament from 2010. The precise methods for data preprocess-
ing and normalization are described in detail in [32]. Some benchmark values
for prediction accuracy in this domain are available from the TAC SCM Pre-
diction Challenge [33]. These data sets correspond only to the Product Future
prediction type. The input attributes contain the observed prices for a specific
day in the tournament for each game. Moreover, 4 time-delayed observations for
each observed product and component (1, 2, 4 and 8 days delayed). The target
attributes are 16 and refer to the next day mean price (scmld dataset) or the
mean price within the next 20 days (scm20d dataset).

5 Results

5.1 Investigation of Parameters

We first investigate the behaviour of our method with respect to its two main
parameters: the number of models, r, which we vary from ¢ to 500 and the
number of targets that are being combined, k£, which we vary from 2 to q.

Figure 4 shows the aRRMSE of our method (y-axis) at the atpld dataset
with respect to r (x-axis) for k € {2,3,4,5,6}. We notice that the curves have
logarithmic shape, steeply decreasing with approximately the first 50 models
and converging after approximately 250 models. The addition of models has the
typical error-correction behaviour exhibited by ensemble methods, in accordance
with our expectations. We further notice, again as we expected, that low numbers
of k (2 and 3) lead to the best results.

The behaviour of our approach with respect to r is similar in all datasets.
Figure 5 shows the average aRRMSE of our method (y-axis) with respect to r
(x-axis) across all datasets and all k values. Averages of performance estimates
across datasets are not appropriate for summarizing and comparing the accuracy
of different methods [34] and averages across different values of a parameter may
hide salient effects of this parameter. However, we believe that this average serves
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Fig. 4. aRRMSE of our method (y-axis) for k& € {2,3,4,5,6} with respect to the
number of participating regression models (x-axis) at the atpld dataset. The line cor-
responding to k = 3 is dotted instead of solid, so as to contrast it with the overlapping
line of k = 2.

well our purpose of summarizing a large number of results in a concise way in
order to highlight the general behaviour of our method, which is consistent across
all datasets and k values. The number of participating models starts from 16, to
ensure that the displayed average values are based on all datasets (recall that
the minimum number of models in our approach is ¢ and that the maximum
number of labels across our datasets is 16). We again see that the error follows
the shape of a logarithmic curve, steeply decreasing with the first approximately
75 models and converging after approximately 280 models.

The performance of our approach with respect to k is similar in all datasets
too. The first 16 rows of Table 2 shows the aRRMSE of our method for 500 mod-
els. We notice that the best results of our approach, which are underlined in the
table, are obtained for k € {2, 3}, while the error is in most cases monotonically
increasing with higher values of k.

5.2 Comparative Evaluation

The last two rows of Table 2 shows the aRRMSE of the ST strong baseline and
the MORF state-of-the-art approach. To compare our approach with ST and
MORF, we follow the recommendations of [34]. We first discuss the number of
datasets where each of the methods is better than each of the others based on
Table 3. We see that RLC with r = 500 is better than ST in 10/12 datasets and
better than MORF in 8/12 datasets, both for & = 2 and for k£ = 3. The strength
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Table 2. aRRMSE of our method in each dataset for » = 500 and all possible k values.
The best result of our approach in each dataset is underlined. The last two rows show

the aRRMSE of ST and MORF.

200 280 400 450

500

across all

k atpld atp7d edm sf1969 sf1978 oeslO0 o0es97  rfl rf2  scmld scm20d wq
2 0.3842 0.4614 0.6996 1.2312 1.5746 0.5026 0.5593 0.7265 0.7036 0.4572 0.7469 0.9100
3 0.3840 0.4653 1.2172 1.5675 0.5084 0.5588 0.7878 0.7584 0.4610 0.7467 0.9080
4 0.3884 0.4796 0.5232 0.5730 0.8204 0.7922 0.4663 0.7472 0.9085
5 0.3952 0.4917 0.5359 0.5837 0.8584 0.8327 0.4699 0.7477 0.9086
6 0.4022 0.5029 0.5472 0.5889 0.8515 0.8257 0.4775 0.7490 0.9089
7 0.5551 0.5958 0.8446 0.8106 0.4820 0.7513 0.9090
8 0.5734 0.6076 0.8868 0.8655 0.4855 0.7536 0.9107
9 0.5911 0.6153 0.4889 0.7548 0.9122
10 0.6031 0.6229 0.4932 0.7537 0.9128
11 0.6154 0.6348 0.4978 0.7573 0.9150
12 0.6285 0.6449 0.5020 0.7571 0.9163
13 0.6354 0.6590 0.5057 0.7619 0.9188
14 0.6428 0.6682 0.5133 0.7640 0.9217
15 0.6525 0.6860 0.5155 0.7681

16 0.6652 0.6916 0.5218 0.7704

ST 0.3980 0.4735 0.7316 1.2777 1.6158 0.5421 0.5727 0.7171 0.6897 0.4625 0.7571 0.9200

MORF 0.4223 0.5508 0.7338 1.2620 1.4020 0.4528 0.5490 0.8488 0.9189 0.5635 0.7775 0.8994

11
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of the baseline is demonstrated by the fact that it is better than MORF in 7/12
datasets.

Table 3. Number of datasets where a method is better than another method
(wins:losses) for each pair of methods.

RLC ST MORF
RLC - 10:2 8:4
ST 2:10 - 7:5
MORF 4.8 57 -

The mean rank of RLC with » = 500 and k£ = 2 or k = 3 (same k for all
datasets), ST and MORF are 1.5, 2.25 and 2.25 respectively. The variation of
the Friedman test described in [34] to compare the three algorithms rejects the
null hypothesis for a p-value of 0.0828 (i.e. requires a = 0.1). Proceeding to a
post-hoc Nemenyi test with a = 0.1, the critical difference is 0.8377, slightly
more than the 0.75 difference among the mean rank of RLC and that of ST and
MORF. So, these differences should not be considered statistically significant
based on this test.

We also applied the Wilcoxon signed-ranks test between RLC with r = 500
and k = 2 and the other two algorithms. While multiple tests are involved in this
process, these are limited to just 2, and therefore a small bias will be introduced
if any due to this multiple testing process. For the comparison with ST the
p-value is 0.0210 suggesting that the differences are statistically significant for
a = 0.05, while for the comparison with MORF the p-value is 0.1763 suggesting
that the differences are statistically insignificant even for a = 0.1.

One could argue that a fairer comparison between RLC and MORF should
have setup MORF to use 500 trees instead of 100. The answer to such critique
is that each target is involved in 7k/q regression models in RLC and thus in
datasets such as oes, scm and wg, RLC is actually at disadvantage. Three of the
wins of MORF over RLC actually occur in the oes and wq datasets. Perhaps a
fairer experiment would set 7 = 100¢/k, assuming 100 trees in MORF. Selecting
the number of models in RLC and MORF via cross-validation would perhaps be
even fairer. Such experiments will be considered in future work.

Summarizing the comparative results, we argue that the proposed approach is
worthy of being considered by a practitioner for a multi-target regression domain,
as there is a high chance that it could give the best results compared to state-of-
the-art methods. Futhermore, being algorithm independent, it has the flexibility
and potential of doing better in a specific application, by being instantiated
with a different base learner whose hypothesis representation is more suited to
the given problem (e.g. a support vector regression algorithm), in contrast to
MORF (and other variants of the predictive clustering trees framework), whose
representation is fixed to trees.
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5.3 Error with Respect to Average Pairwise Target Correlation

No clear conclusion can be drawn on whether the intensity of pairwise correla-
tions affects the improvement that our approach can give over the baseline. The
correlation among the median of the absolute value of pairwise target correla-
tions and the gain in performance over ST is 0.15.

Noticing that the high variance of pairwise correlations in the river-flow
datasets co-occurs with the failure of our approach to improve upon ST, we
also calculated the correlation between the standard deviation of the pairwise
target correlations and the gain in performance over ST, which is -0.68 (edm
was excluded in this computation as it only has two targets). This apparently
suggests that low variance of absolute value of pairwise target correlations leads
to improved gains. However, we do not have a theory to explain this correlation.

Pairwise target correlations do not take the input features into account, so
they do not measure potential conditional dependencies among targets given the
inputs [35]. We do however notice that in the three pairs of datasets with similar
nature and amount of features (the two versions of atp, oes and sf datasets),
higher median of absolute value of pairwise target correlations does lead to
improved performance. We simplistically assume here that similar nature and
amount of features introduce similar conditional dependencies of the targets
given the features, even though the aforementioned pairs of datasets have differ-
ent, yet of similar nature, targets.

Table 4 presents the data, upon which the discussion of this subsection is
based. In specific, the 1st row shows the percentage of improvement of our ap-
proach compared to ST, while the next two rows show the median and standard
deviation respectively of the absolute value of pairwise target correlations.

Table 4. For each dataset, the 1st row shows the percentage of accuracy gain of
our method compared to ST, and the next two rows show the median and standard
deviation respectively of the absolute value of pairwise target correlations.

atpld atp7d edm sf1969 sf1978 oesl0 o0es97  rfl rf2  scmld scm20d  wq

gain (%) 3.6 2.6 4.6 5.0 3.1 7.9 2.5 -1.3  -2.0 1.6 1.4 1.3
median 0.8013 0.6306 0.0051 0.2242 0.1484 0.8479 0.7952 0.4077 0.4077 0.6526 0.5785 0.0751
stdev  0.0788 0.1602 - 1.1247 1.2006 0.0972 0.0785 0.3125 0.3125 0.1316 0.1483 0.0717

To the best of our knowledge, a discussion of accuracy with respect to target
dependencies has not been attempted in past multi-target regression work. We
believe such an analysis is quite interesting both theoretically and practically
and might be good on one hand to be adopted by future work in this area, and
on another hand to be studied more elaboratively by itself.
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6 Conclusions and Future Work

Multi-target regression is a learning task with interesting practical applications.
We expect its popularity to rise in the near future with the proliferation of
multiple sensors in our everyday life (Internet of Things) recording multiple
values that we might want to predict simultanteously.

Motivated from the practical interest of multi-target regression and recent
work on drawing parallels between multi-label classification and multi-target
regression, we developed an ensemble method that constructs new target vari-
ables by forming random linear combinations of existing targets, as a twin of the
RAKEL multi-label classification algorithm. At the same time, we highlighted
an additional connection of the proposed approach with recent multi-label clas-
sification algorithms based on output coding.

The proposed approach was found significantly better than a strong base-
line that learns a single model per target using gradient boosting and compares
favourably against the state-of-the-art ensemble method MORF, based on exper-
iments on 12 multi-target regression datasets. Furthermore, the empirical study
reveals a relation among the pairwise correlation of targets and the gains of the
proposed approach given similar input features, suggesting succesful exploitation
of existing unconditional target dependencies by the proposed approach.

The proposed approach has the potential to be further improved in the fu-
ture. Towards that direction, we intend to investigate alternative randomization
injection processes (e.g. normal instead of uniform coefficients) and constructing
ensembles of our approach using different coefficient matrices. For example, in-
stead of constructing 500 models with one matrix, we could construct 100 models
with 5 different matrices, which is expected to improve diversity and potentially
accuracy of our idea.
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