L azy Adaptive Multicriteria Planning

Grigorios Tsoumakas, Dimitris Vrakas, Nick Bassiliades and loannis Vlahavas

Abstract. This paper describes a learning system for the auto-
matic configuration of domain independent planning systems, based
on measurable features of planning problems. The purpose of the
Lazy Adaptive Multicriteria Planning (LAMP) system is to config-
ure a planner in an optimal way, concerning two quality metrics (i.e.
execution speed and plan quality), for a given problem according to
user-specified preferences. The training data are produced by running
the planner under consideration on a set of problems using all possi-
ble parameter configurations and recording the planning time and the
plan length. When a new problem arises, LAMP extracts the values
for a number of domain-expert specified problem features and uses
them to identify the k nearest problems solved in the past. The system
then performs a multicriteria combination of the performances of the
retrieved problems according to user-specified weights that specify
the relative importance of the quality metrics and selects the con-
figuration with the best score. Experimental results show that LAMP
improves the performance of the default configuration of two already
well-performing planning systems in a variety of planning problems.

1 Introduction

Domain independent heuristic planning relies on ingenious tech-
niques, such as heuristics and search strategies, to improve the ex-
ecution speed of planning systems and the quality of their solutions
in arbitrary planning problems. However, no single technique has yet
proved to be the best for all kinds of problems. Many modern plan-
ning systems incorporate more than one such optimizing techniques
in order to capture the peculiarities of a wider range of problems.
However, to achieve the optimum performance these planners require
manual fine-tuning of their run-time parameters.

Few attempts have been made to explain which are the specific dy-
namics of a planning problem that favor a specific planning technique
and even more, which is the best setup for a planning system given
the characteristics of the planning problem. This kind of knowledge
would clearly assist the planning community in producing flexible
systems that could automatically adapt themselves to each problem,
achieving best performance.

This paper presents a learning system for dealing with the afore-
mentioned issue. The Lazy Adaptive Multicriteria Planning LAMP
system automatically configures the parameters (such as search di-
rection and agenda size) of a planner based on measurable character-
istics (such as number of actions per operator and mutual exclusions
between facts) of planning problems. Learning data are produced by
running the planner under consideration off-line on several planning
problems using all combinations of values for its parameters. When
LAMP is faced with a new problem, it retrieves the recorded perfor-
mance (execution time and plan length) for all parameter configura-
tions of the & nearest problems and performs a multicriteria combi-
nation with user-specified weights. The configuration with the best

combined score is then used for running the planner with the new
problem.

The performance of LAMP was evaluated using two state-of-the-
art domain independent planning systems and managed to increase
their performance in a variety of planning problems. The results also
showed that the use of different weights for planning speed and plan
length had the expected effect of biasing the planning systems to-
wards optimizing either of the criteria.

The rest of the paper is organized as follows. Section 2 presents
related work in Machine Learning and Planning and Instance-Based
Learning with multiple criteria. Section 3 describes the problem fea-
tures and the production of training data for LAMP. The next section
describes the kNN approach and the multicriteria combination for
the prediction of the best configuration. Section 5 presents our adap-
tation of the Relief algorithm for feature weighting and Section 6 ex-
perimental results that prove the significance of LAMP. Finally, the
last section concludes this work and points areas for improvements.

2 Related Work

Machine learning has been exploited extensively in the past to sup-
port Planning systems in many ways. A recent extended survey of
past approaches on Machine Learning and Planning can be found in
[13].

There are three main categories of approaches based on the phase
of planning that learning is applied to and the consequent type of
knowledge that is acquired. Domain knowledge is utilized by plan-
ners in pre-processing phases in order to either modify the descrip-
tion of the problem in a way that will make it easier for solving it
or make the appropriate adjustments to the planner to best attack the
problem [7, 11]. Control knowledge can be utilized during search in
order to either solve the problem faster or produce better plans [4, 2].
Finally, optimization knowledge is utilized after the production of
an initial plan, in order to transform it in a new one that optimizes
certain criteria, e.g. number of steps or resources usage [1].

LAMP falls in the domain knowledge category. Compared to rel-
evant approaches, like [11], it has the following advantages: a) it al-
lows the users to specify their priorities in terms of plan length and
planning time, b) it can be incrementally trained by running the plan-
ner off-line as new problems arise, c) it is orders of magnitude faster
in learning due to its lazy nature and only fractionally slower at clas-
sification time, and d) apart from the best configuration, it can output
a number of alternatives sorted by their score.

The learning approach of LAMP follows the paradigm of the work
by the METAL European project consortium on Meta-Learning [5].
There, the kNN algorithm was employed to learn a ranking of Ma-
chine Learning algorithms based on a multicriteria combination of
their accuracy and time measurements [3]. LAMP is faced with a sim-
ilar problem, but has to deal with the much larger size of the feature

vector and the increased number of different potential predictions.
This motivated us to contribute an investigation of the applicability
of the Relief algorithm [9] as a feature weighting method together
with the kNN algorithm. In addition LAMP uses a different multi-
criteria method and applies the kNN algorithm directly on the com-
bined scores of the configurations, instead of using their respective
rankings.

3 Collecting the Training Data for LAMP

An important decision in the design of any successful learning sys-
tem is the selection of appropriate experience (training data). For
LAMP this comes down to the selection of suitable problem features
that would correlate with the performance of the different planner
configurations. Therefore, a first necessary step that we performed
was a theoretical analysis of planning problems, in order to discover
salient features that could influence the choice of planning parame-
ters.

Our main concern was to select attributes that their values are
easily calculated rather than complex attributes that would cause a
large overhead in the total planning time. Therefore, most of the at-
tributes come directly from the PDDL (Planning Domain Definition
Language) files, which are the default input to planning systems, and
their values can be promptly calculated.

A second concern which influenced the selection of attributes was
the fact that they should be general enough to be applied to all do-
mains and their values should not depend so much on the size of
the problem. Otherwise the knowledge learned from easy problems
would not be applied effectively to difficult ones. For example, in-
stead of using the number of mutexes (mutual exclusions between
facts) in the problem as an attribute that strongly depends on the size
of the problem (larger problems tend to have more mutexes), we di-
vide it by the total number of dynamic facts and this attribute (mutex
density) identifies the complexity of the problem without taking into
account the problem size. This is a general solution followed in all
situations where a problem attribute depends nearly linearly on the
size of the problem.

Taking the above into consideration we resulted in a set of 26 nu-
merical characteristics, which can be divided in two categories: The
first category refers to simple and easily measured characteristics of
planning problems, e.g. number of actions per operator, that source
directly from the input files. The second category consists of more
sophisticated characteristics that arise from features of modern plan-
ners, such as mutexes or orderings (between goals and initial facts).
These characteristics are useful even for the automatic configuration
of planners that do not exploit them, since they capture interesting
aspects of the problems’ morphology. Moreover, there exist very ef-
ficient implementations of techniques for sensing their values and the
overhead imposed by them is quite low.

Apart from the features of a number of specific planning problems,
LAMP also requires the performance of the planning system under
consideration on these problems using all combinations of values
for its planning parameters. For continuous parameters a standard
discretization method can be used to obtain discrete intervals. The
whole process of recording the training data is illustrated in Figure
1.

For each run of the planner we record the features of the problem,
the performance of the planner (steps of the resulting plan and re-
quired planning time) and the configuration of parameters. The latter
two are recorded straightforwardly as they are the input and output of
the planning system. For the efficient calculation of the problem fea-

Problem
Analyzer Problem
Features

Domain and
Problem
Definition

(.PDDL)

Planning
System Plan Steps and
Time

0

Parameter
Configurations

Figurel. Data collection

tures we developed a problem analyzer that takes as input the PDDL
files of the planning problem and outputs the values of the features.

The training data were organized as a multi-relational data set,
consisting of 2 primary tables, problems (A rows) and parameters
(IV rows), and a relation table performances (M x N rows), in order
to save storage space, enhance the search for the k nearest neighbors
and speed up the retrieval of the corresponding performances.

4 Automatic Configuration of Planning Systems

Given a new planning problem p,,, LAMP first calculates the values
of the problem features using the problem analyzer. Then the kNN
algorithm is engaged in order to retrieve the ids of the k nearest prob-
lems from the problems table. In the implementation of kNN we use
the Manhattan measure with the normalized values of the problem
attributes to calculate the distance between p,, and all problems p,,
in the problems table:

d(pn, pz) = zf: %)

where f is a problem feature, p,(f) and p.(f) the values of
this feature for problems p,, and p, respectively and mazx(f) and
min(f) are the maximum and minimum values of this feature.

The ids of the k nearest problems are then used by LAMP to re-
trieve the corresponding plan steps and planning time for all possible
configurations in two k = N matrices. The next step is to combine
these performances in order to suggest a single parameter configura-
tion with the optimal performance.

Optimal is however susceptible to user preferences, i.e. a shorter
plan is usually preferred than a longer one, but there are cases (e.g.
real time systems) where the planner must respond promptly even
at the expense of the quality of the resulting plan. Since, these two
criteria (fast planning, short plans) are contradictory, it is up to the
domain experts to set up their priorities. LAMP has the advantage of
letting the users express their priorities through two parameters: w;
(weight of steps) and w; (weight of time). The overall planner per-
formance is calculated as a multicriteria combination of the steps and
time based on these weights. Specifically, the widely used Weighted
Sum method [8] is applied to obtain an overall score from the two cri-
teria, which must first be normalized. For each problem and planner
configuration, we normalize time and steps according to the follow-
ing transformations:

e Let S;; be the number of plan steps and T;; be the required
time to build it for problem 4 (i=1..k) and planner configuration
J G=L.N).

e First, we find the shortest plan and minimum planning time for
each problem among the tested planner configurations:

Sl_mm = min Sij Timzn = min Ti]‘

e Then, we normalize the results by dividing the minimum plan
length and minimum planning time of each run with the corre-
sponding problem value.

min
Si

Si)

min
L

T;

norm
Sij ==

norm __

e Subsequently LAMP calculates an overall score as the average of
the normalized criteria weighted by the user-specified weights:

Scoreij = ws * S;i7" 4wy x T}

Finally LAMP averages the planner configuration scores across the
k nearest problems and outputs the one with the largest average. The
whole process is illustrated in Figure 2.

Ty

Problem Plan Steps
Features and Time

l/\r/

Domain and
Problem Problem kNN Multicriteria Best
Definition Analyzer — i —> i —>
(.PDDL) Average Configuration

Weights
ws, wt

L7

Figure 2. Predicting the best parameter configuration for a problem

4.1 Advantages and Disadvantages

A very important advantage of LAMP is that can be trained incre-
mentally with each new planning problem that arises, by running
off-line the corresponding planning system. This makes it possible
to constantly enrich LAMP with new problems and thus enhance its
predictive performance.

In addition, it is worth noting that LAMP can actually output a
vector of average scores for all parameter configurations instead of
a single parameter configuration. This can be exploited for example
in order to output the top 10 configurations and let the user decide
amongst them. Another useful aspect of the ordering of the configu-
rations for non time-critical applications is to run the planner with the
top performing configurations sequentially or in parallel and obtain
the smallest plan.

An important advantage of LAMP is the fact that users can input
their priorities for steps and time with the corresponding weights. As
it is shown from the experimental results, setting the weights has the
desired effect on the planner performance. This allows the users to
customize the planning system towards the optimization of either of
the criteria.

Finally, LAMP does not require any training time. If training was
required then for each different set of multicriteria weights, a dif-
ferent model would have to be prepared. This would increase the
complexity of the approach and lead to an inflexible system.

The disadvantages of LAMP are increased storage needs and time
during prediction. The system must locate the k& nearest problems
of a new problem, which requires a scan of all records in the prob-
lem table and calculation of distances. For our experiments, the size
of the problem table was small enough to fit in main memory. Fur-
thermore, there exist efficient indexing techniques for reducing the

complexity of kNN queries in large databases, should the problem
base becomes large. In any case the classification time is a fraction
of the total planning time for real-world planning problems.

5 Feature Weighting

A known limitation of lazy learning algorithms of the k-nearest
neighbor (KNN) family is their sensitivity to irrelevant features.
Wettschereck et. al [12], argue that feature weighting methods tend
to outperform feature selection algorithms for tasks where some fea-
tures are useful but less important than others. In order to clarify the
utility of the domain-expert engineered features of planning prob-
lems we have followed a feature weighting approach. In the same
study it has been shown that feature weighting methods that use
performance feedback to assign weight settings require less pre-
processing, perform better in the presence of interacting features and
generally require less training data to learn good settings. In our case,
where training data (planning problems) are not expected to be that
many and where there could be interaction amongst the problem fea-
tures, we decided to follow a performance feedback approach.

Specifically, LAMP performs feature weighting based on the Re-
lief family of algorithms which was introduced by Kira and Rendell
[9] and extended by Kononeko [10]. In its original formulation, Re-
lief starts by assigning all feature weights to 0. It then loops over
a random sample of the data set and for each instance x locates the
most similar positive (p) and negative (n) instances, called nearest hit
and nearest miss respectively. Based on these instances the weight of
each feature is updated using the following formula:

w(f) = w(f) = 0(z(f),p(f)) + 6(x(f),n(f)) @

The problem with the application of Relief to our data is how to
determine whether two instances belong to the same class, or not, as
each instance is associated with a vector of scores for the configu-
rations. To deal with this problem we employed Pearson’s product-
moment correlation coefficient (r) to measure the linear correlation
of two such vectors X, Y of size n:

Xy =

ny XY - (R X)(LY) @
VIR X2 = (X2 n Y Y2~ (1Y)

This returns a number between -1 and 1, where 1 indicates posi-
tive correlation, -1 negative correlation and 0 no correlation. Given a
vector and a confidence interval, we considered another vector a hit
if their correlation was higher than a critical value that is calculated
based on the degrees of freedom (i.e. the size of the vector minus
two) and a miss otherwise. In the implementation of Relief, we used
the 10 nearest hits and misses to update the weights, as suggested in
[10], and we processed each training instance of the data set exactly
once.

6 Experimental Results

For the evaluation of the learning performance of LAMP, an actual
domain-independent planning system along with the descriptions of
several planning problems are required in order to collect the neces-
sary data. The next two subsections deal exactly with these issues.
The first describes the planning systems and the following the plan-
ning problems that were used.

The last subsection evaluates a) the usefulness of LAMP in boost-
ing the performance of the planning systems, b) the feature weighting
approach and c) the effect of the multicriteria weights to the perfor-
mance of the planner in terms of plan steps and planning time.

6.1 The Planning Systems

For the evaluation of LAMP we used LPG [6] and HAP [11], two
publicly available state-of-the-art planning systems from two differ-
ent research groups working on domain-independent Planning. LPG
is a planning system that performs stochastic local search in tempo-
ral Action Graphs. It can be customized through a number of param-
eters, but for the purposes of this research we selected the 4 with the
maximum impact on the performance of the planner, which are out-
lined in Table 1. HAP is a planning system that performs a classical
search in the space of states. It uses various heuristic mechanisms in
order to enhance this search. The system can be configured through
the 7 planning parameters that are outline in Table 1.

Table1. The planning parameters of LPG and HAP and their value sets

Planner Parameter Value Set

LPG Heuristic {1, 2}
Restarts {25, 50, 75}
Search Steps {100, 500, 1000}
IChoice {1,2,3,4}

HAP Direction {0, 1}
Heuristic {1,2,3}
Weights (wy and w2) {0, 1, 2,3}
Penalty {10, 100, 500}
Agenda {10, 100, 1000}
Equal Estimation {0, 1}
Remove {0, 1}

6.2 The Planning Problems

For the production of training data we run LPG and HAP using all
possible parameter configurations on a total of 450 planning prob-
lems, which correspond to 30 planning problems from each of the
15 planning domains, outlined in Table 2. Some problems were not
solved by any configuration of LPG and HAP. These were excluded
from learning as they don’t offer any information. The actual number
of problems per domain used for training LAMP for each planner are
given in the last two columns of Table 2.

Table2. Planning domains, their sources and the number of problems
solved by at least one configuration for each of the two planners

Domain Source LPG HAP
Assembly New domain 30 29
Blocks-world (3 operators) Bibliography 30 30
Blocks-world (4 operators) AIPS 98, 2000 30 30
Driver AIPS 2002 30 30
Ferry FF collection 28 28
Freecell AIPS 2000, 2002 9 30
Gripper AIPS 98 30 30
Hanoi Bibliography 17 28
Sokoban New domain 15 28
Logistics AIPS 98, 2000 30 30
Miconic-10 AIPS 2000 28 30
Mystery AIPS 98 29 30
Tsp FF collection 30 30
Windows New domain 30 30
Zeno AIPS 2002 29 30

Total 395 443

6.3 Evaluation

For comparison purposes we measured the average performance of
all different configurations of the two planners on all the above prob-
lems. The configurations with the best scores served as a baseline for
comparison with the score of the automatic configuration of the plan-
ners based on the predictions of LAMP. Table 3 reports the scores and
the parameters of the best configurations for the two planners using
three pairs of weights for steps and time: a) ws=1, w:=1, b)ws=2,
we=1, €) ws=1, we=2.

Table 3. Scores and parameters of the best configurations for the two
planners using three pairs of weights for steps and time

LPG HAP
ws wt|H R S | Score|D H W P A E R Score
1 1 | 2 50 1000 2 1.49 | 01 2 10 100 1 0 154
2 1 | 2 75 100 2 232 | 0 1 2 10 100 1 O 240
1 2 | 2 50 1000 2 2.18 | 0 1 2500 10 0 0 223

Note that the default configurations of the two planners have a
smaller average score than the best configurations, because they are
not tuned for any specific weight settings or problems. A fairer com-
parison would perhaps involve the default configurations of the two
planners. For example, when these planning systems participate in
international planning contests they are submitted with their default
configurations. However we wanted to benchmark LAMP against the
best performance that these planning systems could achieve with any
manual configuration taking into account the corresponding multi-
criteria weights.

Cross-validation was used to accurately evaluate the automatic
configuration of LPG and HAP by LAMP. Specifically the original
sets of problems (395 for LPG and 443 for HAP) were split into 10
problem sets of equal size. The training set for each fold was used
to calculate the feature weights using our adaptation of Relief and to
find the k nearest problems for each of the problems in the test set,
using a) the weights selected by Relief, b) all weights equal to 1. The
above-described experiment was run for the three pairs of multicri-
teria weights that were also used for the evaluation of the different
configurations of the planners. Figure 3, shows the average scores
of LAMP using the above specified feature and multicriteria weights
and the best configurations of LPG and HAP planners.

A first conclusion stemming from the experimental results is that
LAMP manages to achieve a good boost in performance compared
to that of the best configurations in Table 3, especially for values of
k greater than 3. For example, using k=15 and LPG, we gained 6%
and using k=6 and HAP we gained 12% in performance for the three
weight settings on average.

The results show that LAMP manages to achieve better perfor-
mance in the automatic configuration of HAP than of LPG. A reason
behind this could be the fact that the training data for HAP are 10%
more than that of LPG. Another reason is that HAP with 7 parameters
is more flexible than LPG that only has 4 parameters to tune.

A related noticeable trend is that the performance of LPG tends to
increase for larger values of k, while for HAP it decays for values of
k larger than 10. If we accept that problems of the same domain are
usually closer to each other than problems of other domains (which
is verified by the data) then we can interpret this trend as follows.
Perhaps LAMP requires more neighbors for LPG than for HAP, be-
cause for certain domains (see Table 2 there are much fewer prob-
lems solved by LPG than for HAP and thus more nearest problems

161 s

~ e e N
-/II—IHII L -n

A A,

aaaa

P e 5|
PNl |

158 A, e A A ; = o
y k\//w. e r: m M
. oo || wH .

(L] .

o
155 168 i
—&-LAMP-ALL 183 i

e ~&-LAMP-RELIEF | | 181 4 —&LAMPALL |
151 -m-BEST b 159 ~e— LAMP-RELIEF |

J 187 —=-BEST H
149

i 188

102 3 4 5 8 7 8 81011 12 13 14 15 18 17 18 18 20 12 3 4 5 68 7 8 8 10111213 14 15 16 17 18 19 20

(a) LPG, w1, w=1 (d) HAP, w1, w=1

_—
¥ o |d

g)\ | NN B Y e -8
o8 \N M ee SN . P i Y

o » g o / T4
) l [] hd
o [—&—ws=1 wi=1 083 & —& ws=1 wi=1
i —o—ws=1wt=2 ost g o ws=1 wt=2
e - ws=2 wi=1 B ws=2 wt=1
1

23 458 7 8 9 101 121314 1518 17 18 18 20 123 458 7 89 1011 1213 14 1518 17 18 18 20

W aattes VNN

(a) LPG, Normalized Steps (c) HAP, Normalized Steps

7 X . 2 ¥ 084 - o
4 251 —— o0 Vi ®®eecs,0,
231 e oo - \ d LA b J
—& LAMP-ALL e X as{
248 o LAMP-RELIEF oo B o7 {% o
226 —& LAMP-ALL [l d g 1 F/-",/ — I'Iifl—li—l\. Y
/ o~ LAMP-RELIEF -m-BEST y ore £ ==
2 -m BEST L[|21 y o074 1
i Z —&- ws=1 wt=1 —&—ws=1 wi=1
X or
—o— ws=1 wt=2 —o-ws=1wt=2
218 238 084 o7
12 3 4 85 87 8 9 10 11 12 13 14 15 18 17 18 18 20 12 3 4 5 6 7 8 9 1011 12 13 14 15 18 17 18 18 20 - w2 wt=t - ws=2 wi=t

(b) LPG, we=1, w=2 (e) HAP, w=1, w;=2

12 3 458 7 8 9 101 121314 1518 17 18 18 20 123 458 7 89 1011 1213 14 1518 17 18 18 20

et oelesanntteg,

2 s ey Mot 28 =)
/./:\‘/’:/‘ ’\'\‘/ 7 et 288 /
238 —— *1d
{
23 I 24 —& LAMP-ALL
/ —& LAMP-ALL 238 e~ LAMP-RELIEF [|
228 1 e~ LAMP-RELIEF |~ 23 -m BEST at
j -= BEST 225

102 3 4 5 8 7 8 81011 12 13 14 15 18 17 18 18 20 12 345 87 8 81011213 1415 18 17 18 19 20

(0) LPG, we=2, w=1 () HAP, we=2, wi=1

Figure3. Average score of LPG and HAP with LAMP and their best
configurations

are required to find good results.

A second conclusion from the experimental results is that Relief
manages to increase the performance of LAMP on average, but it
does not make a statistically significant contribution. This probably
means that Pearson’s product-moment correlation coefficient is not a
suitable statistic for this kind of problems. The truth is that the large
number of degrees of freedom (70 for LPG and 862 for HAP) make
the coefficient unreliable, especially as it is insensitive to whether
the differences of the vectors concern the best performing configura-
tions, that actually influence the selection of the best configuration,
or not.

Figure 4 compares the average normalized score of steps and time
for the three different weight settings (ws, w;) for all nearest neigh-
bors. An important conclusion from these graphs is that setting the
weights in favor of planning speed or plan quality has the desired ef-
fect on the performance of the planners. We notice that normalized
steps are increased for larger weight to steps and decreased for larger
weight to time. The same applies for normalized time.

7 Conclusions and Further Work

This work combines two important areas of Artificial Intelligence.
It utilizes Machine Learning to adapt domain independent Planning
systems to a) the given planning problem that they have to solve and
b) the preferences of the users in terms of plan quality and execu-
tion speed. The experimental results showed that LAMP generalizes
successfully from past runs of at least two well-performing planning
systems and manages to boost their performance on a variety of plan-
ning problems.

In the future we plan to find paths to further improve the perfor-
mance of LAMP. A first thing to research into is an effective feature
weighting or feature selection method, taking into account the vector
of scores. A related line of research involving Knowledge Engineer-
ing for Planning is the extraction of more informative features from
the planning problems. Finally we intend to investigate the effect of

(b) LPG, Normalized Time (e) HAP, Normalized Time

Figure4. Normalized steps and time of LPG and HAP

a weighted distance kNN approach.

REFERENCES

[1] J.L Ambite, C.A Knoblock, and S. Minton, ‘Learning Plan Rewriting
Rules’, in Proceedings of the 5th International Conference on Artificial
Intelligence Planning and Scheduling Systems, eds., S. Chien, S. Kamb-
hampati, and C. A. Knoblock, pp. 3-12. AAAI Press, (2000).

[2] D. Borrajo and M. Veloso, ‘Lazy Incremental Learning of Control
Knowledge for Efficiently Obtaining Quality Plans’, Artificial Intelli-
gence Review, 10, 1-34, (1996).

[3] P.B. Brazdil, C. Soares, and J.-P. Da Costa, ‘Ranking Learning Algo-
rithms: Using IBL and Meta-Learning on Accuracy and Time Results’,
Machine Learning, 50, 251-277, (2003).

[4] J. Carbonell, C. A. Knoblock, and S. Minton, PRODIGY: An integrated
architecture for planning and learning, volume K. VanLehn, ed., chap-
ter Architectures for Intelligence, 241-278, Lawrence Erlbaum Asso-
ciates, 1991.

[5] METAL consortium. Esprit project metal. www.metal-kdd.org., 2002.

[6] A. Gerevini and I. Serina, ‘Lpg: a planner based on local search for
planning graphs with action costs’, in Proceedings of the 6th Interna-
tional Conference on Al Planning and Scheduling (AIPS’02), pp. 13—
22, (2002).

[71 A. Howe and E. Dahlman, ‘A critical assessment of Benchmark com-
parison in Planning’, Journal of Artificial Intelligence Research, 1, 1-
15, (1993).

[8] C.L.Hwang and K. Youn, Multiple Attribute Decision Making - Meth-
ods and Applications: A State of the Art Survey, Springer-Verlag, New
York, USA, 1981.

[9] K.Kiraand L. A.Rendell, ‘A practical approach to feature selection’, in
Proceedings of the 9th International Conference on Machine Learning,
pp. 249-256, (1992).

[10] 1. Kononenko, ‘Estimating attributes: Analysis and extensions of re-
lief’, in Proceedings of the 1994 European Conference on Machine
Learning, pp. 171-182, (1994).

[11] D. Vrakas, G. Tsoumakas, N. Bassiliades, and I. Vlahavas, ‘Learning
rules for Adaptive Planning’, in Proceedings of the 13th International
Conference on Automated Planning and Scheduling, pp. 82-91, Trento,
Italy, (2003).

[12] D. Wettschereck, D. W. Aha, and T. Mohri, ‘A Review and Empirical
Analysis of Feature Weighting Methods for a Class of Lazy Learning
Algorithms’, Artificial Intelligence Review, 11, 273-314, (1997).

[13] T. Zimmerman and S. Kambhampati, ‘Learning-Assisted Automated
Planning: Looking Back, Taking Stock, Going Forward’, Al Magazine,
24(2), 73-96, (2003).

