
Iridescent: a Tool for Rapid Semantic Annotation of Web

Service Descriptions

Thanos G. Stavropoulos, Dimitris Vrakas and Ioannis Vlahavas

Computer Science Department
Aristotle University of Thessaloniki

Thessaloniki, Greece

{athstavr, dvrakas, vlahavas}@csd.auth.gr

School of Science and Technology
International Hellenic University

Thessaloniki, Greece

ABSTRACT
Although the Semantic Web and Web Service technologies have

already formed a synergy towards Semantic Web Services, their use

remains limited. Potential adopters are usually discouraged by the

number of different methodologies and the lack of tools, which both

force them to acquire expert knowledge and commit to exhausting

manual labor. This work proposes a novel functional and user-

friendly graphical tool, named Iridescent, intended for both expert

and non-expert users, to create and edit Semantic Web Service de-

scriptions, following the SAWSDL recommendation. The tool‟s aim

is twofold: to enable users manually create descriptions in a visual

manner, providing a complete alternative to coding, and to semi-

automate the process by matching elements and concepts and sug-

gesting annotations. A state-of-the-art survey has been carried out to

reveal critical points and requirements. The tool‟s functionality is

presented along with usage scenarios that demonstrate how the tool

and SAWSDL enable Intelligence in an Ambient Intelligence envi-

ronment. Finally, Iridescent was methodically tested for its usability

and evaluated by a range of both expert and non-expert users.

Categories and Subject Descriptors

D.3.1 [Programming Languages]: Formal Definitions and Theory –

semantics, syntax

I.2.4 [Artificial Intelligence]: Knowledge Representation Formal-

isms and Methods – representation languages.

H.3.5 [Information Systems]: Online Information Services – Web-

based Services.

General Terms

Algorithms, Management, Design, Experimentation, Human Factors,

Standardization, Languages.

Keywords

Semantic Web Tools; Web Services; Semantic Web Services; Ser-

vice-Oriented Architecture

1. INTRODUCTION
The contemporary use of the Web has currently penetrated and al-

tered everyday life. Traditionally, the Web is an infinite source of

knowledge (data) that people can look up and exploit. Popular de-

mand and technology developments have recently led to a new way

of interacting with the Web, the so-called Web Services. Web Service

technology allows users to get things done, instead of simply looking

up data. Service interoperability is supported by well-defined web

standards, such as the Web Service Description Language – WSDL

[1], which provides a universal, platform independent interface de-

scription. However, WSDL enables syntactic interoperability only, as

it type-defines inputs and outputs of service operations. That is a

main obstacle in enabling intelligent Web Service clients such as

Intelligent Agents. The same issue has long ago been encountered in

the Web of data. Vast amounts of syntactically described data e.g.

mostly in HTML are scattered across Web pages, while their meaning

can only be appreciated by human users. The Semantic Web technol-

ogies have emerged to tackle this obstacle and semantically describe

data using ontologies i.e. taxonomies of inter-related concepts.

Consequently, much work during the last decade strives to realize the

synergy of the two fields, Semantic Web and Web Service technolo-

gies, and bring about Semantic Web Services. The efforts initially

focused on top-down approaches, which are essentially ontologies

themselves: the so-called upper ontologies for services. OWL-S1

Semantic Markup for Services is such an ontology that describes a

service‟s functional and non-functional aspects and the grounding of

the service to running instances. The Web Service Modeling Ontolo-

gy WSMO2 is an alternative approach follow-up. More recently, ef-

forts were oriented towards lightweight approaches, the bottom-up

approaches. The initial and most popular one, Semantic Annotations

for WSDL, SAWSDL3, became a W3C recommendation. It enables

lightweight annotations directly over WSDL. SAWSDL introduces

two kinds of extension attributes: Model Reference and Schema

Mappings. Model References are the annotations themselves. They

are references to ontology concepts/classes. Schema Mappings are

either Lifting or Lowering. They specify transformations of XML

schema into ontological constructs (Lifting) and vice versa (Lower-

ing). Being a bottom-up approach, the SAWSDL solution prioritizes

running instances of services and minimum complexity. It has already

successfully been employed for Service Matching [2], Discovery [3],

Selection and Composition [4]. As the lightweight approach is gain-

ing momentum, the WSMO consortium has followed up with a

lightweight version of WSMO, WSMO-Lite, which builds upon

SAWSDL. In this work we strive to build a minimum solution for

enabling intelligence on the client side, using just SAWSDL. Thus,

minimizing complexity and maximizing interoperability.

In parallel with prototype development, there have also been attempts

to build tools to support and disseminate their use. Besides, the ad-

vancement of the Semantic Web itself is currently tackled by the

narrow spread of its technologies, as both users and industry still

hesitate to use common, agreed-upon models. The Semantic Web

1 OWL-S W3C Submission: http://www.w3.org/Submission/OWL-S/

2 WSMO W3C Submission: http://www.w3.org/Submission/WSMO/

3 SAWSDL W3C Recommendation: http://www.w3.org/TR/sawsdl/

http://www.w3.org/Submission/OWL-S/
http://www.w3.org/Submission/WSMO/
http://www.w3.org/TR/sawsdl/

Service tools, especially, often become neglected after their initial

release, hindering expert and non-expert users alike. Up to date, there

are few working tools for Semantic Web Services, puzzling potential

users and hindering the adoption of these technologies. Expert users,

who are already able to manually create the descriptions, coding the

XML files, are also discouraged by the limitations of existing tools.

Namely, expert users are able to make batch changes on raw code

fast, but not on graphical tools. Thus, tools slow down their produc-

tivity.

This work introduces a novel functional tool, named Iridescent, for

adding and editing semantic annotations to Web Service descriptions.

The tool aids users in two ways: it facilitates manual labor by provid-

ing a user-friendly visual alternative to coding and it semi-automates

the process by suggesting annotations, boosting productivity. The

latter function especially, makes batch changes easier and faster. Af-

ter all, the tool‟s uttermost purpose is to disseminate the use of Se-

mantic Web Service technologies overall. To reveal current limita-

tions and drawbacks, a state-of-the-art review has been carried out.

Based on that, this work presents advancements made in usability and

functionality. To demonstrate how the tool and the SAWSDL stand-

ard primitively enable intelligence, usage scenarios in the Ambient

Intelligence domain are showcased. Finally, the effectiveness and

usefulness of Iridescent was evaluated and measured by a set of test-

ers.

The paper is structured as follows: in the next section existing solu-

tions are surveyed and compared to justify the motivation and novelty

of this work. The third section presents aspects of the proposed tool

in detail, describing the motivation behind it, its requirements and its

functionality. Usage scenarios on existing services along with a set of

Ambient Intelligence client applications are presented on the fourth

section. The fifth section presents usability evaluation and testing

results. Finally, future work and conclusions drawn are listed on the

corresponding sections.

2. STATE OF THE ART COMPARISON
This section reviews the state-of-the-art in SAWSDL annotation tools

during the last decade. Throughout the survey, potential flaws and

improvements are investigated. Each tool is presented in a separate

subsection, while the final subsection presents a comparison between

state-of-the-art and the proposed tool.

2.1 RADIANT
Radiant [5], is historically the first tool for SAWSDL annotation of

web service descriptions. It is a plugin for the Eclipse IDE4 (not a

standalone application) and can be found online5 along with a short

manual and a video tutorial. Radiant mainly incorporates an ontology

viewer pane and a WSDL text editor into Eclipse. A WSDL tree-

viewer is already provided by Eclipse. First of all, the user has to

create a project and add one or more WSDL files, from local storage

only. Then, he has to switch to an Eclipse perspective, to view the

ontology panel. Users can load a single ontology (one at a time) from

a local file or URL into the ontology panel, which displays it in a tree

structure. That panel also hosts the toolbar buttons for all annotation

operations. The WSDL Editor naturally shows WSDLs in highlighted

text form. The first step for the annotation is adding the SAWSDL

4 Eclipse IDE: http://www.eclipse.org/

5 Radiant online:
http://lsdis.cs.uga.edu/projects/meteor-s/downloads/index.php?page=1

namespace import. To do so, users have to manually place the cursor

in the exact point of wsdl:definitions where they want to insert it

within the text, right click the ontology root class and choose the

appropriate option. This process is completely manual and not in-

tended for non-developers. Its steps may also be confusing as the

SAWSDL has nothing to do with the ontologies root class. In Radi-

ant, users can also add a namespace definition i.e. prefix for the on-

tology at hand, which is a plus, as it helps shorten Model Reference

URIs.

However, the annotations themselves can utterly not be added. Con-

trary to what the user guide and video show, annotations cannot be

added neither by Drag „n„ Drop nor by right clicking classes. A se-

cond major issue is the confusing environment infested with left-over

references to the predecessor of SAWSDL, WSDL-S. The terms

“WSSEM namespace”, “Action”, “Precondition”, “Effect” found on

almost all context menus and buttons in Radiant, all belong to

WSDL-S. The plugin was last modified on 29/5/2007 and was in-

tended for Eclipse 3.2 and Java 1.5.

2.2 WSMO STUDIO
WSMO Studio is an IDE that integrates various tools for Semantic

Web Services. It was initially presented in [6] and can still be found

online6 as an open source project. Like Radiant, it comes in the form

of a plugin for the Eclipse IDE, but also as a standalone application.

The motivation behind WSMO Studio was to support the WSMO

technologies, but it substantially expanded to lightweight annotations

with SAWSDL. Specifically it is comprised of a WSMO editor, a

WSML reasoner and a WSMX adapter. WSMO Studio was devel-

oped between 2005 and 2009 (last update of the SAWSDL plugin on

SourceForge was in 2007) again for Eclipse 3.2 and Java 1.5. Unfor-

tunately, the authors could not find any working setup (standalone or

plugin), nor any online documentation as to what it does exactly. The

features presented in the comparative subsection below are based on

screenshots from the software.

2.3 SOWER
SOWER or “WSMO-Lite Editor” is an open source web application

that supports SAWSDL and WSMO-Lite lightweight service annota-

tions. During the SOA4All project, which ran between March 2008

and February 2011, many applications have been developed, among

which SWEET (Semantic Web sErvices Editing Tool) and SOWER

(Sweet is nOt a Wsdl EditoR). SWEET is a RESTful-Service annota-

tion tool. It produces hRESTS and MicroWSMO annotations on

HTML descriptions. It is very similar to SOWER in design and usa-

bility, although slightly more sophisticated to better support the na-

ture of the different formats. RESTful service annotation is outside

the scope of this paper, thus, only SOWER is taking part in the com-

parison subsection.

6 WSMO Studio online: http://www.wsmostudio.org

http://www.eclipse.org/
http://lsdis.cs.uga.edu/projects/meteor-s/downloads/index.php?page=1
http://www.wsmostudio.org/

SOWER can be found online at the project‟s website7. Instead of

documentation, an explanatory video covers all of its functions. The

graphic interface is good-looking, friendly and intuitive, as all opera-

tions are carried out via Drag „n„ Drop. The user can open multiple

ontologies, that are inserted into a single tree (displayed on the left

pane) and a WSDL service description (displayed on the upper right

pane in tree form and the lower right pane in text form). Both types of

documents can be opened from a URL and from a special kind of

storage service used in many SOA4All tools. In the background,

SOWER silently adds the SAWSDL namespace, which is desirable in

most cases. However, this may confuse the user as he does not realize

whether it was added or not. Additionally, he cannot remove it with-

out viewing and manipulating code. Users can keyword-search the

ontology for concepts and Drag ‟n‟ Drop them on WSDL elements to

annotate them. The resulting file can be saved to either iServe (the

project‟s special provisioning platform) or to the special storage ser-

vice (repository) from where it can later be downloaded.

2.4 COMPARATIVE OF TOOLS
A comparative of state-of-the-art tools and the proposed solution i.e.

Iridescent is presented in this subsection. Table 1 considers some

general aspects of the tools. Their application architecture ranges

from desktop (either as Eclipse plugins or standalone applications) to

web i.e. SOWER. We argue that although editing web service de-

scriptions is a web-related task, internet availability should not be a

requirement. After all, text, editors and even IDEs would not be so

usable, were they online only. We also discarded the storage system

solution, found in SOWER. SOWER users must explicitly save files

on a semi-organized folder structure where everybody can toss their

files in, and then download them for personal use. This should be an

optional and not necessary step that would also require proper organ-

ization and user authorization for the file structure. It may be consid-

ered as a future addition, according to user demand.

Table 2 and Table 3 summarize the ontology and service file handling

capabilities of the tools. All tools can open files locally and some also

from URL. Such files are indeed primarily online, but service engi-

neers actually work locally as well, during testing, work in progress

or during unavailable connections as mentioned above.

Another issue is loading multiple files at the same time. Multiple

open OWL files are useful for annotating from various sources and

interchanging between them without repeating the opening process.

SOWER opens multiple ontologies but appends all their classes on

the same taxonomy tree. Hence, it potentially becomes too large to

handle (although SOWER provides a handy search function). For that

purpose, Iridescent separates the ontologies loaded and provides a

dropdown box to quickly switch between them.

Multiple open WSDL files are also useful, for annotating multiple

files and interchanging between them. Besides, a common authoring

practice, also followed by the auto-generated WSDLs by the popular

NetBeans Java IDE, is separating schema in a separate .xsd file. In

that case, opening multiple files is a prominent need as descriptions

are practically split in two. Early tools, being Eclipse plugins, inher-

ently support opening multiple WSDL files, in tabs. Iridescent sup-

ports multiple files in tabs as well, but additionally, it automatically

opens referenced files within a file i.e. schema files.

Likewise, OWL files contain references to other files as well, i.e.

imports. Most existing ontology editors do automatically open these

7 SOWER online: http://stronghold.ontotext.com:8080/wsmoliteeditor/

Table 1. General Aspects of SAWSDL tools

Aspect Radiant
WSMO

Studio
SOWER Iridescent

Year 2007 2007 2011 2012

Documenta-

tion

Architecture
Eclipse 3

plugin

Eclipse 3

plugin,

standalone

Web app.
Standalone

app.

Table 2. Handling of WSDL files in SAWSDL tools

Aspect Radiant
WSMO

Studio
SOWER Iridescent

Local

Web -

Multiple -

Imports

Find ?

Table 3. Handling of OWL files in SAWSDL tools

Aspect Radiant
WSMO

Studio
SOWER Iridescent

Local

Web -

Multiple -

same tree

separately

Imports -

Find -

Table 4. Added functionality in SAWSDL tools

Aspect Radiant
WSMO

Studio
SOWER Iridescent

Namespace

handling

add

(outdated)
-

add

(silent)

add,

remove

Annotation

Drag „n„

Drop,

Right

click

Drag „n„

Drop

 Drag ‟n‟

Drop,

 Right

Click,

 Menu

Recommen-

dation

http://stronghold.ontotext.com:8080/wsmoliteeditor/

imports as they consist a necessary part of the ontology. SOWER and

Iridescent both open these imports. However, SOWER does not offer

the capability of locating a missing import, neither locally nor online.

Iridescent offers this feature, in a manner similar to the one in Proté-

gé, one of the leading ontology editors. All in all, Iridescent strives to

dynamically resolve all file imports and bridge the gaps for annotat-

ing multiple files from multiple sources.

Finally, functionality and added value aspects are presented on Table

4. Quite similarly, all tools display WSDL code, WSDL hierarchy

trees and OWL hierarchy trees. Traditionally, annotations happen via

Drag „n„ Drop of OWL classes onto WSDL nodes. Although this is

indeed the most intuitive manner, it requires accuracy and exploring.

Iridescent gives access to all operations through various ways (the

simplest being buttons, context-menus and toolbar buttons and the

more sophisticated recommendation function). That way it provides a

thorough view of the application‟s functionality at a glance requiring

less exploring. Besides, the user evaluation survey performed after

the tool‟s completion, verified the importance of providing alterna-

tive methods. It revealed that 60% of users would use both Drag „n‟

Drop and context menus regularly. Another issue is the SAWSDL

namespace import. In Radiant, this import has to be inserted in the

text. In SOWER it happens silently, which can be unintentional. Iri-

descent makes the SAWSDL namespace visible and manageable

(reversible) like every other change on the description files. Finally,

Iridescent introduces annotation recommendations to accelerate and

facilitate the annotation process. Concept names are matched against

WSDL nodes and users can select which of these recommendations

to actually commit. This is a novel step towards annotation automa-

tion in SAWSDL editors and SAWSDL annotation overall.

3. IRIDESCENT
This work introduces the Iridescent tool8, thoroughly described in

this section in terms of its functional and non-functional require-

ments. First of all, the motivation for engineering the tool was the

lack of tools and methodologies [7], hindering the dissemination of

semantic web technologies, and especially semantic web service

technologies. Ever since the arousal of the Semantic Web Service

notion, with top-down approaches OWL-S and WSMO, the lack of

proper tools was eminent [6] [8]. Some work tries to automatically

generate (top-down) semantic descriptions, acknowledging both their

complexity and lack of tools [9]. High complexity led to the rise of

light-weight annotations. SAWSDL lightweight annotations have

already been proved to be suitable for enhancing the major stages of a

web service‟s lifecycle; namely Matching [2], Discovery [3] and

Composition [4] and enabling intelligence on the client side. The

state-of-the-art survey has shown considerable room for improvement

in enhancing accessibility and ease-of-use for both experts and non-

experts in such a tool.

3.1 REQUIREMENTS
A set of requirements for the proposed tool was formed based on the

state-of-the-art survey and is listed below. In each case, trade-offs and

choices made are explained.

Compatibility

The tool must be platform independent, as it targets a wide audience;

research, industry and individual developers. The Java platform was

chosen to support this aspect.

8Iridescent online:

http://lpis.csd.auth.gr/people/thanosgstavr/development.html#iridescent

Availability

Being intended for engineers, the tool, as well as resources for devel-

opment, must always be accessible. For online applications, availabil-

ity is restricted by connectivity constraints and the hassle of upload-

ing and downloading files. Therefore, the tool was implemented as a

desktop application, much like IDEs. Still, it requires no installation,

is platform independent and not computationally demanding at all.

The resources i.e. ontologies and service descriptions, can be loaded

from both the Web and local storage.

Usability

The application must be as user-friendly as possible even for users

with no Semantic Web background. The interface‟s layout and design

should be intuitive and fast to learn. Iridescent‟s layout is structured

like most similar tools. An ontology panel holds everything that has

to do with ontologies in one place and a service panel holds service-

related files and features. The two are separated by distinctive colors

(there are also color themes to choose from). A novel representation

scheme has been constructed to facilitate visual discriminations and

learning. The pattern in general is that all SAWSDL notions have

cyan icons, WSDL notions have blue icons and ontology classes have

red icons. A short legend for this representation is available on the

help menu and shown on Figure 1. For intuitiveness and demanding

less exploring, all basic operations can be accessed in many ways.

Drag ‟n‟ Drop may be the most instinctive and fast, but not an obvi-

ous option for some users, especially the new ones. Hence, annota-

tions can also be applied via a toolbar button or right click (context

menu). Usability is also enhanced by automations, such as automati-

cally opening imported files both for ontologies and services. Finally,

multiple open files simultaneously are a must for multitasking and a

standard amongst most computer applications.

Extensibility

The tool must be extensible to future technology and format devel-

opments. Currently, the ontology tree supports OWL/RDF ontologies

but can be extended upon demand. Any format of schema mapping is

allowed (as only the URL of the transformation is required to specify

one).

Documentation

Helpful and up-to-date documentation is needed for all applications.

Learning material for Iridescent currently available online comprises

of a presentation and the manual. The presentation, also used to edu-

cate beta testers, initially teaches basic knowledge of the Semantic

Web Service notions and secondly guides one through three

SAWSDL creation scenarios, explaining the tool‟s complete func-

tionality.

Functional Requirements

Figure 1. Legend of icon representations in Iridescent

http://lpis.csd.auth.gr/people/thanosgstavr/development.html#iridescent

Using the tool, a user should be able to fully create and edit

SAWSDL files. Specifically, given well-formed ontologies and

WSDL or SAWSDL service descriptions, he should be able to output

well-formed SAWSDL files. SAWSDL, in essence, introduces three

new elements (extension attributes) into the WSDL: Model Refer-

ences, Schema Mapping and the SAWSDL namespace import. The

user must be able to add or remove any of the above without re-

striction, exactly as in manual coding. Added value facilities, such as

the search function, should be provided. Furthermore the tool must

provide a way to accelerate batch annotations. Hence, recommenda-

tions by matching have been introduced, to aid the user with annota-

tion ideas, select and insert many annotations at once.

3.2 FUNCTIONALITY
Driven by the above requirements, Iridescent was developed to sup-

port all editing functionality for SAWSDL files and provides a com-

plete graphic alternative to coding. Figure 2 depicts the main frame of

the Iridescent Java desktop application. The frame is divided in two

parts, made distinct by the contrasting colors: the Ontology Panel on

the left and the Service Panel on the right. The Ontology Panel pro-

vides buttons for ontology-related functions such as Open, Close,

Reload and Recommendations (from left to right). Ontologies are

loaded on the Ontology Panel in a tree structure, automatically insert-

ing imported ontology classes in the same tree structure. Multiple

open ontologies can be interchanged using a dropdown box. Ontolo-

gies can be refreshed (reloaded) in case they are edited externally

(e.g. in Protégé). The search box provided can keyword-search con-

cepts in the ontology and is enhanced with Auto-Complete.

To enable automatic annotation we considered that humans use prim-

itive data themselves to identify a desired match (ontology class and

service node) which is no other than their string names. Then, they

either compare their string names for a match or use other cognitive

complicated mechanisms such as pure desire or prior knowledge

about the domain ontology and/or the service. Hence, we concluded

that the tool could at least provide the string matching feature, using

primitive string matching algorithms.

Returning to the tool‟s interface, the Recommendation button is ena-

bled if and only if both an ontology and a service file are open in the

respective panels (at least one of each). Upon invocation, it shows a

dialog such as on Figure 3, guiding the user to automatically match

the active ontology concepts with the active service nodes. Three

algorithms are provided for that purpose: the Levenshtein distance,

Fuzzy String Search (also found as “Approximate Matching”) and

Common Words. Fuzzy String Search calculates the minimum Le-

venshtein distance for all substrings of the two strings. The latter is a

custom algorithm introduced in this work. It is based on the observa-

tion that ontology and service node names traditionally are concate-

nated phrases in which each word begins with a capital letter e.g.

Immune_System or ImmuneSystem. The algorithm splits these

Figure 2. Iridescent main application window

phrases at capital letters and looks for common words among them.

As a result, it is especially efficient for phrases that contain the same

word but one is not the substring of the other (where the other two

algorithms are just as efficient). For example, in the use case scenario

described on the next section, both Fuzzy String Search and Common

Words find the matches Temperature – GetRecentTemperatureRe-

sponse and Humidity - GetRecentHumidityResponse, PowerCon-

sumption – ReadPowerResponse. However, Common Words only

finds the matches SwitchAction - SwitcnOn and SwitchOff. All algo-

rithms are normalized and exhaustive (match all concepts with all

service nodes). Matching results, shown on a table, can be filtered

using a rating threshold and/or a filtering keyword. Results can also

be alphabetically sorted traditionally by clicking a column header.

The user can select as many matches as he desires and commit them

at once to the SAWSDL, facilitating batch operations.

The Service panel, likewise, hosts all service-related functions. The

buttons on the top-right are used to open WSDL or SAWSDL files,

from the web or local storage, and save the active file. Upon opening,

the service file elements are loaded in a tree hierarchy on the right,

showing WSDL elements in blue and SAWSDL elements in cyan,

following the icon legend of Figure 1. To make its presence visible

and manageable, the SAWSDL namespace is shown as a tree node

too, although it is only an attribute instead of an element. On the

middle pane, highlighted XML text of the selected service node is

displayed. A button provides XML syntax validation. The list of open

files, ontologies and services, is saved internally for the application to

restore previous sessions at startup.

The buttons on the upper left of the service pane provide SAWSDL

authoring operations. From left to right, they allow adding or remov-

ing the SAWSDL namespace, adding a Schema Mapping and adding

a Model Reference, anywhere in the SAWSDL (target nodes are se-

lected on a pop-up dialog). The “Add Namespace” button, changes to

“Remove Namespace” when the namespace is present and changes

back when it is not present. All changes are reversible since the user

may even want to revert back to plain WSDL. The Schema Mapping

and Model Reference buttons are enabled only if an Ontology is open

(at least one) and refer to the active ontology and service. Consider-

ing the Schema Mappings, the user is solely to provide the URL

where the transformation resides. However, there are thoughts to

make the tool penetrate into this process and assist in the actual spec-

ification of the transformation itself. A hesitation for this is the up-

load process of the transformation (as it needs to be online) which

raises architecture issues (it expands beyond a simple desktop appli-

cation), and thus, is considered as future work. Continuing on the

GUI, the menubar provides again some of these functions, plus a

theme chooser (each theme is a different colour pattern), the icon

legend, and the “About” dialog.

WSDL 1.1 and WSDL 2.0 are thoroughly supported according to the

SAWSDL specification. Note, that the only difference between the

two versions is that in 1.1, WSDL operations are annotated using the

attrExtensions element to insert the model reference as a child ele-

ment. All other 1.1 and 2.0 elements are annotated as usual using the

sawsdl:modelReference attribute.

To sum up, there are many alternative ways to accomplish a single

task in Iridescent. That ensures that even novice computer users can

find a way to perform an operation without even reading the manual

or long exploring. More specifically:

 To add the SAWSDL namespace:

use the service panel toolbar button, the WSDL menu or right-

click the WSDL tree root node (description/definition).

 Add Schema Mapping (Lifting or Lowering):

use the service panel toolbar button, the WSDL menu or right-

click the target WSDL tree node. Select the appropriate option on

the context menu.

 Add Model Reference:

use the service panel toolbar button, the WSDL menu or right-

click the desired node. Alternatively, Drag ‟n‟ Drop the desired

source ontology concept i.e. Class on the target Service element,

or use the Recommendations function.

 Remove any SAWSDL element (i.e. the namespace, a Model

Reference or a Schema Mapping):

right-click the target element tree-node and select Remove. Use

the toolbar button for the namespace.

4. AMBIENT INTELLIGENCE USE CASE
The purpose of the use case scenarios presented here is twofold: to

demonstrate Iridescent‟s functionality in practice and how both the

tool and the SAWSDL standard enable intelligence on the service

client side. For the latter, the documents created during these scenari-

os are used directly to interface with existing implemented services in

an Ambient Intelligence setting. All scenarios are available online in

the form of a step-by-step presentation and were also followed by

testers during the beta testing cycle of the application.

The web services are deployed at a Smart Building environment by

the Smart IHU project, which targets energy savings and quality of

life through Ambient Intelligence [10]. A web service middleware

exposes the functions and data of various smart devices (sensors and

actuators) scattered around the Smart Building. As similar Web Ser-

vice-middleware setups are common in such environments, the use of

semantic web services is a common practice as well. The majority of

approaches prefer the more sophisticated top-down approach, OWL-

S, such as in [11], up to 2008 [12]. As lightweight annotations

emerged, a more recent approach supports SAWSDL as well [13],

mapping from SAWSDL to the system‟s own XML-description lan-

guage. We investigate enabling intelligence with SAWSDL and no

additional layer of complexity, as it already suffices to enhance all the

stages of a service‟s lifecycle (Service Matching, Discovery, Selec-

tion and Composition).

The ontology used is BOnSAI (Smart Building Ontology for Ambient

Intelligence) [14]. BOnSAI extends existing ontologies with concepts

for Smart Buildings in general (e.g. “Environmental Parameter”,

“Location” etc.). The concepts added for the Smart IHU case in par-

ticular suit the devices found in this deployment e.g. “SmartPlug”,

“SmartClamper” etc. The available operations are grouped in five

services, according to the Device type that they expose: SmartClamp-

erService, SmartPlugService, SensorBoardService, Z-WaveService

and ITService.

The aim of the scenarios is to semantically describe the input and

output types of operations and specify transformations. BOnSAI,

SmartPlugService and SensorBoardService are opened either from

URL or from local files. As the services were developed in Netbeans,

their complementary xsd schema files are also opened automatically.

Concepts are located either manually or using the search box and

used to annotate the service Complex Types. As an example, the

“PowerConsumption” concept is assigned as the return type of the

ReadPower operation (i.e. ReadPowerResponse Complex Type). The

Recommendation function is used for two annotations: “Tempera-

ture” at GetRecentTemperatureResponse and “Humidity” at

GetRecentHumidityResponse. The exact Recommendation frame for

this case is shown on Figure 3. At all times, the user observes chang-

es on both tree and code. One scenario includes inserting a Lifting

Schema Mapping transformation to RDF on a W3C service, to

demonstrate the tool‟s generality.

There are many ways to exploit the resulting semantically-annotated

services e.g. for Discovery, Matching, Selection and Composition.

Thoroughly presenting client applications is outside the scope of this

work. However, a brief summary is given here to demonstrate the

kind of possibilities that present themselves. First of all, a web appli-

cation was implemented to allow specifying queries for web service

descriptions based on semantic inputs and outputs. Subsequently, it

matches them with services in a repository (new services can be load-

ed on the repository). The matching algorithm is weighted and also

incorporates reasoning to find substitute classes. The results can be

exploited by any client in order to operate the devices of the Ambient

Intelligence system.

More generally, the annotations can be exploited in any kind of A.I.

application. A JADE agent was developed to maintain a knowledge

base about the state of the Ambient Intelligence environment. A GUI

is used to insert rules that operate the smart building‟s semantic ser-

vices based on SAWSDL information. Due to their semantic nature,

services can be added or removed, supporting the dynamicity of such

environments. The agent uses JESS to find rules that are triggered or

fired up and invokes the proper semantic services.

5. USER EVALUATION
A sample of 20 evaluators was engaged in a two-phase usability test

and evaluation of Iridescent. Specifically, 17 evaluators were under-

graduate computer science students, from which 2 had developing

experience with WSDL and one with SAWSDL. The rest of the eval-

uators were: a PhD student, a MSc student, both specialized in A.I.,

and one with no computer science background whatsoever. It was

hard to find semantic web experts evaluators at this stage of devel-

opment but on the other hand, this less-skilled set of users can

demonstrate how usable the application is for non-expert users.

The first part of the evaluation concerned only the representation

model adopted in Iridescent; the tree-and-code layout. To measure

the effectiveness of the representation, users were asked to count

various elements of the WSDL/SAWSDL files (after giving them

sufficient explanations of what each element is and what it looks

like). Although, developers never actually need to count elements in

real use, this process is a measure of how rapidly and correctly a user

perceives data through the representation. The same tasks were given

again on the plain text form of the files (code) for comparison. We

believe this process to be extremely hard and time-demanding for

non-expert users on plain text editors, so we used a syntax-

highlighting one. The five tasks assigned were to count various ele-

ments of a WSDL : A) its message nodes, B) its element nodes, C) its

ComplexType nodes, D) all of its SAWSDL attributes and E) how

many of these are Model References. The two views were selected in

random order for each user, to generalize the result. Also, random

WSDLs of about the same size were chosen for each user and each

view, to eliminate learning.

The times recorded on code and tree views are shown on Figure 4

and Figure 5 respectively. A conclusion drawn is that all users per-

form similarly. A few outliers were the very fast #11 and the slow

ones, #4 and #10. However, contrary to expectation, the outliers are

not the ones with different background. We would expect the

SAWSDL developer, who is #3, to be the fastest one, but his times

are average. Additionally, the non-computer science student, #17,

performs the same or even better than the rest. The same goes for the

others: WSDL developers, #1 and #2, and PhD, #9.

The average times for each task and for each view, shown on Figure 6

confirm what is already apparent in the previous figures. First of all,

some tasks, i.e. A, C and D in code, are more time-demanding than

others. That is due to the fact that code essentially takes a long time,

except for very easy tasks e.g. B and E. In the examples, elements

(task B) were very compact on code and Model References (task E)

were few (3-5) and already counted along with other SAWSDL at-

tributes on the previous step (D). However, on tree view, all average

Figure 3. Annotation recommendations in Iridescent, sensor board scenario

times are lower and even approximately the same for any task. Indeed

code view is much slower on any task: the average of average task

times is 15s on code view and 7s on tree view. Also, any task is ex-

pected to require around average time on tree view, while on code,

some tasks can range widely: the standard deviation of average task

times is 7s on code and 3s on tree view.

Meanwhile, answers are not only faster, but also more correct on tree

view. Figure 7 shows the percentage of correct answers for each task

and view. The tree view percentage is always above or equal to the

one in code view. We could also possibly deduct the fact that the

more time the user takes, the more probable it is to answer incorrect-

ly, as A,C and D in code are the most time consuming and poorly

answered tasks at the same time. To conclude this part, users were

asked for suggestions and ratings. They were asked whether they

prefer code, tree or both simultaneously and all of them (100%)

picked the latter. They rated the representation with 4.7/5 (30% 4/5,

70% 5/5) on a Likert scale (1 to 5). Two of them suggested a different

representation where the tree structure is abandoned and nodes are

categorized in groups.

During the second part, the users evaluated Iridescent‟s functionality

by performing five tasks. First the users were asked to open an ontol-

ogy and search for a random concept (task I). Then the search box

was used for the same purpose (II). The users also entered two anno-

tations on a WSDL, one by Drag ‟n‟ Drop (III) and one via the Menu

function (IV). The same two annotations were then committed via the

recommendation function (V). Statistics for times recorded are shown

on Table 5. Judging from the standard deviation, times are stable for

all tasks except task I. For this task, some users used logic while

searching (they followed the inheritance hierarchy) while some

searched blindly and exhaustively. Approximately, for a single anno-

tation one has to either manually or via search-box find a class (pro-

cess of task I or II) and use Drag „n„ Drop (III) or the Menu (IV).

Selecting the minimum in both stages, the complex task requires 9s

on average. On the other hand, a recommendation requires 13s on

average for two annotations, which is significantly faster (two manual

annotations require 9s times two). Based on experience, selecting

more annotations during the recommendation process requires insig-

nificant amount of time, because there are all listed simultaneously.

Hence, the difference between recommendation and manual annota-

tions grows exponentially with the number of annotations.

Again, suggestions and ratings concluded the second part of the eval-

uation. When asked whether they would use a. Drag „n„ Drop only, b.

Menu only or c. both, the users replied: 35%-a, 5%-b and 60%-c.

They also rated the following functions on Likert scale (1 to 5): File

management 4,75/5 (25%-4/5, 75%-5/5), Drag „n„ Drop and Menus

4,55/5 (5%-3/5, 35%-4/5, 60%-5/5), Recommendation 4,85/5 (15%-

4/5, 85%-5/5), Namespace and Schema Mapping menus (they were

shortly demonstrated) 4,65/5 (25%-4/5, 70%-5/5). When asked about

Iridescent‟s usefulness, assuming they were SAWSDL authors, they

answered positively 4,8/5 (20%-4/5, 80%-5/5). Finally, interesting

suggestions include buttons to expand/collapse all tree nodes, key-

board shortcuts, optionally hide code, tree or split view and more

functions for code.

Table 5. Statistics of Functionality Evaluation

Metric\Task I II III IV V

Average time (sec) 19 5 4 15 13

St. deviation (sec) 16 3 2 5 4

6. FUTURE WORK
Future work on Iridescent focuses on two directions: improving its

form and extending its functionality. Suggestions from evaluators

such as the code/design/split view and more code functions, e.g.

search, are going to be investigated. Functionality extensions include

more string matching algorithms for recommendations. Another ma-

jor functionality extension would be to provide actual authoring as-

sistance for the Schema Mapping transformations e.g. XSLT,

SPARQL. Feedback from the community underlines that the trans-

Figure 4. User answer times for each task on code view

Figure 5. User answer times for each task on tree view (Iri-

descent)

Figure 6. Averages of times recorded for each task

Figure 7. Percentages of correct answers for each task.

formation authoring process for every annotated element is often a

very tiresome task. In that case the application has to be redesigned to

not only insert the Schema Mappings (pointers to such files), but

initially help author and upload the transformations to the cloud.

An additional important goal is to keep the tool compliant to future

developments and adjustments of the specifications. We are eager to

implement any suggestion in both directions, by the members of the

community. For that reason there is a sample package with examples

online as well as a form for suggestions. Other than that, we plan to

also evolve and fully present the applications based on Iridescent

annotations, on the client side, and possibly refine our methodologies

and the tool itself.

7. CONCLUSIONS
This work presents the Iridescent tool for creating and editing Seman-

tic Web Service descriptions following the SAWSDL standard. A

review of current state-of-the-art has been carried out, identifying

drawbacks and possible improvements. The proposed tool was de-

signed and implemented to fulfill these critical requirements such as

maximum availability, usability and functionality for both expert and

non-expert users. Additionally, a novel way to produce batch auto-

matic recommendations is proposed in this tool, using primitive data

(string matching) to produce semantic information. The tool‟s aim is

to promote the use of the promising Semantic Web technologies to

enable intelligent client applications. Use case scenarios for enabling

an Ambient Intelligence system, through matching and intelligent

agents, have been demonstrated to prove the tool‟s and SAWSDL‟s

capabilities. Evaluations carried out by a variety of users show opti-

mistic results. Users seem eager to adopt a graphic tool and are espe-

cially fond of intuitive functions and automatic recommendations.

Timings during the testing also show that the graphic tool‟s represen-

tation gives a significantly better overview of the code as the users

answered more promptly and correctly than in code. Ratings seem

optimistic while suggestions from evaluators and the community are

bound to be implemented. A major suggestion was to extend the tool

to actually penetrate the transformation authoring process (i.e. be-

yond the SAWSDL protocol and into XSLT and SPARQL), provid-

ing even more automation.

8. ACKNOWLEDGEMENTS
The authors would like to thank the undergraduate student Theodoros

Mylonides for his contribution. The Smart IHU project is funded by

Operational Program Education and Lifelong Learning, OPS200056

(International Hellenic University, Thessaloniki, Greece).

9. REFERENCES
[1] Christensen, E., Curbera, F., Meredith, G. and Weerawarana, S. 2001.

Web Services Description Language (WSDL) 1.1.
http://www.w3.org/TR/wsdl

[2] Tran, V. X., Puntheeranurak, S. and Tsuji, H. 2009, June. A new service
matching definition and algorithm with SAWSDL. In Digital
Ecosystems and Technologies, 2009. DEST'09. 3rd IEEE International
Conference on 371-376. IEEE.

[3] Iqbal, K., Sbodio, M. L., Peristeras, V. and Giuliani, G. 2008,
December. Semantic service discovery using SAWSDL and SPARQL.
In Semantics, Knowledge and Grid, 2008. SKG'08. Fourth
International Conference on 205-212. IEEE.

[4] Lécué, F., Gorronogoitia, Y., Gonzalez, R., Radzimski, M. and Villa, M.
2010, July. SOA4All: An innovative integrated approach to services
composition. In Web Services (ICWS), 2010 IEEE International
Conference on 58-67. IEEE.

[5] Gomadam, K., Verma, K., Brewer, D., Sheth, A. P. and Miller, J. A.
2005. Radiant: A tool for semantic annotation of Web Services. In
Proceedings of the 4th International Semantic Web Conference (ISWC
2005) Galway, Ireland - Demo Paper.

[6] Dimitrov, M., Simov, A., Momtchev, V. and Konstantinov, M., 2007.
WSMO Studio – a Semantic Web Services Modelling Environment for
WSMO, The Semantic Web: Research and Applications, LNCS, vol.
4519, 749-758. DOI=http://dx.doi.org/10.1007/978-3-540-72667-8_53

[7] Valle, E. D., Niro, G. and Mancas C. 2011. Results of a Survey on
Improving the Art of Semantic Web Application Development, The 7th
International Workshop on Semantic Web Enabled Software
Engineering Co-located with ISWC2011

[8] Jaeger, M., Engel, L. and Geihs, K. 2005. A methodology for developing
owl-s descriptions, in Proceedings of the 1st Int. Conf. on
Interoperability of Enterprise Software and Applications. Workshop on
Web Services and Interoperability. February 2005

[9] Gannod, G. C., Timm, J. T. and Brodie, R. J. 2006. Facilitating the
specification of semantic web services using model-driven
development. International Journal of Web Services Research
(IJWSR), 3(3), 61-81.

[10] Stavropoulos, T. G., Tsioliaridou, A., Koutitas, G., Vrakas, D. and
Vlahavas, I. 2010. System architecture for a smart university
building. Artificial Neural Networks – ICANN 2010, 477-482.

[11] Qiu, L., Chang, L., Lin, F. and Shi, Z. 2007. Context optimization of AI
planning for semantic Web services composition. Service Oriented
Computing and Applications, 1(2), 117-128.

[12] Thomson, G., Bianco, S., Mokhtar, S. B., Georgantas, N., and Issarny,
V. 2008. Amigo Aware Services. Constructing Ambient Intelligence,
385-390.

[13] Georgantas, N., Issarny, V., Mokhtar, S. B., Bromberg, Y. D., Bianco,
S., Thomson, G., ... and Cardoso, R. S. 2010. Middleware architecture
for ambient intelligence in the networked home. In Nakashima, H.,
Augusto, J. C. & Aghajan, H. (Eds.), Handbook of Ambient
Intelligence and Smart Environments. Springer.1139-1169.

[14] Stavropoulos, T. G., Vrakas, D., Vlachava, D. and Bassiliades, N. 2012,
June. BOnSAI: A Smart Building Ontology for Ambient Intelligence.
In Proceedings of the 2nd International Conference on Web
Intelligence, Mining and Semantics 30. ACM.

http://www.w3.org/TR/wsdl
http://dx.doi.org/10.1007/978-3-540-72667-8_53

