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Abstract. This paper presents a novel real-world application for energy savings in a Smart Building 

environment. The proposed system unifies heterogeneous wireless sensor networks under a Semantic Web Service 

middleware. Two complementary and mutually exclusive rule-based approaches for enforcing energy-saving 

policies are proposed: a reactive agent based on production rules and a deliberative agent based on defeasible 

logic. The system was deployed at a Greek University, showing promising experimental results (at least 4% daily 

savings). Although the percentage of energy savings may seem low, the greatest merit of the method is ensuring 

no energy is wasted by constantly enforcing the policies. 
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1. Introduction 

Contemporary information systems are rapidly undergoing various transformations, influenced by a multitude of 

emerging trends. One of these trends is Green Computing and the rise of the Smart Grid. Global warming, CO2 

emissions and energy waste have directed computing towards greener solutions on both hardware and software 

levels. At the same time, motivated by renewable energy sources and consumer-produced energy schemes, the 

idea of the Smart Grid refers to an infrastructure encouraging policies towards marketing and distribution of 

energy between producers, consumers, “prosumers” (i.e. producers and consumers) and brokers [1]. Conclusively, 

the concepts of sustainability and energy saving have penetrated all aspects of everyday life, including computing. 

Meanwhile, progress in microcontrollers, board computers and – particularly – smartphones brings forward a 

novel computing paradigm, called ubiquitous computing (ubiComp), where users are being surrounded by 

powerful, portable computing devices [2]. To take things even further, in pervasive computing (perComp), 

multiple non-intrusive computing devices are scattered across the environment, attracting little or none of the 

user’s attention. The vision of Ambient Intelligence (AmI) enriches perComp with Artificial Intelligence (AI) 

methodologies, aiming at increasing comfort and reducing intrusiveness for the user [2]. Towards this affair, 

intelligent behaviors, deriving from various areas of AI, such as Planning, Semantics and Reasoning, are typically 

employed for providing smart automations and intuitive human-computer interactions in such environments.  
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Unsurprisingly, AmI is heavily based on the widespread usage, performance and affordability of 

microcontrollers and wireless sensor networks, providing the essential environmental input data required by AI 

algorithms. Likewise, actions to be performed after the decision making process have to go through actuators in 

the environment in the form of motors, switches or other endpoints. Since both Green Computing and AmI are 

facilitated by the increased popularity and low cost of smart meters, environmental sensors, actuators and other 

devices, these features constitute the common grounds among the two disciplines. Also, both fields share similar 

goals, i.e. the vision of a comfortable but energy-efficient smart home. 

Although AmI domains of application may vary widely, targeting energy savings has yet been only marginally 

explored. Existing service-oriented approaches in conjunction with smart home equipment have not practically 

considered intelligence or savings, but rather the issue of communication protocol unification [3]. Multi-agent 

systems have been employed to provide enhanced functionality or service composition, but certain issues on truly 

interoperable semantic descriptions still persist [4]. A categorization of AmI application domains in Smart Homes, 

Health, Transportation, Emergency, Education and Workplace, can be found in [5]. Apparently, most approaches 

have ignored the aspect of energy saving and are instead focused on multimedia technologies, providing context 

awareness in smart homes or offices based on UPnP/DLNA multimedia streaming [6].  

This work presents a holistic approach to energy savings in a smart building belonging to a Greek Public 

University complex. The proposed approach lies in the intersection of many disciplines (AmI, Automated 

Reasoning, Semantic Web Services and Green Computing), facing challenges in each of the corresponding fields. 

More specifically, a set of state-of-the-art wireless sensors, actuators and smart meters has been deployed at the 

University premises. Heterogeneous sensor data and actuator functionality are both unified under a universal 

middleware based on the Service Oriented Architecture (SOA) [7] paradigm and the Web Service Description 

Language1 (WSDL) for syntactic interoperability. The middleware also complies with some of the latest Semantic 

Web [8] technologies, like Semantic Annotations for WSDL – SAWSDL [9], to provide semantic interoperability 

on the application layer.  

Towards achieving energy savings, two complementary and mutually exclusive rule-based approaches are 

proposed. Firstly, using production rules, domain experts are able to commit energy-saving policies maintained 

and applied by an autonomous reactive software agent. The second approach is, instead, based on a deliberative 

agent that incorporates a defeasible logic reasoner, greatly enhancing the expressiveness of the committed rule set. 

The application of defeasible reasoning [10] that offers a sophisticated conflict resolution mechanism is ideal in 

such environments with incomplete and contradictory information; in our approach three clusters of rules are 

defined: for preferences, maintenance and emergencies. Using the underlying infrastructure, the University’s 

yearly consumption has been observed to identify energy behavioral patterns. Consequently, energy-saving and 

comfort-providing policies have been authored and applied accordingly, showing promising results. Experimental 

evaluation showed that, although daily savings of more than 4% may seem trivial in such a large infrastructure, 

the policies do ensure that no energy is wasted in any undesired manner. 

The next section performs a thorough survey of state-of-the-art in the fields of context-aware applications, 

service-oriented middleware and the limited application of defeasible reasoning in AmI environments. Section 3 

presents the basic principles of defeasible logics, its main characteristics, its syntax and operational semantics as 

well as the motivation for applying defeasible reasoning in AmI and Smart Building management. The next 

section presents the architecture of the proposed system in three parts: hardware, middleware and application layer. 

The two proposed software agents that reside on the application layer are presented subsequently, followed by a 

real-world application use case scenario, a proposed policy and its experimental results in energy savings. Critical 

discussion, limitations, future work and conclusions are listed in the final sections. 
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2. Related Work 

The proposed system is built on a synergy of fields such as Ambient Intelligence, Smart Homes, Context-aware 

Systems, Green Computing, Semantics and Logic. Thus, this section attempts to present the most relevant of 

existing state-of-the-art, originating from any of the above viewpoints. It also tries to appoint the novelty of the 

proposed system to each respective work coming from one or more fields.  

2.1. Rule-based Context-aware Systems in AmI 

A common task amongst many AmI systems is to address context awareness, by providing automatic service 

composition on demand. A thorough survey of such work can be found in [11]. However, we consider the policy 

definition process as more fundamental. Automatic service composition offers the means to achieve a certain goal, 

but it does not define the goal itself or when to execute this series of actions. Hence, rules and triggers must come 

prior to composition, leaving the latter outside the scope of this work. Agents in state-of-the-art approaches 

frequently participate in the Web Service composition process, while in this work agents are self-contained 

entities that perceive and manage the environment. 

On the other hand, certain paradigms indeed address context-awareness by following rule-based methodologies, 

such as the work in [12]. The authors have developed the Event-Control-Action (ECA) model, an architectural 

pattern for expressing context-awareness. According to this model, an “Event Module” is responsible for 

gathering context information i.e. facts, a “Control Module” formulates rules about these facts and an “Action 

Module” executes activated rules. To properly author ECA-rules, the proposed ECA domain language, ECA-DL 

[13], offers expressiveness (via the use of logical and arithmetical operands) and extensibility. To realize this 

higher level of expressing context information, ECA-DL integrates a UML-based representation model that 

defines a hierarchy of entities and relationships among them. The Java-based JESS2 reasoner was chosen as the 

rule engine, while the authors proposed a mapping from ECA to the JESS syntax. There is a direct analogy 

between the two architectures: instances of context-information in ECA correspond to facts in the working 

memory of JESS, while ECA-DL rules directly correspond to JESS defrules. Additionally, the hierarchy and 

relationships between instances defined in the ECA model can be expressed in deftemplates, i.e. JESS structures 

for describing complex facts.  

In comparison to our Smart IHU system, the ECA model can be seen as an optional rule-authoring meta-level. 

Both works address the concepts of context-awareness and, more generally, ubiquitous and pervasive computing. 

However, our proposed system focuses on energy savings and builds upon an AmI infrastructure of sensors, 

actuators and Semantic Web Services, while ECA-DL has not been deployed in such a practical manner. 

Additionally, the meta-level of ECA rule representation is considered rather redundant, since the JESS language 

itself provides sufficient expressiveness and extensibility. Moreover, ECA’s representation model is fairly inferior 

to an ontology, which already provides querying mechanisms and significantly higher expressiveness. Instead of 

applying a UML-based model, our approach refers to our representation model, an OWL ontology, via semantic 

annotations on Web Service descriptions. Hence, instead of building a heterogeneous system that maps rules to 

ontological constructs, ontological entities are inserted into rules on-the-fly using SAWSDL. Finally, both works 

use JESS as an execution engine, but our approach offers higher expressiveness, integrating defeasible logic as 

well as the corresponding defeasible reasoner SPINdle (see Section 4.6). 

Work by [14] employs a case-based reasoning (CBR) agent, Web Services and ontologies towards achieving 

energy savings. The CBR agent is placed within a multi-agent platform, along with a second agent responsible for 

data mining and a third one for invoking Web Services. The complete system is deployed over cloud services to 

enable remote reasoning. Data regarding temperature, humidity, luminance, CO2 levels and consumption are 

collected over Web Services, parsed and placed within a domain ontology. The sensor deployment for data 

collection contains three ZigBee networks of forty devices in total. Then, each data instance is reasoned upon, to 

investigate similarities with previously known cases. Evaluations show that the architecture can effectively 
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assimilate around 40% of cases, which then do not need to be handled by the backend server. The authors also 

claim that an energy saving percentage of approximately 22% is achieved. 

Our proposed system demonstrates many similarities with the work by [14], but also numerous key differences. 

Both approaches deploy large wireless sensor networks that measure environmental values and energy 

consumption. Also both lines of work employ one or more agents capable of reasoning based on different logics, 

in order to achieve energy savings. Finally, both approaches employ the use of Web Services and SOA standards 

(WSDL/SOAP). On the other hand, our deployment is technically far richer, containing ZigBee, Z-Wave and RF 

(and potentially any other) communication protocols. These protocols are unified under the Web Service 

middleware, which is the main role of services in this work, placing it in an AmI ecosystem with other coexisting 

applications. For the same interoperability purposes, semantics are defining service operations instead of data. On 

the other hand, [14] basically employs Web Services to perform remote procedures, such as transforming 

syntactical data to semantic constructs and storing them. In other words, the main purpose of Web Services in [14] 

is the operation of the system over the cloud. As far as our work is concerned, the use of cloud services is merely a 

technical matter that resolves computing and storage resource issues, which in our case are irrelevant; outsourcing 

computation over the cloud does not affect the methodologies used, but rather the location of resources.  

Moreover, in [14] it is unclear how decisions are applied to achieve energy savings and it is equally unclear 

how these energy savings are measured. We argue that savings should be measured relatively to carefully selected 

periods of time, since consumption is very context-sensitive, especially in large-scale. Major fluctuations occur 

between different seasons, times of day and daily events. We state the energy saving percentage compared to a 

daily average of yearly consumption and have determined exactly where these savings come from to make sure 

it’s not incidental. Secondly, the proposed system guarantees that, given the policies, a variable degree of savings 

can be achieved by prohibiting unnecessary devices from turning on. The lower bound of the saving is achieved 

when the building already presents an energy-efficient behavior (minimum saving margin) and its upper bound is 

achieved when the building presents its maximum energy-wasting behavior (maximum saving margin).  

Another analogous project, called SESAME-S [15], also presents many similarities to the presented work. 

SESAME-S is a partially commercial and partially research project with deliverables aiming at an all-in-a-box 

smart home platform. The system architecture revolves around a microcontroller that interfaces between wired 

smart devices, sensors and actuators and user endpoints. Deployed sensors measure temperature, humidity, 

luminance and energy consumption, while actuators control heating, cooling, water supply and power. Live data is 

collected over the LAN router and propagated over Ethernet or Wi-Fi to local and remote terminals, where it is 

stored in an OWLIM repository [16] in the form of RDF triples. Additionally, the system stores policies as SWRL/ 

SQWRL rules [17], performs reasoning and executes them using JESS. Rules are committed by both home and 

power users through a Web application. Home users are able to enter any rule or choose from pre-built 

recommended rules, based on past test-bed experiments. Power users, i.e. administrators and domain-experts, are 

able to view the raw, semantic rule format and the rules they insert have a higher significance, being executed 

after any home automation rules, in order to enforce the desired final state of appliances. To support the above 

functionality, SESAME-S entails the use of three custom ontologies: (a) the Automation Ontology models policies, 

activities, appliances, sensors, locations and thresholds, (b) the Meter Data Ontology publishes meter data in 

compliance to the DLMS/COSEM specification, and, (c) the Pricing Ontology models usage tariffs and selection 

criteria for the system to allocate appliances to proper time slots, in the spirit of Smart Grids. The final test-bed 

embeds all hardware in a metal suitcase and has experimentally been used in a few buildings. Finally, it has been 

estimated that the adoption of such a system may lead to approx. 20% reduction in energy consumption. 

In contrast to SESAME-S, our work presents many developments on all levels. At the infrastructure level, the 

Smart IHU architecture supports many wireless device platforms, unified under the aWESoME-S web service 

middleware, like Plugwise, Prisma sensor boards, CurrentCost and various other manufacturers under the Z-Wave 

alliance (see Section 4.2 for further information). Additionally, due to the nature of the semantic service 

infrastructure, devices can be scattered across buildings in a fully distributed deployment, instead of embedding 

everything in a box. Another major difference is SESAME-S’s lack of storing all data in an ontology for reasoning. 

Instead, Smart IHU attaches semantics to Web Services using the SAWSDL standard, allowing any Web client, 

human or software, to access the semantics of sensor data and actuator functions. Furthermore, the use of 



defeasible reasoning in Smart IHU allows for a more user-intuitive design of rules and an inherent prioritization 

and conflict resolution between them. This method avoids the “brute-force” application of all rules in priority 

order that occurs in SESAME-S, improving the user experience and saving computing resources. Finally, due to 

SESAME-S’s current experimental and constrained state, energy saving results constitute merely user predictions, 

while the Smart IHU platform already presents actual savings on its large-scale building-wide deployment. 

2.2. Middleware for AmI 

Implementing a middleware has been indeed one of the leading approaches to decouple AmI applications from the 

physical layer. Examples of existing middleware for enabling AmI applications include the work in [18], where a 

middleware provides higher level functionalities, such as user presence detection and user profiling. Sensor fusion 

and analysis are also performed within the middleware to provide presence detection and deliberate about energy 

management by actuators. Contrasted, the middleware utilized in this work focuses on integrating a variety of 

devices deployed at a larger scale. It focuses on basic functions and real-time enablement of AmI, leaving analysis 

and deliberation for the higher level components. It also defines semantics for higher level interoperability. Other 

approaches, such as [14], use middleware to obtain access and benefit from cloud services. The work in [19] also 

uses cloud services as well as a middleware for generic communication between devices. The cloud does provide 

easy access to large computational and memory resources for online analysis. However, in this work, the 

middleware is oriented towards operating the actual AmI environment in a semantically well-defined manner. 

Naturally, all state-of-the-art middleware is unique supporting different sets of devices, e.g. ZigBee, Z-Wave etc., 

while earlier approaches were more focused on X10, UPnP, Lonworks etc. [20]. Our middleware is also tailored 

to our specific set of devices from a technical point of view. A much more detailed survey of existing middleware 

can be found in [21]. 

Much work has also been invested in the adoption of semantic annotations on the middleware level. The 

majority of previous existing work has been focused on complex top-down approaches such as the OWL-S and 

WSMO ontologies, extending them to describe a service. A survey on such work can be found in [11]. The current 

tendency, however, is to switch to lightweight, bottom-up approaches, such as SAWSDL and WSMO-Lite. 

Although, convergence to a single standard has yet to occur, SAWSDL is recommended by W3C and offers many 

advantages. The annotations in SAWSDL are placed into the WSDL itself, which is a functional API, very 

popular among research and industry. Additionally, despite its low complexity, it has been found sufficient to 

serve as a basis for selection, matching, discovery and composition of services [22]. Hence, the proposed system 

makes use of the SAWSDL standard for defining and exploiting semantic interoperability on services.  

Other approaches include the AmIi middleware in [23], which builds an additional layer of abstraction on top 

of WSDL, OWL-S and SAWSDL, translating service descriptions to its own format. Likewise, the Hydra 

middleware for AmI [24] uses an internal, similar representation to SAWSDL. On the contrary, services presented 

in this work solely utilize the universal standard of SAWSDL, in order to retain maximum and direct 

interoperability across the Web Service community and outside the borders of the system. 

2.3. Defeasible Logic in AmI 

To the best of our knowledge, only the work by [25] investigates the deployment of defeasible logics in an AmI 

setting. In their work, the authors propose a distributed reasoning approach based on the representation of context 

knowledge shared by the ambient agents in the environment. Taking into consideration the highly dynamic nature 

of the setting, defeasible logic is proposed as the basis for representing the context knowledge possessed by each 

agent (i.e. the agent’s local rule base). Additionally, defeasible logic is also applied for resolving the potential 

conflicts that arise from the information exchange between the agents. More specifically, the authors introduce an 

extension to defeasible logics, called Contextual Defeasible Logic (CDL) [26]. The latter serves as a contextual 

reasoning model that leverages the challenges posed by the dynamic nature of the AmI environment using the 

concepts of context, mappings and contextual preferences. Compared to the work presented above, our proposed 

Smart IHU approach demonstrates apparent similarities: both approaches are designed for AmI environments and 

both of them apply defeasible reasoning in real-life, practical applications. 



On the other hand, there are three important differences between the two works. We present a holistic approach, 

which includes deployment of the proposed reasoning model in a real environment, while [25] focuses only on the 

properties of the reasoning model and does not present its implementation. A second difference lies in the diverse 

areas – within each system – where defeasible reasoning is applied. More specifically, [25] applies defeasible 

reasoning as a means for handling conflicts caused by the integration of data from different sources. Contrasted, 

our approach investigates the application of Defeasible Logic as a tool for supporting the end-user in representing 

his/her energy management scheme more effectively and improving the expressiveness of the authored policies. 

Finally, the Smart IHU approach follows a centralized architecture, where a central server is responsible for 

collecting the data from the sensor network and for performing the reasoning. On the other hand, [25] presents a 

fully distributed architecture, arguing that such a model better suits environments where context changes may be 

frequent, device connection can prove troublesome and wireless communications are unreliable and restricted by 

the range of the transmitters. The different application domains (ambient-assisted living vs. energy consumption 

monitoring) and the different ways in which priority information is represented (preferences on data sources in 

[25] vs. priorities on rules in our work) constitute two secondary differences of the two works. 

3. Defeasible Logics 

This section describes the basic characteristics of defeasible logic, its syntax and operational semantics as well as 

the underlying motivation for applying defeasible reasoning in the context of Ambient Intelligence and Smart 

Building management. 

3.1. Main Characteristics 

Defeasible logics [10] stem from research in knowledge representation and inheritance networks in particular. In 

this context, defeasible logics can be seen as inheritance networks, expressed in a logical rule language.  

Belonging to the family of non-monotonic logics, defeasible logics deal with conflicts and inconsistencies 

among knowledge items. Conflicts between rules are triggered by a conflict among their conclusions. The 

simplest case is that one conclusion is the negation of the other. However, more complex cases may arise, when 

conclusions are declared as mutually exclusive, a very convenient representation feature in practical applications 

that will be further examined later on. 

Defeasible logics are sceptical in the sense that conflicting rules do not fire, preserving the consistency of the 

drawn conclusions [27]. Conflicts among rules are typically resolved via rule priorities, which constitute an 

additional representational feature of defeasible logics. 

The main advantage of defeasible logics is their low computational complexity [28], which is achieved through: 

 the local nature of conflicts; 

 the fact that the logics are sceptical, as mentioned above; 

 the absence of disjunction; 

 the use of unidirectional rules; 

 the local nature of priorities – only priorities between conflicting rules are used. 

Undoubtedly, these restrictions come at the price of reduced expressive power, compared to other non-

monotonic reasoning approaches. However, despite its conceptual simplicity, defeasible logic appears effective in 

the representation and execution of a variety of practical problems, like, e.g. recommender systems [29], UAV 

navigation [30] and elevator control [31]. 



3.2. The Language 

A knowledge base in defeasible logic is called a defeasible theory (let’s represent it by ) and consists of three 

basic elements: a set of facts (), a set of rules () and a superiority relationship (>). Therefore,  can be 

represented by the triple (, , >). 

In defeasible logic, there are three distinct types of rules: strict rules, defeasible rules and defeaters.  

 Strict rules are denoted by A → p and are interpreted in the typical sense: whenever the premises are 

indisputable, then so is the conclusion. An example of a strict rule is: r1: summerTime → tempHigh (“the 

temperature is high during the summer time”). 

 Defeasible rules are denoted by A  p and, contrary to strict rules, they can be defeated by contrary evidence. 

Two defeater examples are: r2: tempHigh  switchOnCooler (“the cooler is typically turned on when the 

temperature is high”) and r3: highConsumption  ¬switchOnCooler (“the cooler should not be turned 

on whenever there is high energy consumption”). 

 Defeaters are denoted by A  p and they do not actively support conclusions, but can only prevent deriving 

some of them. In other words, they are used to defeat respective defeasible conclusions, by producing 

evidence to the contrary. A defeater example is: r2’: isOnCooler  ¬switchOnCooler (“when the cooler 

is on, there is no need to turn it on again”), which can defeat e.g. rule r2 mentioned previously. 

The superiority relationship is used for resolving conflicts among rules belonging to the rule set . For 

example, given the defeasible rules r2 and r3 above, no conclusive decision can be made about whether the cooler 

should be turned on or not. But, if the superiority relationship r3 > r2 is introduced, then r3 overrides r2 and we 

can eventually conclude that the cooler will not be turned on. In this case rule r3 is called superior to r2 and r2 

inferior to r3. Note that the relation > on  is acyclic, meaning that the transitive closure of > is irreflexive. 

Finally, another important element of defeasible reasoning is the notion of conflicting literals [32], a feature 

that plays a significant role in our framework as well.  is defined as a set of conflicting literals if-f at most one 

literal of the set should be derived each time. Obviously, if p is a proposition then {p, ¬p} is such a set of 

conflicting literals. However, in real-life applications there are various other kinds of sets of conflicting literals, 

which cannot be represented merely by a proposition and its negation. Such an example might be the distinct 

values a variable could take, like, e.g. {on, off}, {hot, warm, cold} or {high, medium, low}. Whenever there are 

three or more values, representation by just propositions and their negations becomes impractical and 

counterintuitive. Thus, a sample conflicting literal set might be: 

 = {switchOnCooler, switchOffCooler} 

According to set  above, the following two rules will produce a conflict, which is resolved via the superiority 

relationship r4 > r2 and, thus, the conclusion of the latter rule will override the conclusion of the former one. 

r2: tempHigh  switchOnCooler (“the cooler is typically turned on when the temperature is high”) 

r4: ¬motion  switchOffCooler (“the cooler should be turned off if there is no motion inside the room”) 



3.3. Motivation for using Defeasible Logics 

Besides its evident advantage of low computational complexity (see Section 3.1), the motivation behind 

applying defeasible logic instead of classical logic involves certain additional incentives. Firstly, classical 

reasoning approaches, like e.g. First Order Logic, are based on the assumption of perfect knowledge of the 

environment, which is very difficult, if not impossible, to achieve in AmI settings. Reasoning with incomplete 

information regarding the context is significantly more convenient with non-monotonic approaches [33]. 

Additionally, defeasible logic is much closer to human reasoning and is, therefore, more intuitive. The use of 

classical logic would require that the truth status of all pieces of information is known, before commencing the 

reasoning process. But, as human knowledge is quite often incomplete or even contradictory, this requirement 

cannot be always satisfied. Defeasible logic introduces non-monotonicity, which leads to a more intuitive type of 

reasoning, where the emergence of new information can lead to abandoning (i.e. defeating) previously established 

conclusions and adopting new ones. 

A further motivating factor for using defeasible logic is the conciseness of its representation. Defeasible logic 

does not promise to do more than other logics, but, instead, as Covington states, “[...] the difference is in how it 

does it” [34]. Consequently, while classical logic would probably need extensive representations for expressing all 

possible exceptions to a rule, defeasible logic can simply add a more specific rule that overrides the former rule 

and expresses exactly the same information. 

4. Implementation 

The framework proposed in this work is applied at a Greek State University, namely Building A of the 

International Hellenic University (IHU). The rule-based system is a component of a wider AmI system, aimed to 

 
Figure 1. The Smart IHU overall architecture, showing two server instances and all applications. 

 



provide automations, comfort and savings, named the Smart IHU project3. This section presents the overall 

architecture of the proposed system within Smart IHU and describes each of its components in detail. 

4.1. Architecture 

The generic architecture of the Smart IHU environment follows a three-layer approach (see Figure 1). The 

bottom layer hosts the hardware, namely, the wireless sensor and actuator networks deployed within the building. 

A service-oriented middleware is responsible for handling platform and data heterogeneity present at the hardware 

layer. The devices are also distributed in the environment, so that each cluster of co-located devices is allocated to 

a server running an instance of the Web Service middleware. Finally, client applications can receive data and 

operate on the infrastructure via one or more instances of the middleware on the various servers. Where necessary, 

applications provide a graphical interface to communicate with human users. Services additionally provide 

semantically annotated descriptions in SAWSDL and a broker for effective and automatic discovery. 

In the specific case of rule-based systems introduced in this work, the application layer hosts intelligent agents 

that automatically monitor and manage the infrastructure (see Section 4.4). Each agent integrates a knowledge 

base and a reasoning engine. The knowledge base is filled with facts about the world, i.e. measured values of the 

environment, but also contains policies in the form of rules, entered by expert human users. After collecting the 

facts at each cycle, the agent performs reasoning, in order to decide on a proper set of actions, according to the 

policies. The agents are also accompanied by graphical user interfaces (GUIs). 

4.2. Hardware Layer – Deployment of Wireless Sensors and Actuators 

The hardware layer of the proposed system mainly hosts a wide range of sensors for perceiving and actuators for 

manipulating the environment. A first requirement for selecting a set of sensors was to examine which parameters 

would be suitable for composing and enforcing decision-making policies. Such parameters should include 

environmental qualities, power measurements and user-activity metrics. Additionally, the target large-scale 

deployment calls for devices that can form wireless networks of sufficient range and are affordable in large 

quantities. Consequently, a further substantial requirement was to build the platform over devices that are 

inexpensive and widely-available in the market. 

The set of chosen devices is believed to satisfy the trade-off between cost and efficiency. The first set of 

deployed devices is a sensor/actuator network, referred to as Smart Plugs4. Each Smart Plug is plugged in-between 

a wall socket and any electronic appliance and can measure its power consumption, return its power state (on or 

off) and switch it on or off. A special kind of Smart Plugs, intended for non-pluggable appliances, e.g. air 

conditioning, can intersect power supply cables to carry out the same operations. From now on, both kinds will be 

referred to as Smart Plugs to preserve generality. Each network of maximum thirty Smart Plugs, interconnected 

over encrypted ZigBee, has a single coordinator that gives access to the network’s data and functions. The current 

deployment consists of forty-five plugs, divided into three plug networks. 

While Smart Plugs cover small-scale, per appliance power measurements, Smart Clampers5 are designated to 

measure large-scale consumption, i.e. whole departments or buildings. The Clampers are attached to main power 

supply cables and measure consumption via induction. In this deployment, two three-phase clampers are placed at 

the building’s main power supply and one at the data center, the University’s server room. Hence, the sum of the 

first two clampers measures the total building consumption (including the data center), while the third clamper 

measures the data center’s consumption. All clampers transmit their measurements to a single monitor/receiver 

with a PC-interface, over simple radio frequency (433MHz SRD band).  
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4 Plugwise: http://www.plugwise.com 
5 Current Cost: http://www.currentcost.com/ 



The third set of devices enables indoor and outdoor environmental monitoring. Twenty Sensor Boards6 form 

another ZigBee mesh network and report temperature, luminance and humidity measurements to two designated 

ZigBee-to-TCP/IP Gateways. The Sensor Boards are fully customizable via coding their microcontroller. To 

maximize battery life, the period for measurement transmission has been set to ten minutes. Additionally, they 

have been configured not to act as routers, transforming the network topology from mesh to star. Thus, they are 

able to enter sleep mode in-between transmissions, which is critical, again, for extending battery life. 

The final set of devices complies with a different wireless communication protocol, especially designed for 

smart spaces, the Z-Wave protocol. The Z-Wave alliance supports extensive interoperability between all 

                                                           
6 Prisma Electronics: http://www.prismaelectronics.eu 

 
Figure 2. Topology of Wireless Sensor Networks on the ground floor of the building. 

 



compliant devices. In fact, almost every device in a network comes from another manufacturer. A USB Stick is set 

as the network coordinator and PC interface. The mesh network of sensors comprises of fourteen motion detection 

sensors, four smoke alarms, a multi-sensor (for temperature, luminance, humidity and motion) and air quality 

sensors that measure CO2 levels. More devices are instantly supported at communication protocol level and could 

possibly be added in the future, e.g. door or window sensors, to further enrich automation scenarios. 

Figure 2 presents the exact placement of sensors, actuators and web servers in the building. To satisfy wireless 

range restrictions, two clusters of networks mainly exist in the building, each administrated by a collector server. 

The first cluster is found at the southern part and includes Rooms A5, A6, the data center, Lecture room 1, the 

Hall and the Study Room. The second cluster is visible at the eastern part of the building and includes the 

Reception, Rooms A1, A2, A3, A4 and the two Computer Labs. Each cluster has its own Sensor Board star 

network and a corresponding gateway collector. The first cluster is appliance-rich, so it contains two overlapping 

Smart Plug networks, while the second cluster only contains one. The Z-Wave network features fewer nodes and 

longer range so it spans across both clusters. The building’s power supply is close to the first cluster, so the Smart 

Clamper receiver is assigned to it. Sensor Board data can also be received by both clusters over IP, so the second 

server was chosen due to its lower load. Each cluster has a web server to collect and expose data and functions, as 

described in the next section. 

4.3. Middle Layer – aWESoME-S Web Service Middleware 

Possibly the key challenge for AmI applications is to find the common grounds for high-level programming of 

different tasks and activities. In other words, low-level hardware programming of a diverse variety of sensors and 

actuators needs to be transparent on the upper (application) layer. Wireless sensor network management, topology 

and properties need to be transparent as well. Devices enforce various constraints, such as data format 

heterogeneity and platform-specific APIs. Applications, on the other hand, require universal, platform-agnostic 

access to device functions and data. In a large, distributed environment, such as a Smart Building, universal and 

remote access also needs to be ensured. Additionally, in such environments, devices dynamically enter and leave 

the space and this is a non-trivial parameter that has to be seriously taken into consideration.  

With the rise of Service-Oriented Architecture and Service-Oriented Computing, ambient applications found a 

suitable paradigm that tackles all the aforementioned requirements. Service-orientation follows the principle of 

“services instead of data”, hiding data and functions behind a universal API. Thus, internal application logic is 

transparent to the service client. In this case, hardware or software related services in the environment provide the 

necessary abstractions from device topology and function. Additionally, services allow for universal service-

clients on any platform and in any programming language. Platform-dependent device operation is performed, 

regardless, on the server-side. 

To realize the Smart IHU platform, we used the aWESoME middleware which we introduced in one of our 

previous works [21]. aWESoME is a service-oriented middleware that follows well-defined Web standards, 

providing access over WSDL services to every device operation on the hardware layer. Since WSDL provides 

syntactic interoperability, services are usable even outside the borders of this system. This work presents the 

aWESoME-S enhancement over the existing middleware that features SAWSDL semantic annotations to support 

the required higher-level intelligence. The so-called Semantic Web Services expressed in SAWSDL are machine 

interpretable and can be utilized for automatic discovery, selection, matching and composition. Table 1 provides a 

comprehensive list of service operations available, along with their semantic annotations (SAWSDL Model 

References). The Smart Building concepts, environmental parameters and devices featured in the BOnSAI 

ontology [35] were used for the annotation. The semantic description of device capabilities constitutes an added-

value addition that further enhances dynamicity and interoperability. 

Apparently, different services host similar operations, as different sensors provide the same environmental 

measurements. Semantic annotations help applications handle these operations similarly, e.g. a temperature 

reading is provided by both SensorBoardService and ZWaveService. Also, sensor operations are distinguished 

from actuator operations, which bear an object property of ‘hasEffect’ on the status of devices. Finally, note that 



different instances of the same services are hosted by more than one server in the environment, as detailed 

previously in our sensor network deployment. 

The communication and information exchange paradigm of aWESoME-S is essentially pull-based instead of 

push, for two major reasons. First of all, Web Services, which constitute the middleware’s API, are inherently 

pull-based, i.e. they have to be invoked to respond. The middleware has to unify and aggregate three different 

communication paradigms under a common one. Z-Wave devices do provide push (i.e. publish/subscribe or event-

based) communication, while SmartPlugs are pull-based and SensorBoards push data on a periodic (not event-

based) basis. Consequently, the common paradigm emerging here is indeed pull-based for all devices, by 

gathering data from push-based devices. As a trade-off, loss of timing precision occurs here as pulling clients are 

not immediately informed for data changes, like e.g. motion detection. If push communication was a requirement, 

an additional layer on top of aWESoME-S could virtually transform pull-based to publish/subscribe 

communications, but this would not alleviate the overhead of actual frequent internal pulling. Secondly, pushing 

does introduce its own overhead of e.g. maintaining a long, dynamic list of clients [36]. Apparently in our case, 

pulling introduces a smaller overhead. To investigate even further, clients handling emergencies could be hosted 

right on top of devices that do support pushing. However, such clients would bypass the middleware and miss out 

on its benefits, i.e. communication with the rest of the system. All in all, we chose to minimize overhead by 

unifying all communications as pull-based and handle loss of timing precision by frequently pulling data when 

needed. Response times will be further discussed in the experimental section. However, it should be noted that the 

nature of our application is energy-saving and not emergency alerts, so responding rapidly to sensor readings is 

not a key requirement. 

Another aspect of aWESoME-S is supporting error handling and quality of information. Firstly, aWESoME-S 

services support the service fault protocol, generating custom faults (much like exceptions) to be handled on the 

client-side. This way, the clients become aware of hardware or software failures on the middleware/hardware side. 

Furthermore, all services actually offer additional variants of the operations (not listed here for brevity reasons) to 

ensure that observations are up-to-date. Specifically, each operation variant returns either (a) just the observations, 

(b) the observations together with timestamps, or, (3) the observations that satisfy a certain freshness threshold. 

The agents presented in this work mainly utilize the latter method, in order to guarantee that observations are up-

to-date. All in all, the middleware supports the necessary Quality of Context attributes for this setup, as defined in 

[37], such as up-to-dateness. Meanwhile, hardware failures that induce false readings have yet to occur in our 

Table 1. List of service operations available in the environment. 

Service Operation Output Semantics Operation Semantics 

SmartPlugService SwitchOn hasEffect:Status ActuatorOperation 

SmartPlugService SwitchOff hasEffect:Status ActuatorOperation 

SmartPlugService GetPower Power SensorOperation 

SmartPlugService GetStatus Status SensorOperation 

SmartClamperService GetPower Power SensorOperation 

SensorBoardService GetTemperature Temperature SensorOperation 

SensorBoardService GetHumidity Humidity SensorOperation 

SensorBoardService GetLuminance Luminance SensorOperation 

SensorBoardService GetBatteryLevel BatteryLevel SensorOperation 

ZWaveService GetMotion Motion SensorOperation 

ZWaveService GetCO2 CO2 level SensorOperation 

ZWaveService GetTemperature Temperature SensorOperation 

ZWaveService GetHumidity Humidity SensorOperation 

ZWaveService GetLuminance Luminance SensorOperation 

ZWaveService GetSmoke Smoke Alarm SensorOperation 

ZWaveService GetBatteryLevel BatteryLevel SensorOperation 

 



setting. Hence, the respective Quality of Context aspects, such as probability of correctness and trust-worthiness, 

were not considered (i.e. sources are 100% reliable). Fuzzy reasoning under uncertainty, which could handle such 

issues, extends beyond the scope of this work. 

4.4. Application Layer 

The syntactic and semantic interoperability provided by the middle layer (see previous section) supports a variety 

of platform-independent applications on the topmost layer of the infrastructure. Applications developed so far 

cover all major platforms and serve many different purposes. A desktop application enables comprehensive 

monitoring and management of the complete infrastructure. System administrators are able to monitor all real-

time and historic data in graphs. Additionally, they can invoke actuator operations and manipulate the building’s 

energy consumption, thus enabling savings through decision making [38]. An Android mobile application enables 

the same administrative functionality. Various other applications enable querying the service registry using 

semantic criteria, i.e. service selection, discovery and matching. History-monitoring clients mentioned above are 

not presented here, since they are outside the scope of this work. However, their monitoring capabilities have been 

used to observe and design the energy-saving policies applied by the rule-based systems. 

This work focuses specifically on presenting two complementary and mutually exclusive rule-based agent 

approaches for automatic and effective energy management, both of which are designed to act autonomously 

based on an initial rule base and input from sensor readings. The first agent, called Wintermute, represents an 

initial attempt to using production rules, while the second agent, called DeL, evolves the approach one step further, 

using defeasible logics (see Section 3). Each is presented in the corresponding sections that follow.  

4.5. Reactive Agent (Wintermute) 

Wintermute represents the first agent implemented and integrated into the architecture. The initial requirement 

analysis is aiming at an intelligent agent system that incorporates user knowledge and, from then on, acts 

autonomously to achieve the energy-saving objective. The following functional requirements have been set: 

a. The agent must be able to maintain a knowledge base, which will serve as its own internal representation of 

the world’s state. This information will have to be acquired through the middleware’s Semantic Web Service 

interface. 

b. The agent must be able to perform reasoning on the world state and apply the derived decisions towards 

modifying it accordingly, by invoking the Semantic Web Services. 

c. The agent must be able to communicate with human users and/or other software agents to exchange 

information or negotiate actions. 

Additional non-functional requirements to be considered include reliability, fast performance, satisfactory 

response time, extensibility, usability and interoperation with other already active client applications. 

Different AI methodologies, such as learning, can be employed to automate the decision making process of 

such a system. In this approach, we chose to embed a rule-based expert system into an intelligent agent residing 

on a multi-agent platform. Expert systems traditionally comprise of two parts: (a) the knowledge base, which is a 

dynamically changing repository of known facts and rules, and, (b) the inference mechanism that performs 

reasoning on the knowledge base using principles of a formal logic. 

Facing the above challenges, a multi-component architecture (see Figure 3) consisting of closely connected 

modules has been adopted to manipulate the Smart IHU environment. Like every other application on the Smart 

IHU platform, Wintermute is built on top of the already established middleware and hardware layers. The 

aWESoME-S middleware exposes all data and functions through Web Services, providing the necessary 

abstractions for Wintermute to manipulate the environment. The multi-agent platform hosting Wintermute is 

JADE7. It is, hence, possible for JADE to host multiple Wintermute instances running simultaneously, each of 

                                                           
7 Java Agent Development framework – JADE: http://jade.tilab.com/ 



which can bear a different portion of the knowledge base and be assigned a different subset of tasks. For example, 

each Wintermute instance could be assigned the energy management policies for a different room. However, this 

work does not yet involve agent negotiation and collaboration techniques and, thus, from now on we consider a 

single instance of Wintermute responsible for all aspects of energy saving within the building. 

Wintermute’s GUI component provides a connection between the system and human user administrators. The 

GUI is semantically-enabled, using information from semantic service descriptions to help users author policies, 

which are later committed to the Wintermute agent’s knowledge base. The application is developed in Java and 

the JavaFX UI platform. A primary purpose is to allow and facilitate users to author rules that represent user-

defined energy-saving policies. Towards this end, the tool parses Semantic Web Service descriptions (SAWSDL 

files) of the services available in the Smart IHU environment. These machine interpretable semantic descriptions 

enhance the effectiveness, scalability and ease-of-use of the application. Specifically, each service operation is 

either annotated as ActuatorOperation or SensoryOperation (Table 1), both subclasses of the Operation ontology 

class. Operations annotated with SensoryOperation belong to sensors and retrieve sensory output. Hence, a direct 

convention can be made, that all sensory operations are suitable to be used as rule condition predicates (LHS), but 

are completely unfit for rule actions (RHS). Similarly, service operations annotated with ActuatorOperation are fit 

for rule action predicates. As a result, the application is aware, at any given time, about which operations should 

be presented during the condition (rule body) or action (rule head) authoring process of a rule. This also enhances 

the extensibility of the application, when adding completely new services, and its adaptability, as service 

providers interleave the ambient environments. To implement the service description parser, we used the 

easyWSDL toolbox8.  

Figure 4 shows the main window of Wintermute’s GUI. The right panel shows a collection of rules loaded in the 

workspace, while the left pane allows authoring or editing an existing rule. Semantic properties of services are 

loaded in a dropdown box in order for the user to select available conditions or actions dynamically. Additionally 

to rules, the GUI also provides the agent with configuration properties, such as the time interval for the monitoring 

loop. Users can set a monitoring period in real time according to the urgency of policies. When a high sampling 

frequency is selected, the agent is fast and responsive, while a low frequency gives room to other service client 

applications running concurrently. 

                                                           
8 The easyWSDL toolbox: http://easywsdl.ow2.org/ 

 
Figure 3. Wintermute agent architecture. 



The rule inference engine in the core of Wintermute is JESS. The agent’s knowledge base is filled with facts 

and rules about the state of the building, environmental-, power- and energy-wise. Rules are authored by the user 

over the GUI and represent energy saving or user comfort policies. The agent semantically parses these rules and 

monitors aspects of interest that they may contain. A rule’s conditions correspond to specific measurements that 

translate to particular sensors, e.g. a room’s temperature sensor. The Monitor module periodically invokes the 

corresponding Semantic Web Service operations, through the Service Client, according to the sampling frequency 

set in the GUI. Responses are inserted as facts to the Knowledge Base. This way, the agent does not have to 

constantly monitor the entire infrastructure, thus, saving traffic load on the Web Server. The monitored values 

take the form of deffact constructs in the knowledge base that represent a model of the current knowledge about 

the world’s state, while rules are represented as JESS defrule constructs. For instance, a rule for switching off the 

cooler when the temperature is below a given threshold would be expressed as follows: 

(defrule ruleTemp 

(status 99678C on)  

(temperature 8C3C0A ?x0)  

 
Figure 4. Both images illustrate the Wintermute GUI and its rule editing capabilities: rule conditions and actions 

can be manipulated accordingly in a user-friendly manner (top) while the user is able to select conditions and 
actions from a dropdown list, dynamically retrieved from semantic web service descriptions (bottom).  

 



(test (< ?x0 25)) 

=> 

(call SwitchOff 99678C) 

) 

where 8C3C0A and 99678C are the IDs for the temperature sensor and cooler actuator, respectively.  

At the same time, the JESS inference engine checks for activated rules by matching patterns. Upon activation, 

actuator web services are invoked to apply the appropriate actions. Since, even with numerous actuators on 

various appliances, the platform is still much less flexible than a human being, email alerts are in some cases 

issued to the system administrator. The latter can then physically act himself or simply take notice on needed 

changes. In the future, a wider variety of more sophisticated actuators, perhaps even robotic agents, could take 

over the workload from humans. 

Notice that in case multiple rules fire, the system is not able to automatically handle conflicts, e.g. two rules 

invoke contradictory actions. When such behavior is observed, manual re-authoring of the rule base is needed. 

This drawback of reactive rules has been alleviated by using defeasible logic as an alternative approach, as shown 

in the next section. Section 5.3 elaborates on the comparison between the two rule paradigms. Additionally, 

checking a device’s status on every rule’s condition, as in the above example, dramatically decreases the 

possibility of firing the same rules in consecutive cycles. Even if that happens, the system prevents failures by 

handling this on middleware level i.e. the middleware ignores an on (or off) command if a device is already on (or 

off). A final precaution in the context of the reactive approach, before moving on to defeasible logic, would be to 

alert the system administrator when such loops of consecutive rules occur, as this would mean that the system is 

not able to achieve the desired goals. Such alerts are, however, a purely technical matter and, thus, not examined 

in this work. 

4.6. Deliberative Defeasible Logic Agent (DeL) 

Building on top of Smart IHU’s middleware layer, the defeasible logic (DeL) agent is an autonomous software 

tool responsible for maintaining user comfort and improving energy consumption patterns. Its purpose is more or 

less identical to that of Wintermute; both agents aim to provide an overall user-friendly interface for system 

administrators and energy experts to formulate energy-saving and preservation policies. The agents are then 

responsible for autonomously carrying out these policies, manipulating the environment via the actuators. 

However, DeL features a comparatively more “deliberative” behavior, entailing at the same time a different 

software architecture. More specifically, DeL offers more flexibility and user-friendliness in the representation of 

the policies, providing the advantages outlined previously in this paper (see Sections 3.1 and 3.3). 

4.6.1. Defeasible Logic Rule Base 

Based on the superiority relationship feature of defeasible logics (see Section 3.2), DeL presents the user with the 

definition of three distinct rule sets ,  and : 

 Preferences rules (): These are rules that deal with the comfort of the user and his/her personal 

preferences, like e.g. the desired room temperature during the winter months. A sample preference rule is 

r2 from Section 3.2: tempHigh  switchOnCooler. 

 Maintenance rules (): Namely, the rules that formulate the power management scheme of the building, 

like e.g. the deactivation of certain devices or appliances during late night hours. A maintenance rule 

paradigm is: highConsumption  switchOffCooler. 

 Emergency rules (): These are rules that are triggered in case of an emergency, like e.g. the activation of 

emergency lights in the case of fire, which could be represented by the following rule: fire  

switchOnLights. 



If  is the set of all rules in the framework, then for the three rule sets:       . Hence, in our 

approach rules can belong to preference, maintenance or emergency rule sets, adding an intuitive and effective 

classification practice for energy experts. Additionally, this approach is a refined version of the rules deployed in 

the Wintermute agent (see Section 4.5). 

Regarding the scope of each rule set,  is restricted to isolated rooms, since it contains rules that deal with the 

user-defined “micro-management” of the conditions inside a room. The scopes of the other two rule sets are 

broader, covering the whole building where the framework is deployed, including the rooms as well as the rest of 

the other shared areas and facilities, like corridors and storage rooms. The threef rule sets demonstrate escalating 

priority and, more specifically:  p  ,  m  ,  e    p < m < e. Notice that rules belonging to any of the 

three sets must – in essence – be defeasible, in order for the priority relationship to be effective. 

4.6.2. Defeasible Reasoning 

For the reasoning process, DeL incorporates an instance of SPINdle [39], a Java-based state-of-the-art defeasible 

reasoning engine. Although SPINdle lacks a theory grounding mechanism (i.e. no variables can be used in the 

predicates), which would be greatly beneficial for the purposes of this work, the engine’s advantages (fast, reliable, 

highly integrated and easily-deployable) constitute the incentive for preferring the specific reasoner. The lack of 

grounding mechanism is solved in our approach via replacing atoms containing arguments and variables with 

appropriately composed sets of synthetic predicates and appending them to the knowledge base. For example, 

atom switchOn(cooler) becomes switchOn_cooler, while atom switchOn(X) is replaced by a set of 

synthetic predicates {switchOn_device_1, switchOn_device_2, …} for all the registered devices. In case 

SPINDLE supports first-order theories in the future, this pre-processing phase will not be necessary any more. 

Figure 5 depicts the software architecture of the DeL agent and the information flow between its components. At 

the topmost level, human administrators and domain experts use an interface to author policies for the agent to 

enforce. Contrary to Wintermute, DeL does not feature an integrated GUI for rule authoring, but one could 

separately download one of the available defeasible logic rule editors, like, e.g. SPINdle’s Defeasible Logic 

Theory Editor9, or the much more flexible S2DRREd (Syntactic-Semantic Defeasible Reasoning Rule Editor) [40]. 

                                                           
9 SPINdle Defeasible Logic Theory Editor: http://spin.nicta.org.au/spindle/tools.html 

 
Figure 5. Architecture of the DeL agent in the application layer. 

 



The latter adds a supplementary level of semantic assistance during rule base development, creating meta-models 

of the main defeasible logic theory notions and, thus, offering the flexibility of authoring rule bases of various 

syntaxes.  

Figure 6 displays the main window of the tool as well as its STM (Semantic Tag Mapping) window that provides 

a meta-modeling facility for generating schemas over various language versions. A meta-model provides a schema 

for semantic data, specifying what elements may be contained in the model and how they relate to one another. In 

essence, each meta-model is a specification of a domain-specific modeling language. 

Notice that each type of system user is granted authoring rights for different rule subsets (see previous 

subsection). Either manually or via the help of a specialized GUI, a part of the authored policies is translated into 

SPINdle-compliant syntax and formulates the initial rule base of the system, while the remainder needs to undergo 

a pre- and post-processing phase at the execution layer. The purpose of this layer is to handle rules with conditions 

containing predicates that require the invocation of sensors via the middleware layer of the architecture. Thus, the 

literals of the rule conditions have to be transformed into a suitable syntax for invoking the respective Web 

Services. For example, the motion predicate is replaced by a ‘ZWaveService.GetMotion()’ service operation call. 

This preprocessing transformation is currently performed via a lookup table, but future plans involve integrating 

this association in the back-end ontology of the system. Finally, instead of serially examining all conditions, each 

service operation is only invoked once, as duplicate conditions may exist within the rule set. 

Transcending from the Middleware (or Service) layer to the hardware layer, values are retrieved from the 

distributed wireless sensor networks across the building. Upon completion, all predicates are replaced with 

numeric values forming the actual facts to be appended to the knowledge base of the SPINdle reasoner, again with 

the help of the lookup service. This is the reverse process (i.e. post-processing) that has to take place when the 

readings of the sensors are retrieved. Notice that, rule conditions typically involve sensor readings and rule 

conclusions usually point to actuator activities. However, contrary to Wintermute’s purely reactive rules, DeL’s 

defeasible logic allows for more complex reasoning, where the conclusions of a rule may serve as conditions for 

further rules. Although our rule bases do not currently include such cases, this feature is already handled by the 

aforementioned lookup service that clearly distinguishes sensor readings and actuator activities. 

The reasoning process is performed once in the beginning, when the knowledge base is complete after the pre- 

and post-processing phases, and afterwards it is repeated every time the knowledge base is updated with new facts. 

The reasoning results from each cycle have to go through the same processing steps and then to the invocation of 

the respective services (if any). Following this pattern, e.g. the switchOnLight derived predicate would point to 

the ‘SmartPlugService.SwitchOn(Light)’ service operation call. Regarding the rest of the predicates, they are all 

expressed in direct correspondence to service operation names on Table 1 via the lookup table. Through service 

invocation, wireless actuator networks in the building are used to apply the desired effects. In other cases, services 

simply perform software operations such as sending an email alert. 

5. Use Case: International Hellenic University Building A 

As already stated, the proposed framework is applied at the International Hellenic University (IHU) Building A; 

this section demonstrates the deployment of the policies and their impact on the overall energy consumption. The 

specific building is a large, appliance-rich building that bears a restrictive and wasteful infrastructure. Thus, it can 

serve as a stimulating test-bed of our methodology, which can then be applied to other buildings as well. 

The percentage of energy savings accomplished by any method is only subject to a building’s prior state of 

efficient usage, i.e. the greater the waste the greater the savings are. Thus, prior to formulating the energy 

management scheme policies, the building’s current behavioral patterns had to be observed and identified, at least 

as far as energy consumption is concerned.  



5.1. Current Scheme 

As presented in previous attempts [21], the hardware, Web Service middleware and appropriate client applications 

have already provided a basis for comprehensive monitoring and management of energy consumption along with 

environmental sensor readings. Apart from desktop and mobile administration software, a Web application10 

makes energy monitoring publicly accessible to any external viewer as well. 

Observing the vast energy consumption of the building in total, one has to initially disaggregate it to smaller 

clusters of appliances and/or activities. Attaching a sensor on the data center’s power supply allows us to directly 

isolate its power consumption from the rest of the building. Unfortunately, the data center consisting of servers 

and cooling units is already configured to its energy-consumption minimum for adequate cooling, meaning that its 

consumption (~ 50% of total daily consumption) has to be taken as granted. The remaining consumption refers to 

appliances in the building and comprises mainly of computers, lighting, heating and cooling units and a few 

projectors, peripherals, coffee makers and kitchen appliances. Most of this equipment is monitored separately 

using individual meters/actuators. Interesting observations include many appliances left constantly on, especially 

the high consuming photocopiers. Lighting during the night is already working on schedule and is responsible for 

the nightly consumption along with the stand-by consumption of all appliances. 

However, taking action on heating and cooling is moderately restricted due to the nature of the building’s 

existing infrastructure. Heating and cooling both take place in a central boiler/cooler and are distributed to the 

building through fan coil endpoints, typically one per room. During the winter, the central heating system 

consumes oil, which translates to less power usage. The cooling system, on the other hand, uses a considerably 

large amount of energy per day to centrally freeze water. During the winter, fan coils just let heat pass through, 

even while powered off. When powered on, the fans accelerate heat dissemination. Conversely, during the 

summer, fan coils provide utility only while they are on, while having the fans off actually saves up on the central 

cooling system consumption, as it has to freeze less water over time. However, most of the fan coils in the 

building would have to coordinate for these savings to take effect. Overall, the fans themselves hold an 

insignificant amount of consumption even as a whole. Observing the yearly course of the seasons, consumption of 

appliances was thus found to be much lower, since oil is used and fan coils are mostly powered off. Additionally, 

the university employees do keep the fan coil usage to a minimum. Combined with their very small consumption, 

their daily energy needs go unnoticed in total. All the above, result in much less energy spent for heating 

compared to cooling and, thus, much less saving potential. 

A final observation was made during the early morning hours. Every morning, from 6am to 8am, the total 

power consumption increases by 5kW, resulting in 10kWh of energy per day, in average, measured over the last 

year (higher during working days and lower during weekends). Inspecting the appliances, this amount comes from 

the building lighting being switched on by the early morning cleaning services. Since the cleaning crew does not 

need constant lighting to the whole university for this course of two hours, there is definitely some space for 

savings here. 

5.2. Applying Defeasible Logics – Sample Policies 

This subsection features a simplified example demonstrating the deployment of the policies rule base and the 

improved flexibility offered by the different rule sets (see Section 4.6.1). Suppose that the following example 

explicitly involves room ‘A6’ of IHU’s Building A and revolves around the operation of the room’s cooler during 

the summer months. Towards this affair, we can formulate the three distinct rule sets ,  and  that, as already 

stated, represent the policies for preference, maintenance and emergency, respectively. 

To begin with, let’s suppose that the employee working in room ‘A6’ defines the following preferences policy 

(rule set ) regarding the operation of the room’s cooler: 

p01: temp(a6,X), X < 18 → tempLow(a6) 
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p02: temp(a6,X), X > 28 → tempHigh(a6) 

p1: tempHigh(a6)  switchOn(a6,cooler) 

p2: ¬tempHigh(a6)  switchOff(a6,cooler) 

As mentioned before, the preference rules primarily handle user comfort. Thus, according to the above 

preferences, the employee-user determines the thresholds that define – by personal standards – the ‘low’ and ‘high’ 

temperatures in the room and designates when the cooler should be turned on or off in accordance to these 

thresholds. Preference policies like these allow for a periodic use of fan coils, instead of the non-stop, manually 

scheduled usage in the past. Usage history has shown that employees usually do not mind crossing the 

temperature thresholds and leave the appliances on, even after leaving the room they are working in. The periodic 

usage of coolers has a positive impact on the building daily usage, removing the fan coil footprint itself, but most 

importantly by saving up on the central cooling system consumption, less water has to freeze over time. 

Moving on to the system’s administrator, a maintenance policy (rule set ) has to be defined, in order to 

optimize the overall operation of the building and its respective power consumption. Maintenance rules tend to 

enforce further savings, often compromising the comfort requested by the user-defined preference rules. The 

scope of the following rules lies again in the operation of coolers in rooms: 

m01: consumption(X,Y), Y > 2000 → savingMode(X) 

m02: time(X,Y), Y > 2200 → savingMode(X) 

m1: ¬motion(X)  switchOff(X,cooler) 

m2: motion(X)  ¬switchOff(X,cooler) 

m3: functioning(X,pc)  ¬switchOff(X,cooler) 

 
Figure 6. S2DRREd Main and STM windows. 



m4: savingMode(X)  switchOff(X,cooler) 

m03: isOn(X,cooler)  ¬switchOn(Χ,cooler) 

m04: isOff(Χ,cooler) ¬switchOff(Χ,cooler) 

m4 > m2 

m4 > m3 

m1 > m3 

As can be observed, the administrator starts by determining the conditions for having each room switch to 

‘saving mode’, during which the system will attempt to minimize consumption. More specifically, rule m01 deals 

with the total energy consumption of each room, handling flexible loads to ensure a total consumption per room is 

not exceeded in any given moment. Rule m02 handles the operation of the room’s appliances during late night 

hours11. The following four rules, m1 to m4, deal with user context: they determine when the cooler will switch off, 

depending on the presence of people in the room (rules m1 and m2) and whether an employee works on his/her PC 

(rule m3) and they also handle the activation of the ‘saving mode’ (rule m4). Also, the last two defeaters make sure 

that the cooler’s actuator will not attempt to turn on an already operating cooler and, conversely, will not attempt 

to turn off a cooler that has already been switched off. Finally, the policy includes a set of binary superiority 

relationships among conflicting rules in set .  

Eventually, the administrator has to formulate the policy for emergency situations (rule set ): 

e01: smoke(X) → alert(X) 

e02: highCO2(X) → alert(X) 

e1: alert(X)  switchOn(X,alarm) 

e2: alert(X)  switchOff(X,cooler) 

When a sensor reading is received that implies unsafe conditions inside a room, like e.g. smoke or too high CO2 

concentration (or potentially other measured values exceeding safety limits), the system activates the room’s alert 

(rules e01 and e02). The alert then handles the operation of the appliances in the room accordingly (rules e1 and 

e2). 

Concluding the example, the following set of conflicting literals (see Section 3.2) has to be inserted into the 

rule base: 

 = {switchOn(X,Y), switchOff(X,Y)} 

This way, a conflict is automatically generated between pairs of rules, where one rule concludes that a device 

(e.g. cooler, alarm etc.) should be turned on and the other one concludes that it should be turned off and vice-versa. 

These conflicts will then have to be resolved via appropriate superiority relationships among each pair of 

conflicting rules. In the cases of conflicts between rules belonging to the same rule set (e.g. both rules are 

maintenance rules), the superiority relationship has to be explicitly added to the knowledge base by the user with 

the appropriate access permissions (in the case of maintenance rules this would be the administrator). On the other 

hand, the cases of conflicts between rules belonging to different rule sets is handled automatically by the system, 

via rewriting the theory and adding the respective superiority relationships, according to the scope of each rule set. 

Thus, for the specific rule set presented in this subsection, the following superiority relationships are appended to 

the rule base:  

                                                           
11 Other appliances that could potentially benefit from this operation are the printing devices that typically remain on during the night and are 

responsible for some major energy waste due to periodic calibrations. Having the system automatically switch off the printers according to 

timely schedule would provide a solution. During the past year, though, many students have visited the computer lab after late hours, wanting 

to print out lecture notes. Thus, an appropriate rule should also turn on the photocopiers in case of detected motion. Of course, this 

functionality can easily be integrated into the system, but is omitted here due to simplicity. 



m1 > p1  e2 > p1 

m2 > p2  e2 > m2 

m3 > p2  e2 > m3 

m4 > p1   

Understandably, the overall sample rule base presented here is rather simplistic, but hopefully demonstrates the 

expressiveness and user-friendliness of the defeasible logic representation. Moreover, the flexibility of the conflict 

resolution mechanisms of defeasible reasoning combined with the three distinct rule sets of escalating priority 

proposed in this approach, produce a versatile Smart Building management system. To give a deeper insight, we 

present the following brief examples. 

Example 1 

Suppose that the following facts, generated by respective sensor readings in room A6, are inserted into the above 

rule base:  

f1: temp(a6,30) 

f2: time(2300) 

f3: motion(a6) 

Fact f1 triggers rule p02, whose derived conclusion matches the condition of rule p1. At the same time, fact f2 
triggers rule m02 and the derived conclusion of the latter matches the condition of rule m4. Finally, fact f3 triggers 

rule m2. Thus, a conflict is initially observed among rules m2 and m4 within rule set , because the conclusion of 

the former rule is the negation of the conclusion of the latter. The conflict is resolved via the superiority 

relationship m4 > m2 and it is eventually concluded that switchOff(a6,cooler). Furthermore, by observing 

rules p1 and m4 one can detect that the two conclusions switchOn(a6,cooler) and switchOff(a6,cooler) 

contradict each other, because of the set of conflicting literals . Thus, it is not clear whether the cooler should 

ultimately be turned on or off. However, since all maintenance rules have a higher priority than preference rules 

(see previously), the system automatically infers that p1 < m4 and the maintenance rule eventually prevails, 

switching off the cooler. 

Example 2 

Suppose that at a certain point in time an additional fact is inserted into the above rule base, indicating a high level 

of CO2 in the room: 

f4: highCO2(a6). 

The rule engine will execute the rules once again. Fact f4 triggers rule e02, whose derived conclusion matches 

the conditions of rules e1 and e2. Rule e1 is not attacked by any other rule, and as a result, the alarm in room A6 is 

activated. However, the conclusion of rule e2 contradicts the conclusions of rules m2 and p1. But, as already stated, 

all emergency rules have top priority when attacked by preference or maintenance rules. Therefore, it is 

automatically inferred that p1 < e2 and m2 < e2 and it is concluded that the cooler should be switched off. However, 

since the device is already switched off from the previous rule execution cycle, defeater m04 prohibits the cooler’s 

actuator from re-issuing the command. Demonstrating the dynamicity of the system, if CO2 levels fall back to 

normal later on, the fact base will be updated resulting to a new execution of the rule set and a new set of derived 

conclusions. 

As already mentioned before, SPINdle does not support theory grounding and, additionally, features like 

conflicting literals are substituted by appropriate sets of conventional defeasible rules and superiority relationships 

before being submitted to the reasoner. Appendix A illustrates the above theory, together with the facts used in the 

two previous examples, in the SPINdle-specific syntax. The transformation from the initial syntax, or any other 



input rule syntax like e.g. defeasible RuleML12, to the target syntax constitutes a task assigned to the end-

user/administrator and can be achieved via appropriate automatized functionality of a specialized GUI used for 

authoring the rule base (see Section 4.6.2). Since DeL does not yet feature such a specialized GUI, this automatic 

transformation functionality is not yet integrated into the system. 

5.3. Comparison of the Two Rule Paradigms 

As demonstrated in the previous subsection, the representation of policies via defeasible logic is highly intuitive 

and flexible. In order to demonstrate these advantages, we present the reader with rule p1 from the above rule base, 

expressed, however, as a reactive rule instead of a defeasible one: 

tempHigh(a6), motion(a6), ¬savingMode(a6), ¬isOn(a6,cooler), ¬alert(a6)  

→ switchOn(a6,cooler) 

One can easily realize that the latter version of the rule is required to include all possible exceptions (e.g. 

¬savingMode) in its body. It should be mentioned here that negation in the reactive rule setting is not strong 

negation, but negation-as-failure, i.e. a negated atom is true, when it is not present in the current content of the 

knowledge base. These extensive representations for expressing all possible exceptions to a rule are 

counterintuitive, since in cases of hundreds of rules the resulting representations would be greatly impractical.  

Additionally, this peculiarity makes the whole system less flexible, as it would require the end-user to have 

access to (and knowledge of) parts of the internal policies, namely, more than his preferences, which does not 

comply with the end user’s access levels. Likewise, maintenance rules would need to have access to predicates 

belonging to emergency policies, ultimately rendering useless the initial distinction in three separate classes 

(preferences, maintenance, and emergency). 

Finally, as already mentioned in Section 4.5, the production system cannot easily handle rule conflicts that arise 

when two rules invoke contradictory actions. Such conflicts could be resolved by rewriting (parts of) the rule base, 

which is a counterintuitive approach. On the other hand, defeasible logic offers more intuitive conflict resolution 

mechanisms, via rule superiorities and sets of conflicting literals. 

5.4. Experimental Evaluation 

Before deploying the agent policies presented above, we carefully examined the building’s consumption 

patterns, and tried to correlate them as much as possible to known parameters such as activities and weather. 

Using the existing infrastructure, one is able to disaggregate total building consumption to: (a) Data center 

consumption, which is nearly 50%, and, (b) the rest of the appliances, including office and classroom equipment, 

lighting, cooling and heating. After that, the most apparent energy loss in daily patterns can be observed during 

early morning hours between 6am and 8am.  

Figure 7shows a typical daily pattern of the past year, up to 15/6/2013. During these two hours, the only 

significant human activity taking place in the university is cleaning, which causes the unaccounted for peak in 

energy. The cleaning crew is used to leave the lights on while continuously interleaving rooms. As lights are the 

most power-demanding single appliance in the building, they had to be kept off as long as possible according to 

frequent non-motion detection. Hence, the experimental evaluation proposed here employs a composite method: 

each of the two proposed agents is assigned a different, distinct, time window within the day, according to each 

agent’s suitability for the different tasks. That way, the agents complement each other rather than compete; the 

reactive agent handles the (straightforward) morning task that requires responsiveness, while the deliberative 

agent handles more complex tasks occurring during the rest of the day. 

The reactive agent (Wintermute), equipped with an appropriately confined rule-set, is perfectly suitable for 

frequently pulling and responding to a few observations. As already mentioned, both hardware and middleware 

are essentially pull-based. To minimize overhead, the agent iteratively pulls the necessary data only, and as rarely 

                                                           
12 Schema Specification of Defeasible RuleML Version 1.0: http://ruleml.org/1.0/defeasible/defeasible.html 



as possible, so that resources are kept free for other agents potentially co-existing in the environment. Data is not 

lost, but rather received later than the time of observation. However, as already stated in Section 4.3, the nature of 

our application is energy-saving and not emergency alerts, so responding rapidly to sensor readings is not a key 

requirement. 

On the other hand, the deliberative agent (DeL) was assigned the rest of the day (0am – 6am and 8am – 12pm), 

for the same time period, in order to ensure minimum power waste originating from misuse of office equipment 

and cooling. DeL was considered suitable for this task, since handling the lights and other equipment should be 

made after considerable observations, so that conditions have been stabilized, e.g. to be sure that someone has left 

the office. 

The entire experiment was carried out from 15/6/2013 to 26/6/2013, while an equal time interval of the 

previous 10 days (5/6/2013 to 14/6/2013) serves as a baseline for the comparison to ensure maximum similarity in 

weather and activity conditions. During this period there were no significant changes in climate (even sunrise, 

which greatly affects 6am-8am behavior) and curricular activity. As shown in Figure 7, the morning peak during 

the reactive time window was completely eliminated during the experiment, guaranteeing 41% savings during that 

time. This amount of daily energy savings averages at 8688.4Wh, which accounts for 4% of past average daily 

consumption (2222051.2Wh).  

However, experimental results are less optimistic during DeL’s operational time window, where no apparent 

savings are noted. Although the agent did take decisions and switched on and off appliances, their cumulative 

effect was not enough to notice on such a large scale. As mentioned before, no activity changes were noted, which 

means that all employees were at their desks during working hours and using lights and office equipment 

consistently. Hence, no savings were observed, but, on the other hand, the agent ensured that no energy was 

wasted. Additionally, we concluded that stricter monitoring, e.g. accounting people present at a time, was needed 

to detect minor fluctuations in activities that apparently reflect on higher energy consumption. This is due to the 

fact that various events (workshops and lectures) taking place at the university premises, which occur at a non-

periodic fashion, result in small changes that are harder to detect. 

 
Figure 7. Building, data center and appliance consumption during a portion of the experiment. The installation of the 

system on 15th July results in the elimination of early morning energy waste during the responsive time window, which is 

highlighted. 



Figure 8 shows the daily hourly average consumption showing both time windows, and 24h total in order to put 

them into perspective. Again, the elimination of a large amount of energy during the reactive window is apparent, 

showing its impact also on the 24h total daily consumption. Interestingly, the savings originating from the smaller, 

two-hour, window have a noticeable impact on the daily consumption. Please note here, that the presented 

approach is a composite one, consisting of both agents acting in a mutually-exclusive way in time. In other words, 

presenting either agent perform outside the time window for which they were especially designed seems both 

irrelevant and uninteresting. Aspects of both agents discussed throughout the text emphasize the fact that they 

would naturally not reduce consumption in unsuited tasks. 

All in all, the experimental integration of the agents in the Smart IHU architecture guaranteed at least 4% daily 

energy savings over the past week (also 4% measured over the past year) or 2% including the data center, which is 

a significant percentage considering the large scale of energy consumed by a university building. To put it in 

perspective, the university consumes around 438.2kWh per day (average of past year), around half of which 

belongs to the data center (221.5kWh). This amount could easily be matched to a monthly consumption of a small 

household, while the amount of 2% could equal the total daily consumption of that household. 

As a final remark, the amount and percentage of the system’s savings are only relevant to how much energy 

was being wasted in the first place. All in all, the system can only guarantee to enforce all energy-saving behavior 

and ensure that energy-wasting behavior is kept to a minimum. 

On improving savings, we believe that major savings in this setting can occur when collectively shutting down 

cooling units. Specifically, asynchronously switching off single cooling units on the ground floor during the 

experiment saved insignificant amounts of energy. Instead, simultaneously turning off the majority of cooling 

units, also on the whole building (where the system has yet to be deployed), will result in major savings as it 

would hibernate the main cooling supplier unit. To explore this direction, we plan to extend the system on the 

whole building and employ agent cooperation and negotiation between rooms to timely and collectively shut 

down the main cooling supplier. 

6. Critical Discussion and Future Work 

This subsection discusses the most significant limitations of the proposed framework and suggests possible ways 

to tackle each one of them, giving at the same time appealing insights into directions for future work. 

 
Figure 8. Hourly consumption daily average (in Wh), showing 24 total, deliberative time window and reactive time 

window. 



The previous sections demonstrated the features of the two distinct agent types (reactive and deliberative), 

presented their respective pros and cons and discussed their role inside the Smart IHU AmI architecture. To recap, 

the reactive agent is based on production rules and naturally excels at instantly invoking actuators, thus, managing 

the reactive operation of devices in cases when response time is critical. On the other hand, the deliberative agent 

offers higher expressiveness and more intuitive conflict resolution mechanisms, permitting a clear distinction of 

the different rule sets and access levels. A further advantage of this agent type is the fact that it can reason on 

more complex rule bases, where the conclusions of a rule may serve as conditions for other rules etc. This 

capability provides an internal state to the agent as well as a more complete modeling of the environment. 

Although both agent types bring different elements to the table, it is not necessary to choose one over the other. 

Instead, a hybrid agent type has been proposed in literature that is concurrently capable of reactive and proactive 

behavior [41]. Hybrid agents typically integrate – amongst others – two distinct layers in their architecture that 

deal respectively with the two types of behaviors (reactive and proactive). The specific architecture of the agent, 

nevertheless, depends on the layering as well as the information and control flows within the layers. Though 

stimulating as an idea, the hybrid agent type is out of the scope of this paper and is included in plans for future 

development. 

A limitation in the current implementation of the framework lies in the somewhat simplistic expressiveness of 

the policies. It would definitely be interesting to investigate incorporating more complex requirements, such as 

temporal reasoning. Recent advances in defeasible logics research have led to temporal defeasible logics (TDL) 

[42], which efficiently deal with temporalized durative facts and with potential delays between rule antecedents 

and consequences and overall capture the temporal aspect in our framework. Specifically the work presented in 

[43] proposes algorithms for computing extensions of TDL. Although SPINdle does not support TDL reasoning 

yet, we investigating the integration of temporal defeasible logics in our framework through the TDL-specific 

reasoner presented in [44]. 

Another limitation is that currently our system does not take into consideration potential rule dependencies. The 

most basic level of rule dependency suggests that rule B is considered dependent on rule A, if the former directly 

uses terms asserted by the latter. More advanced (e.g. semantic) types of dependencies may be determined in 

cases when terms appearing in a set of rules (conditions or actions) are somehow related to each other (e.g. 

semantically equivalent or subsumed). Therefore, even simple rule sets can result in a vast variety of rule 

interdependencies. However, these dependencies offer a very clear overview of the underlying logical layers 

present in a rule base, especially when the rules involved are at successive levels of abstraction, i.e. rules of upper 

layers using the results of inference produced by rules of the lower layers. Since we do not currently consider 

more than one logical layer of rule inference, there was no need in investigating that aspect of rule dependencies. 

However, as the system unavoidably evolves and becomes more and more complex, it would be interesting to 

investigate methodologies for automatically determining rule dependencies (e.g. see [45], where rule 

dependencies among SWRL rule sets are detected, taking into consideration the underlying OWL semantics, as 

well) and rule dependency visualization ([45], [46]). 

Regarding the rest of the ideas for future improvements, besides investigating the integration of a hybrid agent 

type into the proposed architecture (see above), our future plans involve extending the scale and invasiveness of 

the experiments. Rules can grow in numbers, raising the load of operations to perform throughout the building. 

More interfering rules, such as killing the stand-by mode of PCs, will carefully be introduced. Such rules have 

been avoided thus far, due to their high intrusiveness and difficulty to detect when that device will be needed 

again (the placement of the appropriate hardware can be experimented with). Towards improving the tools 

accompanying the framework, a Web UI is being developed, in order to enhance user experience and convenience, 

but will obviously have no impact on the observed results. 

Furthermore, the platform can be extended and enhanced on every layer. Regarding the service layer, the agents 

can benefit from automatic service discovery, for dynamically discovering or substituting services that interleave 

the environment in real time. This way, new portable and redundant service providers could be introduced into the 

system. On the user and rule layers, a machine learning component can be employed to discover regular 

consumption patterns and suggest respective energy-saving rules.  



On the agent platform level, we will investigate integrating more instances of same or different agent types 

(reactive, deliberative or hybrid) to serve different roles. Each agent will be assigned a sub-task or a region within 

the building and negotiate with the others towards achieving a certain goal (e.g. comfort and/or energy savings). 

Agent negotiation will be needed especially for resolving potential conflicts among agents, e.g. when two or more 

agents are assigned the operation of the same device(s). 

7. Conclusions 

This work presents a building-wide real-world rule-based Ambient Intelligence application that aims for user 

comfort and energy savings. Multiple wireless sensor and actuator networks that comply with different product 

families and communication protocols have been deployed to collect environmental and energy data across a State 

University building. The infrastructure integrates a middleware providing service-orientation by unifying all 

underlying distributed and heterogeneous wireless sensor and actuator platforms. Two complementary and 

mutually exclusive rule-based approaches for managing energy saving schemes have been proposed: Wintermute 

and DeL. 

The former involves a reactive rule-based agent, which enables administrators to author and enforce energy 

saving policies, as sets of purely reactive rules that run using a production rule engine. The latter, more advanced, 

approach involves a defeasible logic reasoner that delivers more intuitive policy authoring, offering sophisticated 

conflict representation and resolution mechanisms. A priority ordering for each rule type is defined and, via this 

capability, a priority scheme is proposed that categorizes rules in clusters of preference, maintenance and 

emergency policies.  

For the experimental part, a careful analysis and monitoring of year-long consumption data has been performed 

and suitable policies were authored. A considerable amount of savings was achieved, but most importantly, the 

policies guarantee to keep any potential energy waste to a minimum. Another observation was that such real time 

systems require the use of more than one (type of) software agent to especially ensure instant response and 

reactiveness for the most important of policies.  
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Appendix A – SPINdle Syntax 

The following fragment illustrates the SPINdle-specific syntax for the sample rule base presented in Section 5.2. 

Notice that conflicting literals are represented by specific rules added to the rule base, accompanied by respective 

superiority relationships. 

set @temp_a6 = 30 

set @time = 2300 

>> motion_a6 

>> highCO2_a6 

 

# preference rules for room a6 

p01: $@temp_a6 < 18$ -> tempLow_a6 

p02: $@temp_a6 > 28$ -> tempHigh_a6 

p1: tempHigh_a6 => switchOn_a6_cooler 

p2: -tempHigh_a6 => switchOff_a6_cooler 

 

# maintenance rules for room a6 

m01: $@consumption_a6 > 2000$ -> savingMode_a6 

m02: $@time > 2200$ -> savingMode_a6 

m1: -motion_a6 => switchOff_a6_cooler 

m2: motion_a6 => -switchOff_a6_cooler 

m3: functioning_a6_pc => -switchOff_a6_cooler 

m4: savingMode_a6 => switchOff_a6_cooler 

m03: isOn_a6_cooler ~> -switchOn_a6_cooler 

m04: isOff_a6_cooler ~> -switchOff_a6_cooler 

 

# emergency rules for room a6 

e01: smoke_a6 -> alert_a6 

e02: highCO2_a6 -> alert_a6 

e1: alert_a6 => switchOn_a6_alarm 

e2: alert_a6 => switchOff_a6_cooler 

 

# rules for handling conflicting literals 

c01: switchOff_a6_cooler => -switchOn_a6_cooler 

c02: switchOn_a6_cooler => -switchOff_a6_cooler 

m1 > c02 

m4 > c02 

e2 > c02 

c01 > p1 

 


