
1

Abstract—. This paper presents a complete architecture for a

Smart University Building. The real-world deployment is based

on a wide range of wireless sensor and actuator networks, inte-

grated by a middleware based on the Service-Oriented Architec-

ture of Web Services. The middleware provides the necessary

basis for various energy monitoring, management and savings

applications as well as Intelligent Agents in the context of Ambi-

ent Intelligence.

Index Terms—smart building, smart grids, sensor networks,

web services, knowledge management, semantic web, ambient

intelligence

I. SENSOR LAYER

The physical layer of the proposed architecture hosts a wide

variety of wireless sensor and actuator networks. All hardware

was carefully selected to optimally resolve the tradeoff be-

tween necessary requirements, availability and affordability.

First of all, the devices would have to operate over a large

range and offer a variety of functions, to cover the scale and

the diversity of parameters in the building. On the other hand,

they should remain widely available and affordable, especially

in large quantities. As the market is yet far from convergence

in a common communication protocol and data format, the

devices were not expected to interoperate. This issue of in-

teroperability is rather resolved on the middle layer of the ar-

chitecture.

The selection of deployed devices mainly operates over

wireless communications and comes from different manufac-

turers and suppliers. Most devices are also widely available in

the market and affordable to retail customers, which supports

the feasibility of the proposed system.

First of all, as the target system revolves around energy

monitoring and manipulation, the first set of devices covers

these aspects. The company Plugwise
1
 offers a commercial

bundle of devices that is equally popular amongst retail buyers

and research [1], [2]. The fundamental version of Plugwise

products is a sensor/actuator device that will be referred to as

Smart Plug. Smart Plugs are attached between a wall socket

T. G. Stavropoulos is with the Computer Science Department, Aristotle Uni-

versity of Thessaloniki, Greece (e-mail: athstavr@csd.auth.gr).

D. Vrakas is with the Computer Science Department, Aristotle University of

Thessaloniki, Greece (e-mail: dvrakas@csd.auth.gr).

I. Vlahavas is with the Computer Science Department, Aristotle University of

Thessaloniki, Greece (e-mail: vlahavas@csd.auth.gr).
1 Plugwise Online, http://www.plugwise.com

and any electrical appliance, allowing users to measure and

control its power supply. In detail, their sensor functions can

measure the attached appliance’s status (on or off), its power

supply (in W) while the actuator function can switch it on or

off. Another commercial version of Smart Plugs, handles non-

pluggable appliances, as it intersects power cables between

source and appliance. They allow the exact same capabilities

so both versions will be referred to as Smart Plugs to preserve

generality.

In terms of communication, the Smart Plug platform fol-

lows the ZigBee wireless communication protocol, one of the

optimally suitable protocols for smart home applications. The

Plugs form encrypted ZigBee networks of up to thirty nodes in

mesh topology. Each network is coordinated by an augmented,

router Smart Plug which collects and propagates all network

communications to and from a USB stick PC interface. Con-

sequently, PC users can monitor Plug data and invoke actuator

operations. Smart Plugs are passive devices which means they

have to be polled to perform an action or return a measured

value in a bidirectional manner. Each network’s range depends

on how evenly the mesh network is distributed. Users are

prompted to ensure a circular distribution of plugs around the

coordinator to avoid long lines of hops but rather provide

short, alternative paths for all nodes. To adequately cover the

building’s appliances, we have deployed approximately forty-

five Smart Plugs, grouped in three Plug networks. One net-

work covers the eastern part of the building, whereas the other

two overlapping networks cover the southern part.

While Smart Plugs are responsible for small-scale, per ap-

pliance measurements, large-scale power usage has to be mon-

itored by a different set of devices. Especially in the case of a

large building, it is naturally impossible to monitor its total

consumption by using just Smart Plugs. On the contrary, it is

much easier to monitor total consumption directly at its

source, the main power supply. Smart Clampers are affordable

sensors that clip around main power supply cables, without

intersecting them, and inductively measure the current. Due to

their affordability and ease of installation, various manufac-

turers provide retail Smart Clamper solutions. The selected

Smart Clamper bundle offered by Current Cost
2
 additionally

offers an open data format and support for multiple transmit-

ters. Each Current Cost digital 433MHz SRD band transmitter

can be attached to up to three Smart Clampers for the meas-

urement of three-phase current. Data of up to ten transmitters

2 Current Cost online, http://www.currentcost.com/

The Smart IHU Project Architecture for Energy

and Ambient Intelligence Applications

Thanos G. Stavropoulos, Dimitris Vrakas and Ioannis Vlahavas

mailto:athstavr@csd.auth.gr
mailto:dvrakas@csd.auth.gr
mailto:vlahavas@csd.auth.gr
http://www.plugwise.com/
http://www.currentcost.com/

2

are collected and displayed on a monitor/receiver that also

provides a PC USB-interface. In our deployment, two three-

phase main power supplies are measured by corresponding

clampers. The sum of these two measurements returns, thus,

the total consumption of the building. For disaggregation pur-

poses, a third clamper and transmitter bundle measures the

Data Center’s i.e. server room’s power supply, which is, of

course, included in the first two measurements.

Apart from energy, the proposed smart building applica-

tions need to monitor and correlate various environmental

parameters. Hence, a wide selection of sensors had to be de-

ployed. The first bundle of sensors is manufactured by Prisma

Electronics
3
 and comprises of two types of nodes. Quaxes are

Sensor Boards that embed a microcontroller, a ZigBee module

and various arrays of sensors. The microcontroller can be

manually programmed to periodically parse data from sensor

arrays, and transmit them over ZigBee. Optionally, they can

also act as routers for other Sensor Boards, forming a ZigBee

mesh network. The second type of nodes, are ZigBee gate-

ways that collect Sensor Board data and transmit them over

Ethernet or Wi-Fi to the LAN’s PC clients. The devices are

active which means they actively transmit data one direction-

ally.

For the purposes of our deployment two networks of ten

Sensor Boards each, have been distributed across the building.

The sensors attached to the boards measure temperature, lumi-

nance and humidity. Again, one network was assigned with

the southern part and one with the eastern part. The Sensor

Boards were set in non-routing mode, so each network follows

a star topology instead of mesh. This allows the modules to

enter hibernation between transmissions, prolonging battery

life. For the same purpose, transmission interval has been set

to ten minutes. Two gateways collect data from each network

and make it accessible from anywhere in the LAN.

Finally, to complement the variety of measured environ-

mental data, we integrated sets of devices complient to the Z-

Wave alliance. The Z-Wave alliance constitutes one of the

efforts to unify data formats and communications between

smart home automation devices at hardware level. So far, the

alliance has managed to provide a wide variety of sensors,

actuators, network controllers/coordinators, remote controllers

etc. achieving interoperability between numerous manufactur-

ers. Transmissions are very similar to ZigBee in nature, as

they form wireless mesh networks. In our deployment we

made use of four CO2 air level sensors, fourteen motion sen-

3 Prisma Electronics online, http://www.prismaelectronics.eu

sors and three smoke detectors, each coming from a different

manufacturer. All data is gathered by a USB-Stick controller

and PC-interface. A single mesh network of these devices was

installed to cover the whole building.

Table 1 compares different aspects of all device families in

the proposed deployment.

II. MIDDLEWARE LAYER

The intermediate level of the proposed architecture hosts a

middleware specifically tailored for Ambient Intelligence ap-

plications, based on the Service Oriented Architecture. The

nature of these applications operating on top of a dynamic,

real-time environment and heterogeneous devices presents

several requirements. Service-orientation has been proved to

be extremely suitable for such environments and used widely

in literature [3], resolving application development issues.

Namely, one benefit of Service-orientation is being able to

program on a high-level of abstraction, agnostic of platform-

specific and communication-protocol specific device pro-

gramming. This also adds to extensibility, as new devices can

be integrated via the authoring of new middleware-plugins

which simply translate to new services. All services comply to

a web-wide universal API, the W3C WSDL language, which

syntactically defines service operations, resolving heterogenei-

ty. The service descriptions are further described semantically

using Semantic Annotations for WSDL (SAWSDL) rendering

them machine interpretable. To resolve dynamicity in the en-

vironment, the Service Oriented Architecture supports the

notion of service provisioning. A Service Broker is responsi-

ble to list available services at any given time, which means

that mobile providers that interleave the environment do not

have to be handled explicitly during application programming.

After studying current state-of-the-art guidelines and exist-

ing implementations, a WEb Service MiddlewarE (aWE-

SoME) was developed, tailored to the system’s needs. The

middleware itself entails three distinct layers, one for hard-

ware integration, one that implements and provides (syntacti-

cally described) services and a semantic description layer on

top. Secondly, it reuses and extends existing implementations

as much as possible. Motivation behind building a middleware

from scratch has been based on defining semantics more effi-

ciently and integrating hardware modules that existing mid-

dleware does not. However, some existing modules have been

used on the hardware integration layer, when possible, to in-

terface with part of the hardware.

Table 1 Hardware technical, communication and networking aspects

Device Manu Capabilities
Sampling

Frequency

Number

of Nodes
Protocol

Maximum Nodes

Per Network
Range Topology

Networks

Deployed

Smart Plug Plugwise
Sensor/

Actuator
1s 50

ZigBee

(encrypted)
25 10m Mesh 2

Sensor Board
Prisma Elec-

tronics
Multi-Sensor Any 20

ZigBee

(open)
10 10m Mesh 2

Z-Wave Various Sensor Any 20 Z-Wave ? 10m Mesh 1

Smart Clamper CurrentCost Sensor 8s 3 RF 10 10m Star 1

http://www.prismaelectronics.eu/

3

A. Hardware Integration Layer

This layer consists of separate modules each of which inter-

faces with a target device platform. The so-called driver mod-

ules can be considered as plug-ins developed for each device

family to be integrated into the Smart IHU system.

Smart Plug Driver: The Smart Plug Driver, implemented in

Java, is invoked every time a get or set operation needs to be

performed over the Smart Plug network. Smart Plug operation

is bidirectional, since they need to be polled to read a sensor

value or to perform an actuator action. Thus, the Smart Plug

Driver is more a library rather than a module, invoked each

and every time needed by the corresponding Smart Plug Ser-

vice operations. To implement the library, the Smart Plug en-

crypted ZigBee protocol commands had to be reversed engi-

neered to implement the essential polling functions and de-

crypt response packages.

Sensor Board Driver: Unlike Smart Plugs, Sensor Board

communication is one-directional. The Sensor Board Driver

module is a C# daemon that constantly receives data, parses

them according to the open package format provided by the

manufacturer and stores them for the Sensor Board Service to

retrieve. The module also offers a GUI to allow administrators

monitor the multiple gateways and nodes of the sensor board

network.

Smart Clamper Driver: Quite similarly, the Smart Clamper

Driver is a Java module that passively receives all Smart

Clamper data, parses and stores them to be retrieved by the

Smart Clamper Service. It also presents data on a GUI for

monitoring and administration purposes.

Z-Wave Driver: Being the largest and the most diverse fam-

ily of devices, the Z-Wave Driver makes use of the open

source Open Z-Wave library to handle potentially any Z-Wave

device. To again provide administrators with a GUI, another

open source solution was selected. zVirtualScenes is a GUI

application project which already incorporates the Open Z-

Wave library. Thus, both projects were merged and modified

to our needs. The Z-Wave driver provides a GUI to monitor

and manage a Z-Wave device network. Unlike other devices,

Z-Wave nodes receive configuration parameters such as sleep

interval over the network, so this function is also provided on

the administration GUI. It also presents all values received

from connected nodes and stores them for the Z-Wave Service

to retrieve on-demand. Virtually any type of Z-Wave device is

supported by the Open Z-Wave library and in turn by the Z-

Wave Driver.

B. Web Service Layer

This layer hosts the Web Service APIs themselves, imple-

mented as JAX-WS web services, syntactically described in

WSDL format and hosted on instances of the Glassfish server.

The design methodology followed by all web service modules

was to associate each service with a single device family bun-

dle. In turn, each service provides as many operations as the

corresponding hardware offers. This choice was not straight-

forward, as, in general, even a single service can hold many

operations encapsulating code to handle every device family.

On the other extreme, numerous single-operation services

could provide a single function for each module. As hardware

is physically separated in device networks of the same brand

or communication protocol, services were made to reflect that

physical distinction, also matched essentially by the driver

modules. Note that since drivers already perform protocol

unification of data coming from the devices, a single service

could indeed handle more than one device type. Instead, this

integration is allowed to be resolved on the semantic layer, in

a more efficient and machine-interpretable way.

Smart Plug Service: The service provides sensor operations

to poll and get each Plug’s on/off binary status, read power

consumption in 1 or 8 sec interval, and various hardware in-

formation such as internal clock and firmware. It also provides

actuator operations to switch them on or off. All operations

require a target Plug ID as input.

Sensor Board Service: This service provides numerous sen-

sor operations that receive a target board ID and return the

value of measured temperature, humidity, luminance or the

board’s battery level.

Smart Clamper Service: The Smart Clamper Service pro-

vides basically one operation to receive the target Clamper’s

ID and return its power measurement.

Z-Wave Service: Similarly, operations of this service accept

a target node ID parameter and each return measured tempera-

ture, humidity, luminance, motion detection and CO2 air con-

centration level.

C. Semantic Layer

The semantic layer of the architecture consists of two com-

ponents, the ontological infrastructure and the semantically

described service endpoints. The ontological infrastructure

generally entails one or more ontologies that serve as a lexicon

of interrelated concepts, meant to semantically describe enti-

ties. After a thorough review of state-of-the-art, BOnSAI

Fig. 1. Smart IHU three-layer architecture, focusing on hardware and

middleware packages

4

(Smart Building Ontology for Ambient Intelligence), suitable

for describing Smart Building, Ambient Intelligence, Service

and Sensor Network concepts has been designed [4]. An im-

portant aspect of ontology design is reuse. As the very aim of

an ontology is to provide semantic interoperability outside the

borders of a particular system implementation and across the

web community, it must be universally adopted. This has in-

deed been an issue in Semantic Web technologies overall,

since there has been no convergence to commonly-used mod-

els. Hence, BOnSAI extends leading existing ontologies found

in each domain such as the Semantic Sensor Network (SSN)

ontology and the OWL-S upper ontology for services.

Most existing approaches are using ontologies to insert all

sensor measurements, usually referred to as context infor-

mation, as instances of ontological concepts. This approach

can be thought of as using the ontology itself as a database (as

actual ontological DBMSes do exist) and performing reason-

ing on top of that data. On the contrary, while such an ap-

proach is feasible in the proposed infrastructure, we rather

semantically describe services that return data instead of data

itself. In detail, the ontology is used as a lexicon to describe

terms and define relationships, rather than a database. Thus,

when reasoning on real-time context data, information is re-

trieved much faster coming from the sensors themselves. The

resulting SAWSDL files semantically describe input and out-

put of services as well as the nature of operations themselves.

All SAWSDL defined annotations (so-called model refer-

ences) originate from the BOnSAI ontology and derive from

the specific needs of applications which are then exploiting

them (use-driven design).

Operations are annotated as either SensorOperations or Ac-

tuatorOperations. These annotations are currently used by

rule-based software agents for both rule authoring and invoca-

tion. The safe assumption made here is that SensorOperations

are suitable to serve as rule conditions (left-hand side), while

ActuatorOperations are suitable for rule results (right-hand

side). Hence, during the authoring of rules, available options

are dynamically retrieved from available semantic service

descriptions.

Inputs and Outputs are annotated as to their nature e.g. sen-

sor:ID, Temperature, Humidity, Power etc. These annotations

serve for a wider range of clients such as service discovery,

matchmaking and composition. Namely, a software or human

agent that is looking for a particular service can form semantic

queries based on inputs and outputs. In the future this could

lead to service composition which is outside the scope of this

work, which focuses on automation and energy savings.

III. APPLICATION LAYER

Based on the remote, universal web service API, the pro-

posed architecture allows for multiple, diverse applications to

coexist in the system. Given the high performance of today’s

Fig. 2. A use case scenario of the architecture by two applications, demonstrating distributed parts of algorithms for data collection, reasoning and

presentation.

5

computation and communication infrastructure, web services

introduce an insignificant temporal delay for the applications

to interface with hardware, in comparison to a hardcoded di-

rect embedment of a single application occupying the hard-

ware. The different applications developed so far can be cate-

gorized according to the purpose they serve in monitoring and

administration, rules and automation, data center monitoring

and energy analytics.

A. Monitoring and Administration

Although automations and intelligent agents manipulate the

infrastructure without any human intervention, monitoring and

administrative application do play an important role in the

system. Their purpose is twofold; for one, they allow human

administrators to manually manipulate the devices but most

importantly, to observe and analyze historical data of the

building’s behavior. Consequently, they are able to take deci-

sions and author new optimized policies to be applied. Sec-

ondly, monitoring applications allow simple users such as the

university’s staff and students, visitors and web users globally

to observe the infrastructure’s behavior and status.

Monitoring applications target all popular platforms to en-

sure accessibility. iDEALISM is a desktop application for

monitoring and management developed in Java. As shown on

Error! Reference source not found., a service client handles

all service calls, manipulating sensors and actuators. The ap-

plication is meant to be used by administrators only, such as

the Smart IHU, IT and security staff, enabling them to monitor

historical and real time data before taking action. Added-value

functions allow them to group devices together and get aggre-

gated values to better appreciate the actual environmental and

consumption status of the building.

The mobile application counterpart, named PlugDroid, of-

fers manipulation capabilities, plus some added-value facilities

powered by the smartphone hardware. It has been implement-

ed in the Java Android SDK, due to its openness and populari-

ty combined, incorporating a Web Service client to connect to

the middleware. Users are able to create, edit and maintain

lists of sensors and actuators, invoke functions with one touch

and view data. The abundance of integrated sensors present in

smartphones provides an excellent basis for augmented-reality

functions. The Smart IHU Android application currently takes

advantage of the QR/barcode scanning function via the camera

to implement such a feature. Specifically, mobile users can

scan QR codes printed on various connected appliances or

sensors in the building, adding them to their set of monitored

devices. Thereafter, they are able to monitor and manage them

remotely at any time over the web.

Finally, the main web application of Smart IHU
4
, presents a

view of historical sensor readings targeting students, guests

and outside visitors abroad. The portal is one among many

web applications built on top of a collective database of sensor

data. Specifically, since a common need for multiple applica-

tions to access historical data was eminent, a (MySQL) data-

base is being populated by a Service Client daemon, accessi-

ble by any remote application. The Smart IHU portal offers

open access for any web user to select and view the most ma-

jor of sensor data, such as power consumption of the building,

data center and building appliances total (building minus data

center), along with selected environmental measurements (e.g.

CO2 levels in the Labs). Another web application taking ad-

vantage of the same underlying infrastructure is an on-site flat

TV-screen at the university’s reception, which displays cur-

rent, a seven-day average and a three-day line chart of power

consumption, together with weather information and the

course schedule timetable for the day.

4 Smart IHU Portal http://smart.ihu.edu.gr/

Fig. 3. Smart IHU architecture of multiple applications, ranging from desktop, mobile, web, intelligent agents to expert systems

http://smart.ihu.edu.gr/

6

B. Rules and Automation

While simple client applications manually manipulate actu-

ators and recover sensor data, intelligent applications allow the

automatic smart administration of power consumption. One

approach towards that end is the use of intelligent agents that

incorporate knowledge, conduct decision making and manipu-

late the environment. Traditionally, these agents employ vari-

ous forms of reasoning following different logic principles.

For the purposes of energy saving in the proposed system, two

different approaches have been followed.

An agent based on productive logic is responsible for reac-

tive rules, where fast response is of the essence. The agent,

named Wintermute and presented on Fig. 3, incorporates an

instance of the JESS rule execution engine. Users are able to

author and maintain automation policies using a GUI, imple-

mented with JavaFx. The GUI is enhanced with semantic in-

formation dynamically acquired from descriptions of services

online at the time. This is carried out based on the assumption

that SensorOperations are suitable for rule condition-

predicates and, likewise, ActuatorOperations are well-suited

for action predicates. Hence, during rule authoring, users are

presented with available option in a dropdown box. The Win-

termute agent interfaces with semantic web services to period-

ically obtain facts of interest and update its knowledge of the

world’s state from the sensors. These facts along with au-

thored policies in the agent’s knowledge base are used for the

reasoning process which, in turn, triggers and fires rules that

invoke semantic web services to manipulate appliances. This

agent, all in all, emphasizes in the straightforward approach of

monitoring values and immediately firing up rules, at the ex-

pense of having to resolve conflicts during the rule authoring

process.

For example a simple thermostat rule (r1), in JESS syntax

appears as follows:

(defrule ruleThermostat

 (call GetTemperature 9BA14E ?x0)

 (test (< ?x0 20))

=>

 (call SwitchOn CA7712)

)

where 9BA14E, CA7712 are the temperature sensor ID and the

heater’s power actuator ID respectively. In this example, we

go on to define a second rule r2 that switches off the heater

when no motion is detected. This rule indirectly conflicts with

the previous one, as their results contradict. We would also

like this rule to dominate over r1, hence, r1 has to be rede-

fined to include (¬motion) in its conditions. Proceeding with

the rule set, a third energy-saving policy r3 involves entering a

so-called ‘Saving Mode’ where flexible, relatively excessive

devices such as heating are switched off when crossing a pow-

er level threshold. Following this rule logic, for this rule to

obtain maximum superiority, all subordinate rules r1,r2 must

explicitly enumerate the negation of all conflicting rules stat-

ed. Apparently, as the rule set grows, all subordinate rules’ left

hand side grows exponentially. For one, this issue introduces a

huge hassle for the rule author to carefully review and main-

tain the rule base, which ultimately takes a non-intuitive form.

Secondly, the method presumes that rule authors have com-

plete access, knowledge and privileges over the rule base,

which might not be the case in such an environment.

Therefore, a second agent paradigm is introduced, incorpo-

rating a defeasible logic rule engine (SPINdle
5
). This agent

emphasizes on intuitive rule-authoring and much more conflict

resolution in order to maintain a large and multi-purpose set of

rules. This logic attaches a priority listing of rule superiority

relationships to the standard fact and rule knowledge base.

Hence, rules become short, intuitive declarations that are easy

to maintain, while defining their priority handles conflict reso-

lution. The rule author can use a variety of user interfaces such

as SPINdle’s Defeasible Logic Theory Editor
5
, or the much

more flexible S
2
DRREd (Syntactic-Semantic Defeasible Rea-

soning Rule Editor) [6]. Finally, the reasoner superiority dec-

larations were taken advantage of to define three different rule

clusters: preferences, maintenance and emergency and provide

different authorization levels to different users. Simple users

only have access to the preference rule set, which has the low-

est priority. Power users have access to maintenance and

emergency rules of higher superiority, resolving the matter of

privacy and security of the system. For demonstration purpos-

es only, the above mentioned rule set in now transformed as

follows:

preference rules

p01: $@temp < 20$ -> tempLow

p1: tempLow => switchOn_heater

p2: - tempLow => switchOff_heater

maintenance rules

m01: $@consumption_total > 2000$ -> savingMode

m1: -motion => switchOff_heater

m2: savingMode => switchOff_heater

where maintenance rules always prevail over preference rules.

All in all, with both methodologies present, a hybrid approach

is feasible, where the reactive agent handles fast-response

simple rules and the defeasible agent handles decision making

and deliberation over a large and more complex rule set.

IV. STATE OF THE ART

The state of the art in the AmI field in general, includes many

application domains such as health, Ambient Assisted Living,

agriculture, multimedia and Smart Offices. Most of these ap-

proaches also employ the use of web services and semantics

but follow the more complex top-down approaches of upper

ontologies for services such as WSMO
6
 or OWL-S

7
 in [7] [8]

or custom ones as in [3] [9]. On the contrary, the approach

proposed in this work, employs the bottom-up lightweight and

W3C recommended SAWSDL
8
 standard for semantically an-

notating web service descriptions. It also implements a custom

universal middleware based on SAWSDL to support a wide

variety of affordable devices available in the market not found

5 SPINdle Defeasible Logic Theory Editor:

http://spin.nicta.org.au/spindle/tools.html
6 WSMO W3C Submission: http://www.w3.org/Submission/WSMO/
7 OWL-S W3C Submission: http://www.w3.org/Submission/OWL-S/
8 SAWSDL W3C Recommendation: http://www.w3.org/TR/sawsdl/

http://spin.nicta.org.au/spindle/tools.html
http://www.w3.org/Submission/WSMO/
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/TR/sawsdl/

7

in other approaches.

As far as rule-based smart environments are concerned, one

approach introduced in [Daniele] is a meta-language defined

over JESS, to syntactically enhance the rule authoring process

in ambient applications. However, this additional syntactic

layer, named the Event-Control-Action model, is far less flex-

ible and extensible over defeasible logic used in Smart IHU.

Other similar approaches include SESAME-S [2] is an all-in-a-

box smart home prototype that uses ontologies and JESS rea-

soning to enforce rules. The approach in Yang also uses

agents, web services and ontologies to store and reason on

energy data. The main issue of both works is the lack of con-

flict resolution and rule set scalability enforcing them to apply

all triggered rules, regardless. Additionally, Smart IHU does

not store all information in ontological form but rather returns

semantic information on-the-fly using SAWSDL and offering

improved scalability, flexibility and extensibility to more cli-

ents.

REFERENCES

[1] Eisenhauer, M., Rosengren, P., & Antolin, P. (2009, June). A develop-

ment platform for integrating wireless devices and sensors into ambient

intelligence systems. In Sensor, Mesh and Ad Hoc Communications and

Networks Workshops, 2009. SECON Workshops' 09. 6th Annual IEEE

Communications Society Conference on (pp. 1-3). IEEE.

[2] Fensel, A., Tomic, S., Kumar, V., Stefanovic, M., Aleshin, S., Novikov,

D. SESAME-S: Semantic Smart Home System for Energy Efficiency.

Informatik Spektrum, 36(1), pp. 46-57, 2013.

[3] Issarny, V., Caporuscio, M., & Georgantas, N. (2007, May). A perspec-

tive on the future of middleware-based software engineering. In 2007

Future of Software Engineering (pp. 244-258). IEEE Computer Society.

[4] Stavropoulos, T. G., Vrakas, D., Vlachava, D., & Bassiliades, N. (2012,

June). Bonsai: a smart building ontology for ambient intelligence.

In Proceedings of the 2nd International Conference on Web Intelligence,

Mining and Semantics(p. 30). ACM.

[5] Lam, H. P., & Governatori, G. Towards a Model of UAVs Navigation in

Urban Canyon through Defeasible Logic. Journal of Logic and Compu-

tation, 2011.

[6] Kontopoulos, E., Zetta, T., & Bassiliades, N. Semantically-enhanced

Authoring of Defeasible Logic Rule Bases in the Semantic Web. Proc.

2nd Int. Conf. on Web Intelligence, Mining and Semantics (WIMS'12),

ACM, Article 56, pp. 489-492, Craiova, Romania, June 13-15, 2012.

[7] Thomson, G., Bianco, S., Mokhtar, S. B., Georgantas, N., & Issarny, V.

(2008). Amigo aware services. In Constructing Ambient Intelligence (pp.

385-390). Springer Berlin Heidelberg.

[8] Iacob, S. M., Almeida, J. P. A., & Iacob, M. E. (2008, March). Opti-

mized dynamic semantic composition of services. In Proceedings of the

2008 ACM symposium on Applied computing (pp. 2286-2292). ACM.

[9] Paz-Lopez, A., Varela, G., Becerra, J. A., Vazquez-Rodriguez, S., &

Duro, R. J. (2012). Towards ubiquity in ambient intelligence: User-

guided component mobility in the HI3 architecture. Science of Computer

Programming.

http://www.governatori.net/papers/2011/uav.pdf
http://www.governatori.net/papers/2011/uav.pdf

