
System Architecture for a Smart University Building

Thanos G. Stavropoulos Ageliki Tsioliaridou George Koutitas Dimitris Vrakas Ioannis Vlahavas

This work is funded by Operational Program for Education and Lifelong Learning

Outline

- 1. Introduction
- 2. Smart Building Overview
- 3. Home Automation Network Technology
- 4. Information Integration
- System Architecture

1 Introduction

- Goal
 Build an Ambient Intelligence platform in the University for:
 - Automation common tasks
 - Energy consumption/carbon footprint Reduction
 - Remote monitoring/control
- Related FP7 projects
 - Dehems (<u>http://www.dehems.eu</u>)
 - Hydra (http://hydramiddleware.eu)

1 Introduction

Comparison to FP7 Projects

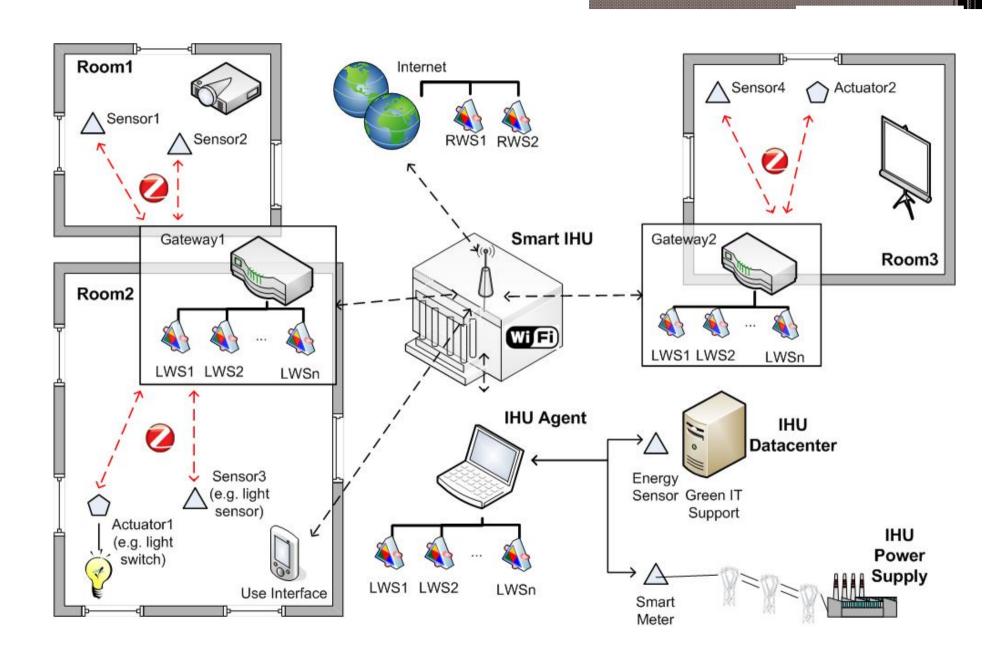
- Dehems
 - Energy efficiency monitoring in different households
 - We focus on a University Building
- Hydra
 - Semantic Web Service middleware to expose devices
 - ➤ We construct our own SWS middleware but also develop automated application composition atop

2 Smart Building Overview

Requirements:

- i. Power Consumption Monitoring
 - building (total), room, floor to device level
 - Compute Data Center efficiency metrics
- ii. Energy Efficiency Savings
 - Remote control
 - based on historical and real time data
- iii. Building Automation
 - Intelligent Adaptive Application Composition

3 Home Automation Network Technology


- PLC
- Radio Systems
 - RFiD
 - ZigBee
- Problem:
 - Integrate heterogeneous devices by various
 manufacturers and working on different platforms
- Solution:
 - Web Service middleware

4 Information Integration

- Service Oriented Architecture (SOA)
 - Web Services wrap each system module
 - Homogeneous access to sensors and actuators
- Dynamic Web Service Composition provides
 Adaptive Applications [3,4]
- Web Service Composition by AI-Planning [1,2]:
 - Web Services as actions
 - Both have preconditions and results
 - Plans are Composite Web Services

System Architecture

- Central IHU Agent
 - Web Server hosts LWSes
- Gateways
 - Devices within range (mainly ZigBee)
 - Various Manufacturers
 - Embedded Web Server hosts LWSes
- Internet
 - Remote agents access LWSes and host RWSes
- LAN also accesses LWSes, RWSes

Thank you

References

- 1. F. Lecue et al., Semantic Web Service Composition Based on a Closed World Asumption, in proc. of the European Conference on Web Services, pp. 171-180, 2006.
- 2. O. Hatzi et al., Porsche II: Using Planning for Semantic Web Service Composition, in proc. of the ICKEPS2009 in conjuction with ICAPS-09, Thessaloniki, Greece, 2009.
- 3. V. Issarny et al. Developing Ambient Intelligence Systems: A Solution based on Web Services, Automated Software Engineering, vol.12, no. 1, pp. 101-137, Jan. 2005.
- 4. A. Urbieta et al., A survey of dynamic service composition approaches for ambient systems, in proc. of the Ambi-Sys workshop on Software Organisation and MonlToring of Ambient Systems, pp. 1-8, 2008.