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Abstract. This paper presents a real-world application targeting energy savings and user comfort in a Smart 

Building environment. The proposed system uses various heterogeneous networks of wireless sensors and 

actuators, while all functions and data are unified under a Semantic Web Service middleware. An initial approach 

to author and enforce energy-saving policies was to develop a reactive agent that maintains an internal 

representation of the world‟s state in the form of predicates and facts, gathered over the Web Service interface. 

System administrators are able to encode the policies, the effects of which are applied by invoking actuator Web 

Services. In order to improve the system even further, the proposed architecture also incorporates a deliberative 

agent based on defeasible logic that allows for more human-intuitive and effective management of policies. The 

application of defeasible reasoning is ideal in such environments with incomplete and contradictory information, 

offering more flexible expressiveness as well as a sophisticated conflict resolution mechanism. In our approach, 

the latter is used for defining three clusters of rules for preferences, maintenance and emergencies, respectively. 

After observing the building‟s yearly energy consumption and usage patterns, a policy was authored and applied, 

showing promising results (at least 10kWh or 2% to 4% daily savings in this specific setting). Although the 

percentage of energy savings may seem low, the greatest merit of this method is ensuring no energy is wasted by 

constantly enforcing the policies. 
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1. Introduction 

Contemporary information systems are rapidly undergoing various transformations, influenced by a multitude of 

emerging trends. One of these trends is Green Computing and the rise of the Smart Grid. Global warming, CO2 

emissions and energy waste have directed computing towards greener solutions at the hardware and software 

levels alike. At the same time, renewable energy sources and consumer-produced energy schemes have brought 

about the idea of the Smart Grid, an infrastructure for encouraging policies and means towards marketing and 

distribution of energy between producers, consumers, “prosumers” (i.e. producers and consumers) and brokers 

[Farhangi, 2010]. Overall, the concepts of sustainability and energy saving have penetrated all aspects of everyday 

life, including computing. 

In the meantime, evolvements in microcontrollers, board computers and smartphones in particular, bring forward a 

novel computing paradigm, called ubiquitous computing (ubiComp), where users are being surrounded by 

powerful, portable computing devices [Weiser, 1993]. To take things a bit further, in pervasive computing 

(perComp), multiple non-intrusive computing devices are scattered across the environment, attracting far less or 

none of the user‟s attention. The vision of Ambient Intelligence (AmI) enriches perComp with Artificial 

Intelligence (AI) methodologies, aiming at increasing comfort and reducing intrusiveness for the user [Weiser, 

1993]. Towards this affair, intelligent behaviors, deriving from various areas of AI such as Planning, Semantics, 

Reasoning and Learning, are typically employed for providing smart automations and intuitive human-computer 

interactions in such suitable environments.  

Unsurprisingly, AmI is heavily based on the widespread usage, performance and affordability of microcontrollers 

and wireless sensors that form networks, providing the essential environmental input data required by AI 

algorithms. Likewise, actions to be performed after the decision making process have to go through actuators in 

the environment in the form of motors, switches or other endpoints. Since both Green Computing and AmI are 

facilitated by the increased popularity and low cost of smart meters, environmental sensors, actuators and other 

devices, these features constitute the common grounds among the two disciplines. Also, both fields share similar 

goals, i.e. the vision of a comfortable smart home. 

However, the interaction of Smart Homes and AmI applications with hardware devices poses a substantial 

challenge, since the hardware market itself is highly diverse with different companies using different 



communication protocols and data formats. Towards this affair, the solution of Service Oriented Architecture 

(SOA) has been proposed [Papazoglou, 2003]. Since broadband connections have become a modern day standard, 

users have already moved on from looking up data on web sites to actually carrying out tasks from purchases and 

transactions to virtually any remote function. These remote procedure calls are supported by W3C-recommended 

APIs, called Web Services, while the Web Service Description Language1 (WSDL) provides remote clients with 

syntactic interoperability, by type-defining service inputs and outputs. Understandably, Web Services in AmI 

environments have since grown to become a requirement, as they provide the necessary abstractions that allow for 

high-level programming and deliver a universal, unified middleware for using heterogeneous hardware. In 

addition, dynamic service discovery perfectly suits the dynamicity of ambient environments, where service 

consumers and portable providers spontaneously interleave the space. 

Although AmI domains of application may vary widely, targeting energy savings has yet been only marginally 

explored. Most approaches focus on multimedia technologies, providing context awareness in smart homes or 

offices, e.g. being able to stream source audio or video to target outputs over UPnP/DLNA based on context, such 

as [Davidyuk et al. 2010]. Existing service-oriented approaches in conjunction with smart home equipment have 

not practically considered intelligence or savings, but rather the issue of communication protocol unification 

[Bottaro et al. 2008]. Multi-agent systems have been employed to provide enhanced functionality or service 

composition, but certain issues on truly interoperable semantic descriptions still persist [Vallée et al. 2008]. A 

categorization of AmI application domains in Smart Homes, Health, Transportation, Emergency, Education and 

Workplace, can be found in [Cook 2009].  

This work presents a holistic approach to energy savings in a smart building belonging to a State University 

complex. The proposed approach lies in the intersection of many disciplines (AmI, Automated Reasoning, 

Semantic Web Services and Green Computing), facing challenges in each of the corresponding fields. According 

to principles of Smart Homes and Green Computing, a set of state-of-the-art wireless sensors, actuators and smart 

meters has been deployed at the University premises. The distributed heterogeneous data and functions they 

provide have been unified under a middleware based on Web Services. The middleware also complies with some 

of the latest Semantic Web [Berners-Lee et al., 2001] technologies to provide semantic interoperability on the 

application layer. Towards achieving energy savings, two approaches based on rule-based expert systems are 

proposed. Firstly, using production rules, domain experts are able to commit energy-saving policies maintained 

and applied by an autonomous reactive software agent. The second approach is based on a deliberative agent that 

incorporates a defeasible logic reasoner instead, greatly enhancing the expressiveness of the rule set committed by 

the expert. The application of defeasible reasoning [Nute, 1994] is ideal in such environments with incomplete and 

contradictory information, offering a sophisticated conflict resolution mechanism. In our approach, the latter is 

used for defining three clusters of rules for preferences, maintenance and emergencies, respectively. Using the 

underlying infrastructure, the University‟s yearly consumption has been observed to identify energy behavioral 

patterns. Consequently, energy-saving and comfort-providing policies have been authored accordingly and 

applied, showing promising results. All in all, savings are not directly visible in such a large infrastructure, but the 

policies do ensure that no energy is wasted in any undesired manner. 

In the rest of this paper, the next section performs a thorough survey of state-of-the-art in the fields of AmI 

context-aware applications and also studies the (so far) limited application of defeasible reasoning in AmI 

environments. Section 3 presents the basic principles of defeasible logics, its main characteristics, its syntax and 

operational semantics as well as the motivation for applying defeasible reasoning in AmI and Smart Building 

management. The next section presents the architecture of the proposed system in three parts: the hardware, 

middleware and application layer. The two proposed software agents that reside on the application layer are 

presented subsequently, followed by a use case real-world application scenario, a proposed policy and its results in 

energy savings. Future work and conclusions are listed in the final sections. 

2. Related Work 

The proposed system is built on a synergy of fields such as Ambient Intelligence, Smart Homes, Context-aware 

Systems, Green Computing, Semantics and Logic. Thus, this section attempts to present the most relevant of 

existing state-of-the-art, originating from any of the above viewpoints. It also tries to appoint the novelty of the 

proposed system to each respective work coming from one or more fields.  
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2.1. Rule-based Context-aware Systems in AmI 
A common task amongst many AmI systems is to address context awareness, by providing automatic service 

composition on demand. A thorough survey of such work can be found in [Stavropoulos et al., 2011]. However, 

we believe the policy definition process to be more fundamental. Automatic service composition offers the means 

to achieve a certain goal, but it does not define the goal itself or when to execute this series of actions. Hence, rules 

and triggers must come prior to composition, leaving the latter outside the scope of this work. Agents in state-of-

the-art approaches many times constitute tools for the Web Service composition process itself, while in this work 

agents are self-contained entities that perceive and manage the environment. 

On the other hand, certain paradigms of related work indeed address context-awareness by following rule-based 

methodologies, with the work by [Daniele et al., 2007] being a representative example. The authors have 

developed the Event-Control-Action (ECA) model, an architectural pattern for expressing context-awareness. 

According to this model, an “Event Module” is responsible for gathering context information, i.e. facts, a “Control 

Module” formulates rules about these facts and an “Action Module” executes the activated rules. To properly 

author ECA-rules, the proposed ECA domain language, ECA-DL [Etter et al., 2006] offers expressiveness (via the 

use of logical and arithmetical operands) and extensibility. To realize this higher level of expressing context 

information, ECA-DL integrates a UML-based representation model that defines a hierarchy of entities and 

relationships among them. ECA-DL rules assimilate to SQL, as they contain predicates for querying the taxonomy. 

The Java-based JESS2 reasoner was chosen as the proper execution engine for the framework and the authors 

proposed a mapping from ECA to the JESS syntax. There is a direct analogy between the two architectures: 

instances of context-information in ECA correspond to facts in the working memory of JESS, while ECA-DL rules 

directly correspond to JESS defrules. Additionally, the hierarchy and relationships between instances defined in 

the ECA model can be expressed in deftemplates, JESS structures for describing complex facts.  

In comparison to our Smart IHU system, the ECA model can be seen as an optional rule authoring meta-level. 

Both works address the concepts of context-awareness and, more generally, ubiquitous and pervasive computing. 

However, our proposed system focuses on energy savings and builds upon an AmI infrastructure of sensors, 

actuators and Semantic Web Services, while ECA-DL has not been deployed in such a practical manner. 

Additionally, the meta-level of ECA rule representation is considered rather redundant, since the JESS language 

itself provides sufficient expressiveness and extensibility. Moreover, ECA‟s representation model is fairly inferior 

to an ontology, which already provides querying mechanisms and significantly higher expressiveness. Instead of 

applying a UML-based model, our approach refers to our representation model, which is an OWL ontology, via 

semantic annotations on Web Service descriptions. Hence, instead of building a heterogeneous system that maps 

rules to ontological constructs, ontological entities are inserted into rules on-the-fly using SAWSDL [Kopecky et 

al., 2007]. Finally, both works use JESS as an execution engine, but, our approach offers higher expressiveness, 

integrating defeasible logic as well as the corresponding defeasible reasoner SPINdle (see Section 4.4.2). 

Work by [Yang, 2013] employs a case-based reasoning (CBR) agent, Web Services and ontologies towards 

achieving energy savings. The CBR agent is placed within a multi-agent platform, along with a second agent 

responsible for data mining and a third for invoking Web Services. The complete system is installed over cloud 

services to enable remote reasoning. Data regarding temperature, humidity, luminance, CO2 levels and 

consumption are collected over Web Services, parsed and placed within a domain ontology for energy. The sensor 

deployment for data collection contains three ZigBee networks of forty devices in total. Then, each data instance is 

reasoned upon, to investigate similarities with previously known cases. Evaluations show that the architecture can 

effectively assimilate around 40% of cases, which then do not need to be handled by the backend server. The 

authors also argue that an energy saving percentage of approximately 22% is achieved. 

Our proposed system demonstrates many similarities with the work by [Yang, 2013], but also numerous key 

differences. Both approaches deploy large wireless sensor networks that measure environmental values and energy 

consumption. Also both lines of work employ one or more agents capable of reasoning based on different logics, 

in order to achieve energy savings. Finally, both approaches employ the use of Web Services and SOA standards 

(WSDL/SOAP). On the other hand, our proposed deployment is technically far more heterogeneous, containing 

ZigBee as well as Z-Wave and RF (and potentially any other) communication protocols. These protocols are 

unified under the Web Service middleware, which is the main role of services in this work, placing it in an AmI 

ecosystem, where other applications also coexist. For the same interoperability purposes, semantics are defining 

service operations instead of data. On the other hand, Yang employs Web Services to basically perform remote 

procedures, such as transforming syntactical data to semantic constructs and storing them. In other words, the main 
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purpose of Web Services in Yang‟s system is operating it over the cloud. As far as this work is concerned, the use 

of cloud services is merely a technical matter that resolves computing and storage resource issues, which in our 

case are irrelevant; outsourcing computation over the cloud makes no alteration to the actual methodologies used, 

but rather to where resources are located.  

Moreover, in Yang‟s approach it is unclear how decisions are applied to achieve energy savings and it is equally 

unclear how these energy savings are measured. We argue that savings should be measured relatively to carefully 

selected periods of time, since consumption is very context-sensitive especially in large-scale. Major fluctuations 

occur between different seasons, times of day and daily events. We state the energy saving percentage compared to 

a daily average of yearly consumption and have determined exactly where these savings come from to make sure 

it‟s not incidental. Secondly, the proposed system guarantees that, given the policies, a variable degree of savings 

can be achieved by prohibiting unnecessary devices from turning on. The lower bound of the saving is achieved 

when the building already presents an energy-efficient behavior (minimum saving margin) and its upper bound is 

achieved when the building presents its maximum energy-wasting behavior (maximum saving margin).  

Another analogous project, called SESAME-S [Fensel et al., 2013], also presents many similarities to the presented 

work. SESAME-S is a partially commercial and partially research project with deliverables aiming at an all-in-a-

box smart home platform for individuals. The system architecture revolves around a microcontroller that interfaces 

between wired smart devices, sensors and actuators and user endpoints. Deployed sensors measure temperature, 

humidity, luminance and energy consumption, while actuators control heating, cooling, water supply and power. 

Live data is collected over the LAN‟s router and propagated over Ethernet or Wi-Fi to local and remote terminals, 

where it is stored in an OWLIM repository [Kiryakov et al., 2005] in the form of RDF triples. Additionally, the 

system stores policies in the form of SWRL and SQWRL rules, performs reasoning and executes them using JESS. 

Rules are committed through a Web application, by both home and power users. Home users are able to enter any 

rule or choose from recommended rules (pre-built by domain-experts, based on past test-bed experiments). Power 

users, i.e. administrators and domain-experts, are able to view the raw, semantic rule format and the rules they 

insert have a higher significance. Hence, they are executed after any home automation rules, in order to enforce the 

desired final state of appliances. To support the above mentioned functionality, SESAME-S entails the use of three 

custom ontologies: (a) the Automation Ontology models policies, activities, appliances, sensors, locations and 

thresholds, (b) the Meter Data Ontology publishes meter data in compliance to the DLMS/COSEM specification, 

and, (c) the Pricing Ontology models usage tariffs and selection criteria for the system to allocate appliances to 

proper time slots, in the spirit of Smart Grids. The final test-bed embeds all hardware in a metal suitcase and has 

experimentally been used in a few buildings. Finally, it has been estimated that the adoption of such a system may 

lead to approx. 20% reduction in energy consumption. 

In contrast to SESAME-S, our work presents many developments on all levels. At the infrastructure level, the 

Smart IHU architecture supports many wireless device platforms, unified under the aWESoME web service 

middleware [Stavropoulos et al., 2013], like Plugwise, Prisma sensor boards, CurrentCost and various other 

manufacturers under the Z-Wave alliance (see Section 4.2 for more information on these). Additionally, due to the 

nature of the semantic service infrastructure, devices can be scattered across buildings, allowing a wide and fully 

distributed deployment, instead of embedding everything in a box. Another major difference is the lack of storing 

all data in an ontology for reasoning. Instead, Smart IHU attaches semantics to Web Services using the SAWSDL 

standard. Hence, any Web client, human or machine is allowed access to the semantics of sensor data and actuator 

functions. Furthermore, the use of defeasible reasoning in the Smart IHU approach allows for more user-intuitive 

design of rules and an inherent prioritization and conflict resolution between them. This method avoids the “brute-

force” application of all rules in order of priority that occurs in SESAME-S, improving the user experience and 

saving computing resources. Finally, due to the experimental and constrained current format of SESAME-S, 

results of energy savings constitute merely user predictions, while the Smart IHU platform already presents actual 

savings on its large-scale building-wide deployment. 

A final observation in context-aware AmI systems is the different methodologies on defining and exploiting 

semantics. The majority of work had previously been focused on complex top-down approaches such as OWL-S 

and WSMO, extending an ontology for describing a service. The most recent tendency is to switch to lightweight 

bottom-up approaches such as SAWSDL and WSMO-Lite. Similarly to top-down approaches, convergence of 

various standards has not yet been realized. However, SAWSDL is recommended by W3C, and offers many 

advantages. It lies very closely to WSDL, which is a functional API, very popular among research and industry. 

Additionally, it has been found adequate to serve as a basis for selection, matching, discovery and composition of 

services, despite its low complexity [Hobold & Siqueira, 2012]. Consequently, the proposed system makes use of 

the SAWSDL standard to define and exploit semantic interoperability on services. 



2.2. Defeasible Logic in AmI 
To the best of our knowledge, only the work by [Bikakis et al., 2011] investigates the deployment of defeasible 

logics in an AmI setting. In their work, the authors propose a distributed reasoning approach based on the 

representation of context knowledge shared by the ambient agents in the environment. Taking into consideration 

the highly dynamic nature of the setting, defeasible logic is proposed as the basis for representing the context 

knowledge possessed by each agent (i.e. the agent‟s local rule base). Additionally, defeasible logic is also applied 

for resolving the potential conflicts that arise from the information exchange between the agents. More 

specifically, the authors introduce an extension to defeasible logics, called Contextual Defeasible Logic (CDL) 

[Bikakis & Antoniou, 2010]. The latter serves as a contextual reasoning model that leverages the challenges posed 

by the dynamic nature of the AmI environment using the concepts of context, mappings and contextual 

preferences. Compared to the work presented above, our proposed Smart IHU approach demonstrates apparent 

similarities: both approaches are designed for AmI environments and both of them apply defeasible reasoning in 

real-life, practical applications.  

On the other hand, the different application domains (ambient-assisted living vs. energy consumption monitoring) 

constitute a secondary difference, whilst the most important distinction lies in the diverse areas – within each 

system – where defeasible reasoning is applied. More specifically, the work by [Bikakis et al., 2011] applies 

defeasible logics as a means for assisting the (often problematic) communication between heterogeneous devices 

within the environment. Contrasted, our approach investigates the application of this type of non-monotonic logics 

as a tool for supporting the end-user in representing his/her energy management scheme more effectively and 

improving the expressiveness of the authored policies. Finally, the Smart IHU approach follows a centralized 

architecture, where a central server is responsible for collecting the data from the sensor network and for 

performing the reasoning. The other piece of work represents a fully distributed architecture, arguing that such a 

model better suits environments, where context changes may be frequent, device connection can prove 

troublesome and wireless communications are unreliable and restricted by the range of the transmitters. 

3. Defeasible Logics 

This section describes the basic characteristics of defeasible logic, its syntax and operational semantics as well as 

the underlying motivation for applying defeasible reasoning in the context of Ambient Intelligence and Smart 

Building management. 

3.1. Main Characteristics 
Defeasible logics [Nute, 1994] stem from research in knowledge representation and inheritance networks in 

particular. In this context, defeasible logics can be seen as inheritance networks, expressed in a logical rule 

language.  

Belonging to the family of non-monotonic logics, defeasible logics deal with conflicts and inconsistencies among 

knowledge items. Conflicts between rules are triggered by a conflict among their conclusions. The simplest case is 

that one conclusion is the negation of the other. However, more complex cases may arise, when conclusions are 

declared as mutually exclusive, a very convenient representation feature in practical applications that will be 

further examined later on. 

Defeasible logics are sceptical in the sense that conflicting rules do not fire, preserving the consistency of the 

drawn conclusions [Antoniou et al., 1999]. Conflicts among rules are typically resolved via rule priorities, which 

constitute an additional representational feature of defeasible logics. 

The main advantage of defeasible logics is their low computational complexity [Maher, 2001], which is achieved 

through: 

 the local nature of conflicts; 

 the fact that the logics are sceptical, as mentioned above; 

 the absence of disjunction; 

 the use of unidirectional rules; 

 the local nature of priorities – only priorities between conflicting rules are used. 

Undoubtedly, these restrictions come at the price of reduced expressive power, compared to other non-monotonic 

reasoning approaches. However, despite its conceptual simplicity, defeasible logic appears effective in the 

representation and execution of a variety of practical problems, like, e.g. recommender systems [Chesñevar & 

Maguitman, 2004], UAV navigation [Lam & Governatori, 2011] and elevator control [Covington, 2000b]. 



3.2. The Language 
A knowledge base in defeasible logic is called a defeasible theory (let‟s represent it by ) and consists of three 

basic elements: a set of facts (), a set of rules () and a superiority relationship (>). Therefore,  can be 

represented by the triple (, , >). 

In defeasible logic, there are three distinct types of rules: strict rules, defeasible rules and defeaters.  

 Strict rules are denoted by A → p and are interpreted in the typical sense: whenever the premises are 

indisputable, then so is the conclusion. An example of a strict rule is: r1: summerTime → tempHigh 

(“the temperature is high during the summer time”). 

 Defeasible rules are denoted by A  p and, contrary to strict rules, they can be defeated by contrary 

evidence. Two defeater examples are: r2: tempHigh  switchOnCooler (“the cooler is typically 

turned on when the temperature is high”) and r3: highConsumption  ¬switchOnCooler (“the 

cooler should not be turned on whenever there is high energy consumption”). 

 Defeaters are denoted by A  p and their peculiarity is that they do not actively support conclusions, but 

can only prevent deriving some of them. In other words, they are used to defeat respective defeasible 

conclusions, by producing evidence to the contrary. A defeater example is: r2’: isOnCooler  

¬switchOnCooler (“when the cooler is on, there is no need to turn it on again”), which can defeat e.g. 

rule r2 mentioned previously. 

The superiority relationship is used for resolving conflicts among rules belonging to the rule set . For example, 

given the defeasible rules r2 and r3 above, no conclusive decision can be made about whether the cooler should be 

turned on or not. But, if the superiority relationship r3 > r2 is introduced, then r3 overrides r2 and we can 

eventually conclude that the cooler will not be turned on. In this case rule r3 is called superior to r2 and r2 inferior 

to r3. Note that the relation > on  is acyclic, meaning that the transitive closure of > is irreflexive. 

Finally, another important element of defeasible reasoning is the notion of conflicting literals [Billington, 1997], a 

feature that plays a significant role in our framework as well.  is defined as a set of conflicting literals if-f at most 

one literal of the set should be derived each time. Obviously, if p is a proposition then {p, ¬p} is such a set of 

conflicting literals. However, in real-life applications there are various other kinds of sets of conflicting literals, 

which cannot be represented merely by a proposition and its negation. Such an example might be the distinct 

values a variable could take, like, e.g. {on, off}, {hot, warm, cold} or {high, medium, low}. Whenever there are 

three or more values, representation by just propositions and their negations becomes impractical and 

counterintuitive. Thus, a sample conflicting literal set might be: 

 = {switchOnCooler, switchOffCooler} 

According to set  above, the following two rules will produce a conflict, which is resolved via the superiority 

relationship r4 > r2 and, thus, the conclusion of the latter rule will override the conclusion of the former one. 

r2: tempHigh  switchOnCooler  (“the cooler is typically turned on when the temperature is high”) 

r4: ¬motion  switchOffCooler  (“the cooler should be turned off if there is no motion inside the room”) 

3.3. Motivation for using Defeasible Logics 
Besides its evident advantage of low computational complexity (see Section 3.1), the motivation behind applying 

defeasible logic instead of classical logic involves certain additional incentives. Firstly, classical reasoning 

approaches, like e.g. First Order Logic, are based on the assumption of perfect knowledge of the environment, 

which is very difficult, if not impossible, to achieve in AmI settings. Reasoning with incomplete information 

regarding the context is significantly more convenient with non-monotonic approaches [Moawad et al., 2013]. 

Additionally, defeasible logic is much closer to human reasoning and is, therefore, more intuitive. The use of 

classical logic would require that the truth status of all pieces of information is known, before commencing the 

reasoning process. But, as human knowledge is quite often incomplete or even contradicting, this requirement 

cannot be always satisfied. Defeasible logic introduces non-monotonicity, which leads to a more intuitive type of 

reasoning, where the emergence of new information can lead to abandoning (i.e. defeating) previously established 

conclusions and adopting new ones. 



A further motivating factor for using defeasible logic is the conciseness of its representation. Defeasible logic does 

not promise to do more than other logics, but, instead, as Covington puts it “[...] the difference is in how it does it” 

[Covington, 2000]. Consequently, while classical logic would probably need extensive representations for 

expressing all possible exceptions to a rule, defeasible logic can simply add a more specific rule that overrides the 

former rule and expresses exactly the same information. 

4. Implementation 

The framework proposed in this work is applied at a Greek State University, namely Building A of the 

International Hellenic University (IHU). The rule-based system is a component of a wider AmI system, aimed to 

provide automations, comfort and savings, named the Smart IHU project3. This section presents the overall 

architecture of the proposed system within Smart IHU and describes each of its components in detail. 

4.1. Architecture 
The generic architecture of the Smart IHU environment follows a three-layer approach (see Figure 1). The bottom 

layer hosts the hardware, namely, the wireless sensor and actuator networks deployed within the University 

building. A service-oriented middleware in the middle layer is responsible for handling the platform and data 

heterogeneity present at the hardware layer. The devices are also distributed in the environment, so that each 

cluster of co-located devices is allocated to a server running an instance of the Web Service middleware. Finally, 

client applications can receive data and operate on the infrastructure via one or more instances of the middleware 

on various servers. Applications provide a graphical interface to communicate with human users when necessary. 

Services additionally provide semantically annotated interfaces and a broker for effective and automatic discovery. 

 

Figure 1. The Smart IHU overall architecture, showing two server instances and all applications. 

In the specific case of rule-based systems introduced in this work, the application layer hosts intelligent agents that 

automatically monitor and manage the infrastructure (see Section 4.4). Each agent integrates a knowledge base and 

a reasoning engine. The knowledge base is filled with facts about the world, i.e. measured values of the 

environment, but also contains policies in the form of rules, entered by expert human users. After collecting the 

facts at each cycle, the agent performs reasoning on the policies, in order to decide on a proper set of actions. The 

agents are also accompanied by a graphical user interface (GUI). 

4.2. Hardware Layer – Deployment of Wireless Sensors and Actuators 
The hardware layer of the proposed system hosts mainly a wide range of sensors for perceiving and actuators for 

manipulating the environment. A first requirement for selecting a set of sensors was to examine which parameters 

would be suitable for composing and enforcing decision-making policies. Such parameters should include 
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environmental qualities, power measurements and user-activity metrics. Additionally, the target large-scale 

deployment calls for devices that can form wireless networks of sufficient range and are affordable in large 

quantities. Consequently, a further substantial requirement was to build the platform over devices that are 

inexpensive and widely-available in the market. 

The set of chosen devices is believed to satisfy the trade-off between cost and efficiency. The first set of deployed 

devices is a sensor/actuator network, referred to as Smart Plugs4. Each Smart Plug is plugged between a wall 

socket and any electronic appliance and can measure its power consumption, return its power state (on or off) and 

switch it on or off. A special kind of Smart Plugs, intended for non-pluggable appliances e.g. air conditioning, can 

intersect power supply cables to carry out the same operations. From now on, both kinds will be referred to as 

Smart Plugs to preserve generality. Each network of maximum thirty Smart Plugs, interconnected over encrypted 

ZigBee, has a coordinator that gives access to data and functions. The current deployment consists of forty-five 

plugs, divided into three plug networks. 

While Smart Plugs cover small-scale, per appliance power measurements, Smart Clampers5 are designated to 

measure large-scale consumption, i.e. whole departments or buildings. The Clampers are attached to the main 

power supply cables and measure consumption via induction. In this deployment, two three-phase clampers are 

placed at the building‟s main power supply and one at the data centre, the University‟s server room. Hence, the 

sum of the first two clampers measures the total building consumption (including the data centre), while the third 

clamper measures the data centre‟s consumption. Then, all clampers transmit their data to a single monitor/receiver 

with a PC-interface, over simple radio frequency (433MHz SRD band).  

 

Figure 2. Topology of Wireless Sensor Networks on the ground floor of the building. 

The third set of devices enables indoor and outdoor environmental monitoring. Twenty Sensor Boards6 form 

another ZigBee mesh network and report temperature, luminance and humidity measurements to two designated 

ZigBee-to-TCP/IP Gateways. The Sensor Boards are fully customizable via coding their microcontroller. To 

maximize battery life, the period for measurement transmission has been set to ten minutes. Additionally, they 
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have been configured not to act as routers, transforming the network topology from mesh to star. Thus, they are 

able to enter sleep mode in-between transmissions, which is critical, again, for extending battery life. 

The final set of devices complies with a different wireless communication protocol, especially designed for smart 

spaces, the Z-Wave protocol. The Z-Wave alliance supports extensive interoperability between all compliant 

devices. In fact, almost every device in a network comes from another manufacturer. A USB Stick is set as the 

network coordinator and PC interface. The mesh network of sensors comprises of fourteen motion detection 

sensors, four smoke alarms, a multi-sensor (for temperature, luminance, humidity and motion) and air quality 

sensors that measure CO2 levels. More devices are instantly supported at communication protocol level and could 

possibly be added in the future, e.g. door or window sensors, to further enrich automation scenarios. 

Figure 2 presents the exact placement of sensors, actuators and web servers in the building. To satisfy wireless 

range restrictions, two clusters of networks mainly exist in the building, each administrated by a server collector. 

The first cluster is found at the southern part and includes Rooms A5, A6, the Data Centre, Lecture room 1, the 

Hall and the Study Room. The second cluster is visible at the eastern part of the building and includes the 

Reception, Rooms A1, A2, A3, A4 and the two Computer Labs. Each cluster has its own Sensor Board star 

network and a corresponding gateway collector. The first cluster is appliance-rich, so it contains two overlapping 

Smart Plug networks, while the second cluster only contains one. The Z-Wave network features fewer nodes and 

longer range so it spans across both clusters. The building‟s power supply is close to the first cluster, so the Smart 

Clamper receiver is placed within the latter. Sensor Boards can also be received by both clusters so the second was 

chosen due to its lower load. Each cluster has a web server to collect and expose data and functions, as described 

in the next section. 

4.3. Middle Layer – aWESoME Web Service Middleware 
Possibly the principal challenge for AmI applications is to find the common grounds for high-level programming 

of tasks and activities. The low-level hardware programming of a diverse variety of sensors and actuators needs to 

be transparent on the upper (application) layer. Wireless sensor network management, topology and properties 

need to be transparent as well. Devices enforce various constraints such as data format heterogeneity and platform-

specific APIs. Applications, on the other hand, require universal, platform-agnostic access to device functions and 

data. In a large, distributed environment, such as a smart building, universal and remote access also needs to be 

ensured. Additionally, in such environments, devices dynamically enter and leave the space and this is a non-trivial 

parameter that has to be seriously taken into consideration.  

Table 1. List of service operations available in the environment. 

Service Operation Output Semantics Operation Semantics 

SmartPlugService SwitchOn hasEffect:Status ActuatorOperation 

SmartPlugService SwitchOff hasEffect:Status ActuatorOperation 

SmartPlugService GetPower Power SensorOperation 

SmartPlugService GetStatus Status SensorOperation 

SmartClamperService GetPower Power SensorOperation 

SensorBoardService GetTemperature Temperature SensorOperation 

SensorBoardService GetHumidity Humidity SensorOperation 

SensorBoardService GetLuminance Luminance SensorOperation 

SensorBoardService GetBatteryLevel BatteryLevel SensorOperation 

ZWaveService GetMotion Motion SensorOperation 

ZWaveService GetCO2 CO2 level SensorOperation 

ZWaveService GetTemperature Temperature SensorOperation 

ZWaveService GetHumidity Humidity SensorOperation 

ZWaveService GetLuminance Luminance SensorOperation 

ZWaveService GetSmoke Smoke Alarm SensorOperation 

ZWaveService GetBatteryLevel BatteryLevel SensorOperation 

 

With the rise of Service-Oriented Architecture and Service-Oriented Computing, Ambient applications found a 

suitable paradigm that tackles all aforementioned requirements. Service-orientation follows the principle of 

“services instead of data”, hiding data and functions behind a universal API. Thus, internal application logic is 

transparent to the service client. In this case, hardware or software related services in the environment provide the 

necessary abstractions from device topology and function. Additionally, services allow for universal service-



clients on any platform and in any programming language. Platform-dependent device operation is performed, 

regardless, on the server-side. 

To realize the Smart IHU platform, a service-oriented middleware has been developed following well-defined Web 

standards. The aWESoME middleware [Stavropoulos et al., 2013] provides access over WSDL services to every 

device operation on the hardware layer. Since WSDL provides syntactic interoperability, services are usable even 

outside the borders of this system. To enhance the middleware and provide higher-level intelligence, it was further 

enriched with SAWSDL semantic annotations [Farrel & Lauser, 2007]. The so-called Semantic Web Services are 

machine interpretable and can be utilized for automatic discovery, selection, matching and composition. Table 1 

provides a comprehensive list of service operations available, along with their semantic annotations (SAWSDL 

model references). The BOnSAI ontology‟s smart building concepts, environmental parameters and devices were 

used for the annotation [Stavropoulos et al., 2012]. The semantic description of device capabilities constitutes an 

added-value addition that further enhances dynamicity and interoperability. 

Apparently, different services host similar operations, as different sensors provide the same environmental 

measurements. Semantic annotations help applications handle these operations similarly, e.g. get a temperature 

reading either from SensorBoardService or ZWaveService. Also, sensor operations are distinguished from actuator 

operations, which bear an object property of „hasEffect‟ on the status of devices. Finally, note that different 

instances of the same services are hosted by more than one server in the environment, as detailed previously in our 

sensor network deployment. 

4.4. Application Layer 
The syntactic and semantic interoperability provided by the middle layer (see previous section) support a variety of 

platform independent applications on the topmost layer of the infrastructure. Applications developed so far cover 

all major platforms and many different purposes. A desktop application enables comprehensive monitoring and 

management of the complete infrastructure. Users are able to monitor all real-time and historic data in graphs. 

Additionally, they can invoke actuator operations and manipulate the building‟s energy consumption, thus 

enabling savings through decision making [Stavropoulos 2011b]. An Android mobile application enables the same 

administrative functionality. Various other applications enable querying the service registry using semantic 

criteria, i.e. service selection, discovery and matching. History-monitoring clients mentioned above are not 

presented here, since they are outside the scope of this work. However, their monitoring capabilities have been 

used to observe and design the energy-saving policies applied by the rule-based systems. 

This work focuses specifically on two rule-based agents for automatic and effective energy management, both of 

which are designed to act autonomously, based on an initial rule base and input from sensor readings. The first 

agent, called Wintermute, represents an initial attempt to using production rules, while the second agent, called 

DeL, evolves the approach one step further, using defeasible logics (see Section 3). Each is presented in the 

corresponding sections that follow.  

4.4.1. Reactive Agent (Wintermute) 
Wintermute represents the first agent implemented and integrated into the architecture. The initial requirements 

analysis is aiming at an intelligent agent system that incorporates user knowledge and, from then on, acts 

autonomously to achieve the energy-saving goal. The following functional requirements have been set: 

a. The agent must be able to maintain a knowledge base, which will serve as its own internal representation 

of the world‟s state. This information will apparently have to be acquired through the Semantic Web 

Service interface of the middleware. 

b. The agent must be able to perform reasoning on the status of the world and apply the derived decisions 

towards modifying the world state accordingly. This is again performed, by invoking the Semantic Web 

Service functions. 

c. The agent must be able to communicate with human users and/or other software agents to exchange 

information or negotiate actions. 

Additional non-functional requirements to be considered include reliability, fast performance, low response time, 

extensibility, usability and interoperation with other already active clients. 

Different methodologies of AI, like e.g. learning, can be employed to automate the decision making process of 

such a system. In this approach, we chose to embed a rule-based expert system into an intelligent agent residing on 

a multi-agent platform. Expert systems traditionally comprise of two parts: (a) the knowledge base, which is a 

dynamically changing repository of known facts and rules, and, (b) the inference mechanism that performs 

reasoning on the knowledge base using principles of a formal logic. 



Facing the above challenges, a multi-component architecture comprised of closely connected modules has been 

adopted to manipulate the Smart IHU environment (see Figure 3). Like every other application on the Smart IHU 

platform, Wintermute is built on top of the already established middleware and hardware layers. The aWESoME 

middleware exposes all data and functions through Web Services, providing the necessary abstractions for 

Wintermute to manipulate the environment. As stated before, aWESoME has been enriched with semantic 

descriptions, following the SAWSDL standard, to enhance semantic interpretation by the applications themselves. 

 

Figure 3. Wintermute agent architecture. 

The multi-agent platform hosting Wintermute is JADE7 (Java Agent Development framework). Within the 

platform it is possible to have many Wintermute agent instances running simultaneously and each instance can 

bear a different portion of the knowledge base and be appointed to different subsets of tasks. Collaboration and 

negotiation between Wintermute and potentially any other type of agent within the platform is possible; however, 

as agent negotiation techniques are outside the scope of this work, from now on we consider a single instance of 

Wintermute responsible for all aspects of energy saving within the building. 

Wintermute‟s GUI component provides a connection between the system and human user administrators. The GUI 

is semantically-enabled, using information from semantic service descriptions to help users author policies, which 

are later committed to the Wintermute agent‟s knowledge base. The application is developed in Java and the 

JavaFX UI platform. A primary purpose is to allow and facilitate users to author rules that represent user-defined 

energy saving policies. Towards this end, the tool parses Semantic Web Service descriptions (SAWSDL files) of 

Web Services available in the SmartIHU environment. These machine interpretable semantic descriptions enhance 

the effectiveness, scalability and easy-of-use of the application. Specifically, the ontology contains an Operation 

concept having an ActuatorOperation and a SensoryOperation subclass. Service operations annotated as 

„SensoryOperation‟ belong to sensors and retrieve sensory output. Hence, a direct convention can be made, that all 

sensory operations are suitable to be used as rule condition predicates (LHS) but are completely unfit for rule 

actions (RHS). Similarly, service operations annotated with the „ActuatorOperation‟ concept are fit for rule action 

predicates. As a result, the application is each time dynamically aware about which operations should be presented 

during the condition (rule body) or action (rule head) authoring process of a rule. This also enhances the 

extensibility of the application, when adding completely new services, and its adaptability, as service providers 

interleave the ambient environments.  

The majority of services utilized so far is summarized on Table 1. To implement the service description parser, the 

easyWSDL toolbox8 was used. Figure 4 shows the main window of Wintermute‟s GUI. The right panel shows a 

collection of rules loaded in the workspace. The left pane allows authoring or editing an existing rule. Semantic 

information of services is loaded in a dropdown box for the user to select available conditions or actions 

dynamically. Additionally to rules, the GUI also provides the agent with configuration properties such as the time 

interval between the invocations of the services. 

The rule inference engine in the core of Wintermute is JESS, found to be the fastest and most powerful amongst 

CLIPS, jDREW and Mandarax [Daniele et al., 2007]. The agent‟s knowledge base is filled with facts and rules 
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about the state of the building, environmental-, power- and energy-wise. Rules are authored by the user over the 

GUI and represent energy saving or user comfort policies. The agent semantically parses these rules and monitors 

aspects of interest that they may contain. Values are returned by invoking the corresponding Semantic Web 

Service operations. A rule‟s conditions correspond to specific measurements that translate to particular sensors, 

e.g. a room‟s temperature sensor. This way, the agent does not have to constantly monitor the entire infrastructure, 

thus, saving traffic load on the Web Server. The monitored values take the form of deffacts in the knowledge base 

that represent a model of the current knowledge about the world‟s state, while rules are represented as JESS 

defrules. For instance, a rule for switching off the cooler, when the temperature is below a given threshold, would 

be expressed as follows: 

(defrule ruleTemp 

   (call GetTemperature 8C3C0A ?x0) 

   (test (< ?x0 25) )  

=>   

   (call SwitchOff 99678C) 

) 

where 8C3C0A and 99678C are the IDs for the temperature sensor and cooler actuator, respectively.  

 

Figure 4. Both images illustrate the Wintermute GUI and its rule editing capabilities: rule conditions and actions can be 

manipulated accordingly in a user-friendly manner (top), and, the user is able to select conditions and actions from a 

dropdown list, dynamically retrieved from semantic web service descriptions (bottom).  



To improve the agent‟s capacity for better performance and accessibility, the invoking frequency can be 

appropriately adjusted, also through the GUI component in real time. When a high sampling frequency is selected, 

the agent is fast and responsive, while a low frequency gives room to other service client applications running 

concurrently. 

At the same time, the JESS inference engine checks for activated rules by matching patterns (sampling frequency, 

rules triggered and activated). Upon activation, web services are invoked to apply the appropriate actions. Since, 

even with numerous actuators on various appliances, the platform is still much less flexible than a human being, 

email alerts are in some cases issued to the system administrator. The latter can then physically act himself or 

simply take notice on needed changes. In the future, a wider variety of more sophisticated actuators, perhaps even 

robotic agents, could take over the workload from humans. 

Notice that in case multiple rules fire, the system is not able to automatically handle conflicts, e.g. two rules invoke 

contradictory actions. When such behavior is observed, manual re-authoring of the rule base is needed. This 

drawback of reactive rules has been alleviated by using defeasible logic, as shown in the next section. Section 5.3 

elaborates on the comparison between the two rule paradigms. 

4.4.2. Deliberative Defeasible Logic Agent (DeL) 
Building on top of Smart IHU‟s middleware layer, the defeasible logic (DeL) agent is an autonomous software tool 

responsible for maintaining user comfort and improving energy consumption. Its purpose is more or less identical 

to that of Wintermute; both agents aim to provide an overall user-friendly interface for system administrators and 

energy experts to formulate energy-saving and preservation policies. The agents are then responsible for 

autonomously acting and carrying out these policies, manipulating the environment via the actuators. However, 

DeL features a comparatively more “deliberative” behavior, entailing at the same time a different software 

architecture. More specifically, DeL offers more flexibility and user-friendliness in the representation of the 

policies, providing the advantages outlined previously in this paper (see Sections 3.1 and 3.3). 

4.4.2.1. Defeasible Logic Rule Base 
Based on the superiority relationship feature of defeasible logics (see Section 3.2), DeL presents the user with the 

definition of three distinct rule sets ,  and : 

 Preferences rules (): These are rules that deal with the comfort of the user and his/her personal 

preferences, like e.g. the desired room temperature during the winter months. A sample preference rule is 

r2 from Section 3.2: tempHigh  switchOnCooler. 

 Maintenance rules (): Namely, the rules that formulate the power management scheme of the 

building, like e.g. the deactivation of certain devices or appliances during late night hours. A 

maintenance rule paradigm is: highConsumption  switchOffCooler. 

 Emergency rules (): These are rules that are triggered in case of an emergency, like e.g. the activation 

of emergency lights in the case of fire, which could be represented by the following rule: fire  

switchOnLights. 

If  is the set of all rules in the framework, then for the three rule sets:       . Hence, in our approach 

rules can belong to preference, maintenance or emergency rule sets, adding an intuitive and effective classification 

practice for energy experts. Additionally, this approach is a refined version of the rules deployed in the 

Wintermute agent (see Section 4.4.1). 

Regarding the scope of each rule set,  is restricted to isolated rooms, since it contains rules that deal with the 

user-defined “micro-management” of the conditions inside a room. The scopes of the other two rule sets are 

broader, covering the whole building, where the framework is deployed, including the rooms as well as the rest of 

the other shared areas and facilities, like corridors and storage rooms. The three rule sets demonstrate escalating 

priority and, more specifically:  p  ,  m  ,  e    p < m < e. Notice that rules belonging to any of the 

three sets must –  in essence –  be defeasible, in order for the priority relationship to be effective. 

4.4.2.2. Defeasible Reasoning 
For the reasoning process, DeL incorporates an instance of SPINdle [Lam & Governatori, 2009], a Java-based 

state-of-the-art defeasible reasoning engine. Although SPINdle lacks a theory grounding mechanism (i.e. no 

variables can be used in the predicates), which would be greatly beneficial for the purposes of this work, the 



engine‟s advantages (fast, reliable, highly integrated and easily-deployable) constitute the incentive for preferring 

the specific reasoner. The lack of this grounding mechanism is solved in our approach via replacing atoms 

containing arguments and variables with appropriately composed (sets of) “synthetic” predicates and appending 

them to the knowledge base. For example, atom switchOn(cooler) becomes switchOn_cooler, while atom 

switchOn(X) is replaced by a set of synthetic predicates {switchOn_device_1 , switchOn_device_2 , …, 

switchOn_device_n} for all the devices registered in the framework. In case SPINDLE supports first-order 

theories in the future, this grounding pre-processing phase will not be necessary any more. 

 

Figure 5. Architecture of the DeL agent in the application layer. 

Figure 5 depicts the software architecture of the DeL agent and the information flow between its components. At 

the topmost level, human administrators and domain experts use an interface to author policies for the agent to 

enforce. Contrary to Wintermute, DeL does not feature an integrated GUI for rule authoring, but one could 

separately download one of the available defeasible logic rule editors, like, e.g. SPINdle’s Defeasible Logic Theory 

Editor9, or the much more flexible S2DRREd (Syntactic-Semantic Defeasible Reasoning Rule Editor) [Kontopoulos 

et al., 2012]. The latter editor adds a supplementary level of semantic assistance during rule base development, 

creating meta-models of the main defeasible logic theory notions and, thus, offering the flexibility of authoring 

rule bases of various syntaxes. Figure 6 displays the main window of the tool as well as its STM (Semantic Tag 

Mapping) window that provides a meta-modeling facility for generating schemas over various language versions. 

A meta-model provides a schema for semantic data, specifying what elements may be contained in the model and 

how they relate to one another. In essence, each meta-model is a specification of a domain-specific modeling 

language. 

Notice that each type of system user is granted authoring rights for different rule subsets (see previous subsection). 

Either manually or via the help of a specialized GUI, a part of the authored policies is directly translated into 

SPINdle-compliant syntax and formulates the initial rule base of the system, while the remainder needs to undergo 

a pre- and post-processing phase at the execution layer. The purpose of this layer is to handle rules with conditions 

containing predicates that require the invocation of sensors via the middleware layer of the architecture. Thus, the 

literals of the rule conditions have to be transformed into a suitable syntax for invoking the respective Web 

Services. For example, the motion predicate is replaced by a „ZWaveService.GetMotion()‟ service operation call. 

This preprocessing transformation is currently performed via a lookup table, but future plans involve integrating 

this association in the back-end ontology of the system. Finally, instead of serially examining all conditions, each 

service operation is only invoked once, as duplicate conditions may exist within the rule set. 

Transcending from the Middleware (or Service) layer to the hardware layer, values are retrieved from the 

distributed wireless sensor networks across the building. Upon completion, all predicates are replaced with 

numeric values forming the actual facts to be appended to the knowledge base of the SPINdle reasoner, again with 

the help of the lookup service. This is the reverse process (i.e. post-processing) that has to take place when the 

readings of the sensors are retrieved. Notice that, rule conditions typically involve sensor readings and rule 

conclusions usually point to actuator activities. However, contrary to production rules, defeasible logic allows for 
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more complex reasoning, where the conclusions of a rule may serve as conditions for further rules. Although our 

rule bases do not currently include such cases, this feature is already handled by the aforementioned lookup service 

that clearly distinguishes sensor readings and actuator activities. 

 

Figure 6. S2DRREd Main and STM windows.  

The reasoning process is performed once in the beginning, when the knowledge base is complete after the pre- and 

post-processing phases, and afterwards it is repeated every time the knowledge base is updated with new facts. The 

reasoning results from each cycle have to go through the same processing steps and then to the invocation of the 

respective services (if any). Following this pattern, e.g. the switchOnLight derived predicate would point to the 

„SmartPlugService.SwitchOn(Light)‟ service operation call. Regarding the rest of the predicates, they are all 

expressed in direct correspondence to service operation names on Table 1 via the lookup table. Through service 

invocation, wireless actuator networks in the building are used to apply the desired effects. In other cases, services 

simply perform software operations such as sending an email alert. 

5. Use Case: International Hellenic University Building A 

As already stated, the framework is applied at the International Hellenic University (IHU) Building A; this section 

demonstrates the deployment of the policies and their impact on the overall energy consumption. The specific 

building is a large, appliance-rich building that bears a restrictive and wasteful infrastructure. Thus, it can serve as 

a stimulating test-bed of our methodology, which can then be applied to other buildings as well. 

The percentage of energy savings accomplished by any method is only subject to a building‟s prior state of 

efficient usage, i.e. the greater the waste the greater the savings are. Thus, prior to formulating the energy 

management scheme policies, the building‟s current behavioral patterns had to be observed and identified, at least 

as far as energy consumption is concerned.  

5.1. Current Scheme 
As presented in previous attempts [Stavropoulos et al., 2013], the hardware, Web Service middleware and 

appropriate client applications have already provided a basis for comprehensive monitoring and management of 

energy consumption along with environmental sensor readings. Apart from desktop and mobile administration 

software, a Web application10 makes energy monitoring publicly accessible to any external viewer as well. 

Observing the vast energy consumption of the building in total, one has to initially disaggregate it to smaller 

clusters of appliances and/or activities. Attaching a sensor on the data center‟s power supply allows us to directly 

isolate its power consumption from the rest of the building. Unfortunately, the data center consisting of servers and 

cooling units is already configured to its energy-consumption minimum for adequate cooling, meaning that its 

consumption (~ 50% of total daily consumption) has to be taken as granted. The remaining consumption refers to 

appliances in the building and comprises mainly of computers, lighting, heating and cooling units and a few 
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projectors, peripherals, coffee makers and kitchen appliances. Most of this equipment is monitored separately 

using individual meters/actuators. Interesting observations include many appliances left constantly on, especially 

the high consuming photocopiers. Lighting during the night is already working on schedule and is responsible for 

the nightly consumption along with the stand-by consumption of all appliances. 

However, taking action on heating and cooling is moderately restricted due to the nature of the building‟s existing 

infrastructure. Heating and cooling both take place in a central boiler/cooler and are distributed to the building 

through fan coil endpoints, typically one per room. During the winter, the central heating system consumes oil, 

which translates to less power usage. The cooling system, on the other hand, uses a considerably large amount of 

energy per day to centrally freeze water. During the winter, fan coils just let heat pass through, even while 

powered off. When powered on, the fans accelerate heat dissemination. Conversely, during the summer, fan coils 

provide utility only while they are on, while having the fans off actually saves up on the central cooling system 

consumption, as it has to freeze less water over time. However, most of the fan coils in the building would have to 

coordinate for this savings to take effect. Overall, the fans themselves hold an insignificant amount of consumption 

even as a whole. Observing the yearly course of the seasons, consumption of appliances was thus found to be 

much lower, since oil is used and fan coils are mostly powered off. Additionally, the university employees do keep 

the fan coil usage to a minimum. Combined with their very small consumption, their daily energy needs go 

unnoticed in total. All the above, result in much less energy spent for heating compared to cooling and, thus, much 

less saving potential. 

A final observation was made during the early morning hours. Every morning, from 6am to 8am, the total power 

consumption increases by 5kW, resulting in 10kWh of energy per day, in average over the last year (higher during 

working days and lower during weekends). Inspecting the appliances, this amount comes from the building 

lighting being switched on by the early morning cleaning services. Since the cleaning crew does not need constant 

lighting to the whole university for this course of two hours, there is definitely some space for savings here. 

5.2. Applying Defeasible Logics – Sample Policies 
This subsection features a simplified example demonstrating the deployment of the policies rule base and the 

improved flexibility offered by the different rule sets (see Section 4.4.2.1). Suppose that the following example 

explicitly involves room „A6‟ of IHU‟s Building A and revolves around the operation of the room‟s cooler during 

the summer months. Towards this affair, we can formulate the three distinct rule sets ,  and  that, as already 

stated, represent the policies for preference, maintenance and emergency, respectively. 

To begin with, let‟s suppose that the employees working at room „A6‟ define the following preferences policy 

(rule set ) regarding the operation of the room‟s cooler: 

p01: temp(a6,X), X < 18 → tempLow(a6) 

p02: temp(a6,X), X > 28 → tempHigh(a6) 

p1: tempHigh(a6)  switchOn(a6,cooler) 

p2: ¬tempHigh(a6)  switchOff(a6,cooler) 

As mentioned before, the preferences rules primarily handle user comfort. Thus, according to the above 

preferences, the employees-users determine the thresholds that define – by their personal standards – the „low‟ and 

„high‟ temperatures in the room and designate when the cooler should be turned on or off in accordance to these 

thresholds. Preference policies like these allow for a periodic use of fan coils, instead of the non-stop, manually 

scheduled usage in the past. Usage history has shown that employees usually do not mind crossing the temperature 

thresholds and leave the appliances on, even after leaving the room they are working in. The periodic usage of 

coolers has a positive impact on the building daily usage, removing the fan coil footprint itself, but most 

importantly by saving up on the central cooling system consumption, less water has to freeze over time. 

Moving on to the system‟s administrator, a maintenance policy (rule set ) has to be defined, in order to optimize 

the overall operation of the building and its respective power consumption. Maintenance rules tend to enforce 

further savings, often compromising the comfort requested by the user-defined preference rules. The scope of the 

following rules lies in the specific room and the operation of its cooler: 

m01: consumption(a6,X), X > 2000 → savingMode(a6) 

m02: time(X), X > 2200 → savingMode(a6) 



m1: ¬motion(a6)  switchOff(a6,cooler) 

m2: savingMode(a6)  switchOff(a6,cooler) 

m03: isOn(a6,cooler)  ¬switchOn(a6,cooler) 

m04: isOff(a6,cooler)  ¬switchOff(a6,cooler) 

As can be observed, the administrator starts by determining the conditions for having the room switch to „saving 

mode‟, during which the system will attempt to minimize consumption. More specifically, rule m01 deals with the 

total energy consumption of the room, handling flexible loads to ensure a total consumption is not exceeded in any 

given moment. Rule m02 handles the operation of the room‟s appliances during late night hours11. The following 

two rules, m1, and m2, determine when the cooler will switch off, depending on the presence of people in the room 

and the activation of the „saving mode‟. Finally, the last two defeaters make sure that the cooler‟s actuator will not 

attempt to turn on an already operating cooler and, conversely, will not attempt to turn off a cooler that has already 

been switched off. 

Eventually, the administrator has to formulate the policy for emergency situations (rule set ): 

e01: smoke(a6) → alert(a6) 

e02: highCO2(a6) → alert(a6) 

e1: alert(a6)  switchOn(a6,alarm) 

e2: alert(a6)  switchOff(a6,cooler) 

When a sensor reading is received that implies unsafe conditions inside the room, like e.g. smoke or too high CO2 

concentration or other measured values exceeding safety limits, the system activates the room‟s alert (rules e01 and 

e02). The alert then handles the operation of the appliances in the room accordingly (rules e1 and e2). 

Concluding the example, the following set of conflicting literals (see Section 3.2) has to be inserted into the rule 

base: 

 = {switchOn(X,Y), switchOff(X,Y)} 

This way, a conflict is automatically generated between pairs of rules, where one rule concludes that a device (e.g. 

cooler, alarm etc.) should be turned on and the other one concludes that it should be turned off and vice-versa. 

These conflicts will then have to be resolved via appropriate superiority relationships among each pair of 

conflicting rules. In the cases of conflicts between rules belonging to the same rule set (e.g. both rules are 

maintenance rules), the superiority relationship has to be explicitly added to the knowledge base by the user with 

the appropriate access permissions (in the case of maintenance rules this would be the administrator). On the other 

hand, the cases of conflicts between rules belonging to different rule sets is handled automatically by the system, 

via rewriting the theory and adding the respective superiority relationships, according to the scope of each rule set. 

Thus, for the specific rule set presented in this subsection, the following superiority relationships are appended to 

the rule base: 

m1 > p1 

m2 > p1 

e2 > p1 

Understandably, the overall sample rule base presented here is rather simplistic, but hopefully demonstrates the 

expressiveness and user-friendliness of the defeasible logic representation. Moreover, the flexibility of the conflict 

resolution mechanisms of defeasible reasoning combined with the three distinct rule sets of escalating priority 

proposed in this approach, produce a versatile Smart Building management system. To give a deeper insight, we 

present the following brief examples. 

                                                                 

11 Other appliances that could potentially benefit from this operation are the printing devices that typically remain on during the 

night and are responsible for some major energy waste due to periodic calibrations. Having the system automatically switch off 

the printers according to timely schedule would provide a solution. During the past year, though, many students have visited the 

computer lab after late hours, wanting to print out lecture notes. Thus, an appropriate rule should also turn on the photocopiers in 

case of detected motion. Of course, this functionality can easily be integrated into the system, but is omitted here due to 

simplicity. 



Example 1 

Suppose that the following facts, generated by respective sensor readings in room A6, are inserted into the above 

rule base:  

f1: temp(a6,30). 

f2: time(2300). 

f3: motion(a6). 

Fact f1 triggers rule p02, whose derived conclusion matches the condition of rule p1. At the same time, fact f2 

triggers rule m02 and the derived conclusion of the latter matches the condition of rule m2. By observing rules p1 and 

m2 one can detect that the two conclusions (switchOn(a6,cooler) and switchOff(a6,cooler)) contradict 

each other, because of the set of conflicting literals . Thus, it is not clear whether the cooler should eventually be 

turned on or off. However, since all maintenance rules have a higher priority than preference rules (see 

previously), the system automatically infers that p1 < m2 and the maintenance rule eventually prevails. 

Example 2 

In addition to the three facts inserted during the previous example, suppose that a fourth fact is also inserted:  

f4: highCO2(a6). 

Fact f4 triggers rule e02, whose derived conclusion matches the conditions of rules e1 and e2. Rule e1 is not 

attacked by any other rule, thus, the alarm in room A6 is activated. However, the conclusion of rule e2 contradicts 

the conclusion of rule p1. But, as already stated, all emergency rules have top priority when attacked by preference 

or maintenance rules. Thus, it is automatically inferred that p1 < e2 and we can safely conclude that the cooler will 

eventually be turned off. Demonstrating the dynamicity of the system, if CO2 levels fall back to normal later on, 

the fact base will be updated resulting to a new execution of the rule set and a new set of derived conclusions. 

As already mentioned before, SPINdle does not support theory grounding and, additionally, features like 

conflicting literals are substituted by appropriate sets of conventional defeasible rules and superiority relationships 

before being submitted to the reasoner. Appendix A illustrates the above theory, together with the facts used in the 

two previous examples, in the SPINdle-specific syntax. The transformation from the initial syntax, or any other 

input rule syntax like e.g. defeasible RuleML12), to the target syntax constitutes a task appointed to the end-

user/administrator, potentially via a specialized GUI used for authoring the rule base (see Section 4.4.2.2).  

5.3. Comparison of the Two Rule Paradigms 
As demonstrated in the previous subsection, the representation of policies via defeasible logic is highly intuitive 

and flexible. In order to demonstrate these advantages, we present the reader with rule p1 from the above rule base, 

expressed however as a reactive rule instead of a defeasible one: 

tempHigh(a6), motion(a6), ¬savingMode(a6), ¬isOn(a6,cooler), ¬alert(a6)  

→ switchOn(a6,cooler) 

One can easily realize that the latter version of the rule is required to include all possible exceptions (e.g. 

¬savingMode) in its body.  It should be mentioned here that negation in the reactive rule setting is not strong 

negation, but negation-as-failure, i.e. a negated atom is true, when it is not present in the current content of the 

knowledge base. These extensive representations for expressing all possible exceptions to a rule is 

counterintuitive, since in cases of hundreds of rules the resulting representations would be greatly impractical.  

Additionally, this peculiarity makes the whole system less flexible, as it would require the end-user to have access 

to (and knowledge of) parts of the internal policies, namely, more than his preferences, which does not comply 

with the end user‟s access levels. Likewise, maintenance rules would need to have access to predicates belonging 

to emergency policies, ultimately rendering useless the initial distinction in three separate classes (preferences, 

maintenance, and emergency). 

Finally, as already mentioned in Section 4.4.1, the production system cannot easily handle rule conflicts that arise 

when two rules invoke contradictory actions. Such conflicts could be resolved by rewriting (parts of) the rule base, 

                                                                 

12 Schema Specification of Defeasible RuleML Version 1.0: http://ruleml.org/1.0/defeasible/defeasible.html 

http://ruleml.org/1.0/defeasible/defeasible.html


which is a counterintuitive approach. On the other hand, defeasible logic offers more intuitive conflict resolution 

mechanisms, via rule superiorities and sets of conflicting literals. 

5.4. Results 
Via persistently enforcing policies like those mentioned in the previous subsection, we noticed a daily energy 

consumption reduction throughout the building. Considerable changes commence from certain rules, such as those 

that schedule the operation of printers. However, these amounts are not significant, when taking into account the 

total building consumption. In addition, the various events (workshops and lectures) taking place daily at the 

university premises at a non-periodic fashion result in small changes that are harder to detect. 

 

Figure 7. Savings on everyday morning maintenance. 

An exception to the above is the building consumption during early morning cleaning. As can be seen in Figure 7, 

every morning between 6am and 8am, consumption peaks up by an average of 5kW up to 15th June. As reported 

before (see Section 5.1), the reason for this peak lies in the fact that, during early morning hours, the cleaning crew 

had been keeping all lights on even when interleaving the rooms. The presence of rules that involve motion 

detection in the rooms (lights are switched off, when no one is present in the room – e.g. see rule m1 in Section 5.2) 

eliminated this peak.  

However, a slight adjustment was required, in order to handle this peculiarity during early morning hours. More 

specifically, during those hours the system has been regulated to run on responsive mode, switching the lights 

instantly on or off according to motion detection. This mode is, of course, unsuitable for any other time of the day, 

as office employees typically stay put (no motion detected), so the lights respond to much longer periods of 

undetected motion. 

On the other hand, during responsive mode, we noticed that the system could not instantly respond to sensor 

readings, due to serially processing all service calls within the loop. Although each service call‟s response time 

averages below 1 sec, the sum of all calls within the monitor loop takes up a considerable amount of time. Thus, a 

composite paradigm of the agent application was deployed, having an instance of the responsive agent 

(Wintermute) handle few, reactive policies only and an instance of the deliberative agent (DeL) handling the rest, 

long-term policies. As a result, the reactive agent has only a single or just a few monitor calls and responds within 

a time span of a second. 

All in all, the integration of the agents in the Smart IHU architecture guaranteed at least 2% to 4% daily energy 

savings, which is a significant percentage considering the large scale of energy consumed by a university building. 

To put it in perspective, the university consumes around 438.2kWh per day (average of past year), around half of 

which belongs to the data center (221.5KWh). This amount could easily be matched to a monthly consumption of 

a small household, while the amount of 2% could equal the total daily consumption of that household. 

As a final remark, the amount and percentage of the system‟s savings are only relevant to how much energy was 

being wasted in the first place. All in all, the system can only guarantee to enforce all energy-saving behavior and 

ensure that energy-wasting behavior is kept to a minimum.   

5.5. Critical Discussion 
The previous subsection demonstrated the advantages of combining the two agent types (reactive and deliberative) 

inside a common AmI architecture, since each type features certain pros and cons. More specifically, the reactive 

agent is based on production rules and naturally excels at instantly invoking actuators, thus, managing the reactive 

operation of devices in cases when response time is critical. On the other hand, the deliberative agent offers higher 



expressiveness and more intuitive conflict resolution mechanisms, permitting a clear distinction of the different 

rule sets and access levels. A further advantage of this agent type is the fact that it can reason on more complex 

rule bases, where the conclusions of a rule may serve as conditions for other rules etc. This capability provides an 

internal state to the agent as well as a more complete modeling of the environment. 

Although both agent types bring different elements to the table, it is not necessary to choose one over the other. 

Instead, the hybrid agent type has been proposed in literature that is concurrently capable of reactive and proactive 

behavior [Wooldridge, 2001]. Hybrid agents typically integrate – amongst others – two distinct layers in their 

architecture that deal respectively with the two types of behaviors (reactive and proactive). The specific 

architecture of the agent, nevertheless, depends on the layering as well as the information and control flows within 

the layers. Though stimulating as an idea, the hybrid agent type is out of the scope of this paper and is included in 

plans for future development. 

6. Future Work 

Besides investigating the integration of a hybrid agent type into the proposed architecture (see previous 

subsection), our future plans involve extending the scale and invasiveness of the experiments. Rules can grow in 

numbers, raising the load of operations to perform throughout the building. More interfering rules, such as killing 

the stand-by mode of PCs, will carefully be introduced. Such rules have been avoided thus far, due to their high 

intrusiveness and difficulty to detect when that device will be needed again (the placement of the appropriate 

hardware can be experimented with). Towards improving the tools accompanying the framework, a Web UI is 

being developed, in order to enhance user experience and convenience, but will obviously have no impact on the 

observed results. 

Furthermore, the platform can be extended and enhanced on every layer. Regarding the service layer, the agents 

can benefit from automatic service discovery, for dynamically discovering or substituting services that interleave 

the environment in real time. This way, new portable and redundant service providers could be introduced into the 

system. On the user and rule layers, a machine learning subsystem can be employed to discover regular 

consumption patterns and suggest respective energy-saving rules.  

On the agent platform level, we will investigate integrating more instances of same or different agent types 

(reactive, deliberative or hybrid) to serve different roles. Each agent will be assigned a sub-task or a region within 

the building and negotiate with the others towards achieving a certain goal (e.g. comfort and/or energy savings). 

Agent negotiation will be needed especially for resolving potential conflicts among agents, e.g. when two or more 

agents are assigned the operation of the same device(s).  

A final future goal is to investigate the application of temporal defeasible logics [Governatori & Terenziani, 2007], 

in order to efficiently deal with temporalized durative facts and with potential delays between rule antecedents and 

consequences and overall capture the temporal aspect in our framework. 

7. Conclusions 

This work presents a building-wide real-world rule-based Ambient Intelligence application that aims for user 

comfort and energy savings. Multiple wireless sensor and actuator networks that comply with different product 

families and communication protocols have been deployed to collect environmental and energy data across a State 

University building. The infrastructure integrates a middleware providing service-orientation by unifying all 

underlying distributed and heterogeneous wireless sensor and actuator platforms. Two rule-based approaches for 

managing energy saving schemes have been proposed: Wintermute and DeL. 

The former involves a reactive rule-based agent, which enables administrators to author and enforce energy saving 

policies, as sets of production rules that run using a production rule engine. The latter, more advanced, approach 

involves a defeasible logic reasoner that delivers more intuitive policy authoring, offering sophisticated conflict 

representation and resolution mechanisms. A priority ordering for each rule type is defined and, via this capability, 

a priority scheme is proposed that categorizes rules in clusters of preference, maintenance and emergency policies.  

For the experimental part, a careful analysis and monitoring of year-long consumption data has been performed 

and suitable policies were authored. A considerable amount of savings was achieved, but most importantly, the 

policies guarantee to keep any potential energy waste to a minimum. Another observation was that such real time 

systems require the use of more than one software agent to especially ensure instant response and reactiveness for 

the most important of policies.  
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Appendix A – SPINdle Syntax 

The following fragment illustrates the SPINdle-specific syntax for the sample rule base presented in Section 5.2. 

Notice that conflicting literals are represented by specific rules added to the rule base, accompanied by respective 

superiority relationships. 

set @temp_a6 = 30 

set @time = 2300 

>> motion_a6 

>> highCO2_a6 

 

# preference rules 

p01: $@temp_a6 < 18$ -> tempLow_a6 

p02: $@temp_a6 > 28$ -> tempHigh_a6 

p1: tempHigh_a6 => switchOn_a6_cooler 

p2: -tempHigh_a6 => switchOff_a6_cooler 

 

# maintenance rules 

m01: $@consumption_a6 > 2000$ -> savingMode_a6 

m02: $@time > 2200$ -> savingMode_a6 

m1: -motion_a6 => switchOff_a6_cooler 

m2: savingMode_a6 => switchOff_a6_cooler 

m03: isOn_a6_cooler ~> -switchOn_a6_cooler 

m04: isOff_a6_cooler ~> -switchOff_a6_cooler 

 

# emergency rules 

e01: smoke_a6 -> alert_a6 

e02: highCO2_a6 -> alert_a6 

e1: alert_a6 => switchOn_a6_alarm 

e2: alert_a6 => switchOff_a6_cooler 

 

# rules for handling conflicting literals 

c01: switchOff_a6_cooler => -switchOn_a6_cooler 

c02: switchOn_a6_cooler => -switchOff_a6_cooler 

m1 > c02 

m2 > c02 

e2 > c02 

c01 > p1 

 

 

 


