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Abstract—This paper deals with content-based large-scale
image retrieval using the state-of-the-art framework of VLAD
and Product Quantization proposed by Jegou et al. [1] as a
starting point. Demonstrating an excellent accuracy-efficiency
trade-off, this framework has attracted increased attention from
the community and numerous extensions have been proposed.
In this work, we make an in-depth analysis of the framework
that aims at increasing our understanding over its different
processing steps and boosting its overall performance. Our
analysis involves the evaluation of numerous extensions (both
existing and novel) as well as the study of the effects of several
unexplored parameters. We specifically focus on a) employing
more efficient and discriminative local features, b) improving the
quality of the aggregated representation, and c) optimizing the
indexing scheme. Our thorough experimental evaluation provides
new insights into extensions that consistently contribute and
others that do not to performance improvement, and sheds
light into the effects of previously unexplored parameters of the
framework. As a result, we develop an enhanced framework that
significantly outperforms the previous best reported accuracy
results on standard benchmarks and is more efficient.

Index Terms—Image retrieval, indexing, image classification.

I. INTRODUCTION

HIS paper deals with large-scale image retrieval that is

defined as the problem of finding in a large database of
images (e.g. 100 million), those that depict the same object
or scene with a query image under variations such as 3D
viewpoint and lighting changes, object deformations, or the
presence of occlusions and clutter. This definition includes
but is not limited to near- and partial-duplicate images. Near-
duplicates are edited (scaled, format changed, etc.) versions of
the same image and partial-duplicates are padded or cropped
near-duplicates [2]]. A large-scale image retrieval system has
many important applications, ranging from object retrieval [3]],
[4] to location and landmark detection [S], copyright violation
detection [6], representative image selection [7|], and more
recently visual meme discovery in social media [J8].
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Until recently, state-of-the-art methods in large-scale image
retrieval relied on the bag-of-words (BoW) representation [3]],
[9]. According to this, local features (usually SIFT [10])
are extracted from each image and each feature is assigned
to the nearest visual word from a visual vocabulary. The
result of this process is a high-dimensional and sparse his-
togram vector for each image. Such vectors are compared
with standard similarity measures (e.g. cosine) and can be
searched efficiently using established text-retrieval techniques
such as inverted list structures. Several attempts have been
made to improve the accuracy of BoW, with soft-assignment
[11] and Hamming-Embedding (HE)[12] being among the
most successful methods. In soft-assignment each feature is
mapped to a weighted set of visual words, thus enriching the
representation at the cost of increased memory requirements.
HE augments the inverted list structure with a binary signature
that encodes the approximate location of each feature in
the Voronoi cell. This approach not only increases BoW’s
accuracy but is also faster. Motivated by the facts that BoW
ignores spatial information and the cost of full geometric
verification is prohibitive, [12], [13] derived methods that
embed spatial information for each feature in BoW’s inverted
list structure. Such methods can boost the accuracy of BoW,
especially for partial duplicate image retrieval [14] but this
comes again at the cost of increased complexity and memory
requirements.

Despite their success, BoW-based methods cannot scale to
more than few million images (on a single machine) due
to computational and memory constraints [1f], [15]. In an
attempt to address the scalability issues, prior art has focused
on compressing the BoW vectors [16]-[18]. However, to
approximate the initial accuracy of a high-dimensional BoW
vector, these methods require thousands of bytes per image.

Recently, a number of more scalable approaches have been
developed [1], [[19], [20] that employ more discriminative vec-
tor representations than BoW and combine them with powerful
compression techniques. One of the most successful frame-
works of this type, with respect to the accuracy-efficiency
trade-off, is presented in [1]. This framework still relies on
SIFT features but replaces BoW with the highly discriminative
Fisher Vector [20]] representation or its simpler variant, named
VLAD (Vector of Locally Aggregated Descriptors) [19]. Using
these optimized vector representations, significantly better
results are obtained, compared to a BoW vector with similar
dimensionality. Beyond the optimized vector representation,
the success of the framework is due to a powerful indexing

0000-0000/00$00.00 © 2014 IEEE



scheme that jointly optimizes dimensionality reduction and
indexing. First, Principal Component Analysis (PCA) is ap-
plied to significantly reduce the dimensionality of the vectors
while having a negligible impact in accuracy for a moderate
amount of reduction. Subsequently, the reduced vectors are
indexed and searched efficiently using the recently proposed
Product Quantization (PQ) method [21]], which was shown
to outperform a number of state-of-the-art indexing methods
including Spectral Hashing [22]] and FLANN [23].

The framework of [1f], hence denoted as VLAD+PQ, has
demonstrated very good results in terms of search accu-
racy, significantly outperforming previous state-of-the-art ap-
proaches [[18]-[20] when a similar efficiency setup is em-
ployed. For instance, the performance of BoW with a vocabu-
lary of 20K visual words can be obtained using only 128 bits
per image. With such a small code size, 100 million images
can fit in approximately 2 GB of RAM and be searched in 250
ms on a single core. However, such an aggressive compression
results in a significant decrease of the initial search accuracy.
In this paper, we attempt to further improve the accuracy
of this framework, with special focus on extremely efficient
setups in terms of memory usage and query response times. To
this end, we perform an in-depth, end-to-end analysis of the
framework and show that its performance can be significantly
improved by incorporating extensions and optimizing the
individual processing steps of its pipeline.

We initially focus on employing better local features and
compare (in Subsection the performance of VLAD
vectors generated using SURF [24f], SIFT, RootSIFT [25]]
and CSURF features. CSURF is a new SURF-based color
feature presented in Subsection The results indicate
that SURF and CSURF are not only more efficient but also
lead to significantly increased accuracy. Next, we attempt
to improve the quality of the vectorized representation by
applying two types of feature filtering methods described in
Subsection Methods of the first type are inspired from
[2]] and perform filtering based on the richness of feature struc-
ture, while methods of the second type are inspired from [26]
and perform filtering based on a feature-vocabulary relation.
As shown in SubsectiofV-B] while some of these methods
can offer small improvements when full-dimensional VLAD
vectors are employed, this is not the case with PCA-projected
vectors. These results are interesting as they contradict the
results presented in [26].

Subsequently, we move our focus towards improving the
vector aggregation and dimensionality reduction steps. In
Subsection [V-C| we evaluate the mean-aggregation strategy
proposed in [27] for VLAD and find that it results in a
significant performance degradation compared to the standard
aggregation method of VLAD. Subsections and
study the recently proposed whitening and multiple vocabulary
aggregation methods [15]]. Both methods were mainly studied
within the context of BoW vectors with particular success
but several details remain unclear regarding their applicability
on VLAD. The thorough empirical analysis presented in
Subsections and [V-H sheds light into these issues and
shows that both methods can offer significant performance
improvements. We also study the effects of important vector
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Fig. 1: Steps of the feature extraction and indexing pipeline.
Different options for each step are presented, with the selected
appearing in bold.

generation parameters such as vocabulary size and projection
length in Subsection

Finally, we focus on improving the performance of the

PQ indexing scheme by studying the effects of previously
unexplored parameters in Subsection Additionally, in
Subsection we show that besides large-scale image re-
trieval, the studied VLAD extensions can offer significant
improvements in large-scale image classification.

Our main contributions are as follows:

« By combining the above improvements, we manage to
significantly outperform the previous best reported accu-
racy results on standard benchmarks and at the same time
improve the efficiency of the VLAD+PQ framework.

o The thorough experimental study we conducted increases
our understanding of the effects of previously unexplored
parameters of the studied framework.

« We evaluate numerous existing and new extensions and
provide insights into working and non-working ones.

« We make publicly available an efficient open-source im-
plementatiorﬂ of the image processing, aggregation and
indexing methods as well as an implementation of our
experimental testbed that facilitates easy reproduction of
our experimental result

To the best of our knowledge, this is the first work that contains
such an extensive empirical study, covering all the individual
steps of the studied large-scale image retrieval framework.

II. BACKGROUND

This Section introduces the VLAD+PQ framework [1]] along
with some alternative choices for its different processing steps.
As shown in Fig. [1] there are four main steps involved in the
process of transforming an input image into a small fixed-
length code: (a) local feature extraction, (b) vectorization,
i.e. the aggregation of local features in a single vector, (c)
dimensionality reduction, and (d) quantization and indexing.
Steps (a), (b) are described in Subsection and steps (c),
(d) in Subsection [[I-B

A. Feature Extraction and Vectorization

The presented study explores the performance of systems
that rely on the extraction of local features which are aggre-
gated using some pooling method to create a global image
representation. Compared to systems that use global features
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such as GIST [28], systems based on local features are
more robust to geometric transformations and typically exhibit
better performance. Among local features, SIFT have shown
excellent performance and are established as the features of
choice for most systems. However, their increased computation
time has motivated the design of alternative, more efficient
features, with SURF being among the most successful, as they
can be computed several times faster, while being comparable
with respect to repeatability, distinctiveness, and robustness.

Regardless of the type of local features, the feature ex-
traction step generates a set L of D-dimensional feature
vectors © = [x1, .., p] for each image. Usually, hundreds to
thousands of vectors are extracted. To make large-scale search
tractable, an aggregation method is usually employed that
summarizes L into a single, fixed-length vector representation.
Until recently, BoW has been the most popular method of this
type. In BoW, a codebook C' = {cy, ..., ¢} of k visual words
is computed offline (typically by applying k-means clustering
on a large set of features). Then, given the set of local features
extracted from an image, each feature is quantized to its
closest cluster centroid. The BoW vector is the k-dimensional
histogram of the distribution of visual words in an image.

Recently, a number of new representations emerged [19],
[20], [29] that encode higher order statistics, compared to
BoW, of the distribution of features to visual words. The
studied framework is based on VLAD, a state-of-the-art
method presented in [19]. As in BoW, a codebook is first
computed and each feature is quantized to its closest centroid.
However, instead of simply counting the features assigned to
each centroid, VLAD records their position relatively to it by
accumulating the residual vectors x — c¢; of the features x
assigned to each visual word ¢; into a vector:

v; = Zaz—ci (D

where L., C L is the set of features assigned to c¢;. The
VLAD vector v is the concatenation of all v; and is therefore
d=kxD-dimensional. As a final step, v is first power- and then
L2-normalized. Power-normalization discounts the influence
of large components (usually coming from visual bursts) [/1]
by raising each component of v to a power of a € [0,1],
whereas L2 normalization makes the representation invariant
to the number of features extracted from each image. Very
recently, intra-normalization 30| and residual-normalization
[31] were proposed as alternative schemes to address the
problems of burstiness and unequal contribution of individual
features, respectively. Intra-normalization consists of applying
L2 normalization separately on each v; and then L2 normaliz-
ing the entire vector (power normalization is omitted), while in
residual-normalization the residual vector x—c; of each feature
z from its nearest visual word c¢; is separately normalized to
unit length and power+L2 normalization is still applied on the
entire VLAD. Both schemes were found to outperform the
power+L2 normalization scheme. However, we opt for using
the normalization scheme of [1]] (power+L2 normalization
with a=0.5) throughout this paper for the following reasons:
a) according to [30] intra-normalization is consistently better
than power+L2 normalization only for well adapted visual

vocabularies which are difficult to obtain in very-large scale
and dynamic setups (as discussed in Subsection [[II-B2), b)
residual-normalization was compared in [31] only against
power+L2 normalization with a=0.2 instead of a=0.5 sug-
gested as near-optimal in [1]].

VLAD is significantly more accurate than BoW when a
representation of equal dimensionality is used and at the
same time it is cheaper to compute as it requires a much
smaller visual vocabulary. Lately, [1] showed that VLAD
can be considered as a simplified version of Fisher Vector
(FV) [20]. Empirical results, however, suggest that although
FV yields better performance than VLAD when full-vectors
are used, VLAD performs equally well and in some cases
better when vector dimensionality is reduced by PCA [1].
This ability of VLAD to retain an excellent accuracy after
heavy dimensionality reduction together with its slightly more
efficient computation compared to FV, makes it an ideal
representation for large-scale image retrieval systems.

B. Dimensionality Reduction, Indexing and Search

Using the 128-dimensional SIFT descriptor and a small
vocabulary of £k = 64 centroids results in 8192-dimensional
VLAD vectors or 32KB of memory per image. This size is
prohibitive for large-scale search applications due to memory
and search efficiency constraints. To address these issues,
compression and binarization techniques are usually employed
(e.g. Locality-Sensitive Hashing (LSH) [32], Spectral Hashing
(SH) [22]) to transform the vectors into binary codes that
have a small memory footprint (all images can fit in main
memory) and can be searched efficiently. The adopted frame-
work follows a similar approach. First, the dimensionality
of VLAD vectors is significantly reduced with PCA and
then PQ [21]] is applied to compress the projected vectors.
PQ significantly outperforms other state-of-the-art binarization
schemes in terms of accuracy for the same efficiency setting.

Quantization is used to reduce the cardinality of a repre-
sentation space by mapping a d-dimensional vector x € R?
to a vector g(x) € C = {cp,c1,..,ck—1}. C is a finite set of
reproduction values ¢; € R? that correspond to the centroids
of a k-means clustering and g maps each vector to its closest
centroid. A quantizer with k centroids encodes each vector
with B = log,(k) bits. Given a query vector y, a set of
database vectors X = {x1,...,2,,} and a quantizer ¢(.), the
nearest neighbors of y in X can be efficiently found using
the Asymmetric Distance Computation (ADC) approach [21]].
In ADC, each vector x; € X is replaced by its reproduction
value c;, while the query vector y is not encoded. The nearest
neighbors of y are found by computing the distance of y
to every centroid and returning the database vectors that are
quantized to the closest centroid. To achieve good vector ap-
proximation, however, a large number of centroids is required
e.g. 204, producing a 64bit code. With such a large number
of centroids, learning a k-means quantizer, assigning vectors
to centroids, storing the centroids in memory and searching
are intractable. PQ is a technique that makes this problem
tractable by defining a large quantizer as the Cartesian product
of smaller quantizers. A d-dimensional vector x (in this case



a PCA-projected VLAD vector) is first split into m subvectors
xt, ..., 2™ of equal lengths d* = d/m and each subvector is
quantized using a separate quantizer. Thus, a product quantizer
q is defined as a function ¢(x) = (q1(2), ..., ¢ (2™)) that
maps a vector z to a tuple of m indices, one for each subvector.
While each individual quantizer ¢; has only k, reproduction
values, the set of centroids induced by ¢ is k = (k)™ To dis-
tinguish between different PQ schemes the notation m X by is
used, specifying a product quantizer with m subquantizers that
encode each vector with b; = log, ks bits. The total number
of bits used to encode a vector in this case is B = mb,. Using
PQ and the ADC approach, the nearest neighbor is found by
computing NN (y) = argmin; 3y, |[¥7 — 45 (z))][2. In
order to search efficiently in X, the distances between each
subvector 3/ of a query image y and the k, centroids of the
respective subquantizer ¢; are computed and stored in look-up
tables before scanning the database. While PQ+ADC enables
fast, approximate nearest neighbor search and a remarkable re-
duction in memory requirements, the search is still exhaustive.
In order to scale to billions of vectors, [21] proposed a non-
exhaustive variant that combines ADC with an inverted file
structure (IVFADC). Compared to PQ+ADC, PQ+IVFADC
requires an additional memory of approximately 4 bytes per
image due to the overhead of the identifiers that need to
be explicitly stored. However, PQ+IVFADC is significantly
faster than PQ+ADC in very large databases and also more
accurate because it encodes the residual of each vector from
the centroid of a coarse quantizer rather than the vector itself.

III. STUDIED ASPECTS & EXTENSIONS

This section describes and motivates the issues studied in
this empirical study. These issues pertain either to extensions
or to parameter exploration in different steps of the frame-
work. The discussion is structured along the following: a)
local features, b) feature filtering techniques, c) aggregation
strategies, d) vocabulary size and target dimensionality of
PCA, e) whitening, f) multiple vocabulary aggregation, and
g) PQ parametrization.

A. Local Features

The type of local features being employed is probably the
most critical design choice in the VLAD+PQ pipeline as it
heavily affects the system’s response time but also the quality
of search results (as we show in Section [V-A). VLAD was
originally combined with SIFT features in [[19] whereas a com-
parison between SIFT and PCA-SIFT presented in [1] showed
that SIFT features lead to slightly better results for VLAD.
Revisiting the issue of applying PCA on SIFT features, [31]]
found that better results can be obtained when only centering
and rotation to a new uncorrelated basis are applied. Recently
in [30], [31]), SIFT were replaced by RootSIFT features [25],
leading to significant accuracy gains. Despite their widespread
use in VLAD-based systems, both SIFT and features derived
from SIFT such as PCA-SIFT and RootSIFT suffer from
increased computation time which can severely impact the
system’s overall response time. For example, extracting SIFT
from a medium-sized (512x384) image on a single-core takes
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350 ms on average, while vectorization and search against a
database of 10 million images with the VLAD+PQ framework
requires less than 100 ms.

Motivated by this limitation, in [33]] we studied the replace-
ment of SIFT with SURF features and found that SURF in
addition to being about three times more efficient, compare
favorably with respect to accuracy to reference results of
the VLAD+SIFT combination from [[I]]. In Section [V-A] we
perform an extended evaluation that includes: a) SURF, b)
SIFT, ¢) RootSIFT and d) a new SURF-based color feature
color feature that is described in the next paragraph.

CSURF: Lately, color extensions of SIFT features [34] have
shown increased discriminative power compared to standard
SIFT and have beem widely adopted for image and video
classification. However, there are very few works that consider
color features in the domain of large-scale image retrieval (e.g.
[35])) and, to the best of our knowledge, no one has evaluated
the use of color features in the context of retrieval with VLAD.
This is not surprising given the previous discussion on SIFT’s
efficiency and the fact that color extensions require even more
extraction time and memory. To make the use of color features
in the domain of large-scale image retrieval more practical,
we propose a SURF-based, efficient color feature, CSURF.
The idea of combining SURF with color information has
previously appeared in [36] where a “Color-SURF” descriptor
was evaluated in the context of image matching through
matching of the corresponding descriptor sets and was found
better than SURF in a popular benchmark. “Color-SURF” is
the concatenation of the original SURF descriptor with a color
kernel histogram that is calculated around each interest point.
In order to compute the distance between two such descriptors,
a different distance measure (Euclidean/Bhattacharyya) is used
to compare each component (SURF/color histogram) of each
vector. Therefore, applying k-means clustering on “Color-
SURF” as required by VLAD is not straightforward. Here,
we design a different SURF-based color descriptor, CSURF,
that follows the successful and more principled paradigm of
RGB-SIFT [34] on how to incorporate color information while
maintaining the invariance properties of the descriptor.

In order to extract CSUREF, the image is first transformed
to grayscale and interest points are computed using the stan-
dard SURF algorithm. Then, instead of computing the SURF
descriptor of each interest point on the intensity channel,
CSURF computes three SURF descriptors, one on each color
band. The final CSURF descriptor is their concatenation.
Calculated in this way, CSURF is equivalent to RGB-SIFT
[34] but using the SURF algorithm for keypoint detection and
description. However, differently from RGB-SIFT where each
band’s descriptor is normalized independently to unit length,
we apply L2-normalization on the entire descriptor only. The
intuition is that by normalizing the entire descriptor, we retain
relative color intensity information that is lost otherwise. In
contrast to “Color-SURF”, CSURF can be compared using
the Euclidean distance and are therefore directly pluggable to
the VLAD pipeline.

B. Feature Filtering
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1) Filtering based on the richness of feature structure: In
[2]], a near-duplicate image detection framework was proposed
that, departing from quantization-based approaches, based its
search on raw SIFT features. Among the main contributions
of that work was the introduction of a filtering technique
that discards SIFT features with poor internal structure such
as those extracted from homogeneous or near-empty image
regions. To measure the richness of internal structure of a SIFT
feature, [2]] uses the Shannon entropy that is calculated by
treating each SIFT feature as 128 samples of a discrete random
variable. It was shown that SIFT features that generate false
matches exhibit relatively smaller entropy values (on average)
than those generating true matches. Thus, by discarding such
features the false positive rate is drastically decreased and a
single match between the remaining features of two images is
sufficient for establishing near-duplicity.

Motivated by these results, we explore whether such filtering
techniques can also improve the accuracy of image retrieval
Jrameworks that employ feature pooling methods. To the best
of our knowledge, this has not been done before. Specifically,
we apply entropy-based filtering to discard poorly structured
SURF features (which are found to outperform SIFT in
Section and then perform VLAD aggregation using only
the retained ones. We also evaluate variance as an alternative
filtering criterion, again treating the components of each fea-
ture vector as samples of a discrete random variable. Variance
measures the spread of a distribution and its use is motivated
by the fact that entropy cannot distinguish between two values
of a (discretized) SIFT or SURF feature that lie very close
(e.g. 1 and 2) and two values which are maximally apart
(e.g. 1 and 128). For instance, the features F; = [1,2,...,1,2]
and Fy = [1,256, ..., 1,256] have the same entropy. However,
the structure of the second is obviously richer. Both filtering
methods, along with random filtering are evaluated against no
filtering in Section

2) Filtering based on a feature-vocabulary relation: At-
tempting to improve the quality of the VLAD representation,
[26] and [|37]] proposed methods that deal with outlier features,
i.e features that lie close to the boundaries of the Voronoi cells
formed by a specific visual vocabulary. [37] proposes a soft
assignment technique that assigns each feature to £ > 1 near-
est centroids, with k being dynamically selected according to
a nearest neighbor distance ratio. After assignment, weighted
vector differences are calculated with nearest centroids receiv-
ing larger weights. A computationally more efficient approach
is proposed in [26]], where outlier features are omitted from
the computation of VLAD. This method, denoted here as
dist, discards all features whose distance from their closest
visual word is above the C*" percentile of the distribution of
distances, of features assigned to this visual word. Percentiles
for each visual word, are computed offline and outlier features
are filtered during VLAD computation. The intuition behind
both methods is that outlier features reduce the repeatability
of VLAD since a small amount of distortion may cause them
to be quantized to a different visual word, and as a result,
a considerably different VLAD vector may be generated. On
the other hand, we notice that in contrast to features lying
close to cluster centroids (such as those coming from visual

bursts), outlier features are less frequent and perhaps more
discriminative. In Section we evaluate the dist method
as well as two new filtering methods, std and ratio, that are
based on the same intuition. std retains only features whose
distance from the closest visual word is at least a standard
deviations smaller than their average distance from all visual
words, while ratio retains only features whose distance from
the closest visual word is at least b times smaller than their
distance from the second closest visual word.

C. Aggregation Strategy

As described in Section after the assignment of local
features to visual words, VLAD uses a summation formula
to aggregate the residual vectors v; of the features assigned
to each visual word ¢; . [27] proposed an alternative formula,
denoted as mean aggregation, for aggregating the differences:
v; = ﬁ Yscr,, ® — ¢i- The difference with the original
VLAD formula, denoted here as sum aggregation, is that the
sum is normalized by the number of feature vectors quantized
to each visual word ¢;. We notice that by not normalizing the
sum, the sum aggregation formula incorporates information
about the number of features quantized in a particular visual
word. A v; with a large norm indicates that many features are
assigned to a similar position in the Voronoi cell defined by c¢;.
On the other hand, by using mean aggregation this information
is lost, as graphically illustrated in the Appendix. Despite
being counter-intuitive, [27] showed that mean aggregation
significantly outperforms sum aggregation. In that study, how-
ever, the methods were tested only on full-dimensional VLAD
vectors and performance was measured using an image-level
ROC curve analysis, a non-standard method. In Section
we reevaluate the effectiveness of this extension on both
full-dimensional and PCA-projected VLAD vectors, using a
standard evaluation protocol and draw different conclusions.

D. Vocabulary Size and PCA

The accuracy of full VLAD vectors increases with increas-
ing vocabulary sizes, as shown in [1]. Specifically, exper-
iments with vocabularies up to £ = 4096 centroids were
performed indicating a sub-linear relationship between the
number of centroids and mean Average Precision (mAP) on
the Holidays dataset. However, there are two reasons that
make large vocabularies unsuitable for large-scale retrieval
with VLAD+PQ. The first reason is increased complexity:
with large vocabularies it takes more time to assign features to
centroids. The second reason has to do with accuracy: larger
vocabularies produce higher-dimensional vectors that have a
higher projection error when dimensionality reduction is ap-
plied. Note that, although optional, dimensionality reduction is
a crucial step of the VLAD+PQ pipeline since the quantization
error incurred by PQ (at the final step of the VLAD+PQ
pipeline) is an increasing function of a vector’s length. In
Section we extensively study the effect of dimensionality
reduction with PCA on VLAD+SUREF vectors generated from
vocabularies of various sizes and projected to various lengths.
A similar study was previously presented in [1] but was less
extensive (fewer vocabulary sizes and projection lengths were



tested) and focused on VLAD vectors that aggregate PCA-
SIFT features.

E. Whitening

It has been noted in [38] that visual words do not occur
independently as implicitly assumed by common similarity
measures used to compare BoW vectors. In fact, it was
shown that visual word dependencies are common in large
datasets and that by ignoring them the similarity between two
image vectors can be over-counted, resulting in poor retrieval
performance. Recently, [[15] proposed a whitening operation
that is performed jointly with dimensionality reduction to
limit the impact of the co-occurrences problem on BoW
and VLAD vectors. Given an image vector z, the vector
is first PCA-projected and truncated to d’ components, and
subsequently whitened and L2 normalized to a new vector

diag(A7 %%, A0 M .
/ 1 ) Nql /
= Hdiag(/\;“ﬁ,..i,/\;,“ﬁ) e where M is the d’ x d PCA

matrix and ); is the eigenvalue associated with the i'" largest
eigenvector. In [15] it was shown that BoW vectors projected
to 128 dimensions using this joint dimensionality reduction
and whitening step give significantly better results compared
to BoW vectors projected to 128 dimensions with plain PCA.
In Section we study (for the first time) the impact of
whitening on VLAD vectors projected to various lengths and
generated using various vocabulary sizes.

FE. Vocabulary Sensitivity - Multiple Vocabularies

To deal with the problem of vocabulary sensitivity, i.e.
the fact that the similarity between two VLAD vectors is
highly dependent on the visual vocabulary used to generate
these vectors, [31] introduced a cluster center adaptation
method. This method tries to maintain a vocabulary whose
cluster centers are consistent with the current collection in
the sense that the mean of all vectors assigned to a cluster
over the entire collection is the cluster center. This is done
by first moving the cluster centers to maintain consistency
and then re-computing all the VLAD vectors according to
the new cluster centers. In [31]], this method is shown to
improve the performance of full VLAD vectors compared
to using a static visual vocabulary learned on a different
collection. However, there are practical reasons that make this
method incompatible with a large-scale framework. First, the
VLAD re-computation step has a significant computational
cost, especially as the collection’s size increases. Second, when
dimensionality reduction is applied the improvements incurred
by vocabulary adaptation are diminished [31] since the adapted
vectors can be considerably different than those used to learn
the PCA matrix. The same holds for the subsequent application
of PQ.

A better technique to deal with vocabulary sensitivity is
presented in [15] where multiple vocabularies are used to alle-
viate quantization artifacts in the context of Bow and VLAD.
The use of multiple visual vocabularies is a known technique
for improving the quality of BoW vectors. A simple strategy
consists of generating a set of different BoW vectors, one from
each vocabulary, and then concatenating them into a single
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vector (as done e.g. in [3[]). As shown in [15]], in addition to
reducing efficiency and increasing the memory requirements,
the improvement in search quality offered by such methods is
limited, mainly due to the redundancy introduced by multiple
vocabularies. To address these problems, [15] proposed a
joint dimensionality reduction of the multiple vectors. First,
multiple (BoW or VLAD) vectors are produced independently
and concatenated to a single vector that is L2 normalized.
Then, the joint dimensionality reduction and whitening method
described in Section is applied. By exploiting the addi-
tional information provided by multiple vocabularies and at
the same time removing the redundancy between them, this
approach was shown to improve the performance of BoW and
VLAD vectors reduced to 128 dimensions.

In Section [V-F| we perform a detailed analysis on the effec-
tiveness of this method, specifically for VLAD. Concretely, we
extend the experiments performed in [15] by comparing the
performance of PCA-projected and whitened VLAD vectors
coming from different combinations of multiple vocabularies
with the performance of VLAD vectors coming from single
vocabularies of the same total complexities. Furthermore, we
perform experiments on more datasets and study additional
projection lengths. Our extended analysis provides answers
to the following questions regarding the applicability of this
method on VLAD that are not conclusively answered in [[15]]:

o Is the use of multiple vocabularies beneficial compared
to using a single vocabulary of the same complexity?

« How far can we go when considering multiple vocabular-
ies? E.g. for a fixed total complexity of 256 visual words,
which of vocabulary setups is better: 2x 128 or 128 x27?

« Do the observations hold for larger projection lengths?

G. Product Quantization Optimization

All previous sections focused on issues related to the
generation of a high quality, yet compact vectorized image
representation. As discussed in Section the compactness
requirement is imposed by the fact that the subsequent quan-
tization scheme incurs smaller quantization error on vectors
of smaller dimensionality. To deal with this trade-off, [
proposed the minimization of the mean squared approximation
error as an objective criterion for optimizing the dimension
d’, having a fixed constraint on the number of bits B used
to represent each vector. The optimal projection length d’
is found by trying different values and selecting the one
that minimizes this criterion on a learning set. However, the
selected value of d’ using this criterion is not necessarily
optimal with respect to a retrieval quality measure such as
mAP. Furthermore, in [1] there is no discussion on what
values to use for m and k, (remember that B=m log, k) and
only two arbitrary quantization schemes (16x8 and 256x10)
of different code sizes are evaluated. The effect of these
parameters for a fixed code size is studied in [21] but only in
the context of searching fixed-length local (SIFT) and global
(GIST) vectors. [21] concludes that quantization schemes with
small values for m (number of subquantizers) and large values
for ks (number of centroids) are better than having many
subquantizers with few bits. Note, however, that ks cannot be
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TABLE I: Summary of aspects and extensions studied in the experimental evaluation.

Aspect Summary

local features SUREF vs SIFT vs RootSIFT vs CSURF

feature filtering

aggregation method
vocabulary size & PCA
whitening

multiple vocabularies
product quantization
classification

sum Vs mean aggregation
the effect of & with respect to d’

richness of structure, methods: entropy / variance 121
feature-vocabulary relation, methods: dist / std / ratio

the effect of whitening with respect to k and d’

the effect of multiple vocabularies with respect to k and d’
the joint effects of d’, m, ks and large scale experiments
improvements in large scale image classification

Related Work(s) Sec. Discussed / Tested
125], [30], [31), [33] | [O-A]/[V-
1I-B1|/]V-B1
[26], (37| 111-B2|/|V-B2
[27] 1I-C[/ |V-C
(1] 11-D| /]V-
[15] 111-E] / [V-E]
[15], [31] 1I-F / [V-
[21] 1I-G| /{V-
-fV-1

very large (e.g. larger than 2'3) since this would prohibitively
increase both the quantization cost and the memory required
for storing the resulting product quantizer.

In Section we attempt to shed more light into the
joint effects of d’, m and k, for a fixed code size. Besides
these parameters, we evaluate the merits of applying a random
orthogonal transformation on PCA-projected and whitened
VLAD vectors before proceeding with PQ. This transformation
was shown to improve the search results when applied to
PCA-projected (but not whitened) VLAD vectors in [19]] as it
manages to balance the energy of the subvectors. Finally, we
conduct large-scale experiments on a dataset of 10M images
and compare PQ+ADC with the non-exhaustive PQ+IVFADC
search variant in terms of accuracy and efficiency.

IV. EXPERIMENTAL SETUP

This section describes our experimental setup. Subsec-
tion explains the evaluation protocol and presents the
evaluation measures and the datasets used for learning and
benchmarking while Subsection discusses details related
to image processing. Table |l| serves are as a reference for the
aspects and extensions studied in Section [V]

A. Evaluation Protocol and Datasets

Since the studied extensions and paremeter settings concern
steps of a sequential processing pipeline (see Figure [I)), it is
expected that choices made on earlier steps of the pipeline (e.g.
type of local features/feature filtering) may affect the settings
and/or methods that lead to optimal performance in subsequent
steps. Therefore, the full optimization of the pipeline requires
exhaustive exploration of all different combinations of meth-
ods and parameters. To reduce the complexity of the analysis
and keep the load of the experiments reasonable we make the
following main relaxed assumptions:

(a) A more discriminative vectorized representation will
lead to a more discriminative binary signature after the applica-
tion of PQ, compared to a less discriminative representation of
the same length. This reasonable assumption was also adopted
(implicitly) in [1], [15] and allows us to exclude PQ from
experiments on extensions and parameter settings that concern
previous steps of the pipeline.

(b) When an extension or selection of parameters improves
significantly the performance at an earlier step of the pipeline,
we adopt this choice for subsequent steps. For instance, given
the dominance (Subsection[V-A)) of SURF in terms of accuracy
compared to other local features (CSURF is excluded due to

TABLE II: Datasets used in evaluation. #n denotes the number
of images, #q denotes the number of images treated as queries.

Name Use #n #q Source
Holidays retrieval 1491 500 [12]
Oxford retrieval 5063 55 1151
Paris retrieval 6412 55 [11]
UKB retrieval 10200 | 10200 [1&]]
Flickr50K distractors 50K - [139]
ImageNETIOM | distractors 10M - [401
Flickr100K learning 100K - 391

increased computational complexity), we use VLAD+SURF
for the subsequent sets of experiments. However, in cases
where the performance differences are marginal we double
check whether an increase in accuracy is propagated to sub-
sequent steps (e.g. in Subsection [V-B).

Experiments are conducted on the following four widely
used benchmark collections for image retrieval:

Holidays [12] contains 500 groups of personal holiday pho-
tos as well as groups of photos taken to test the robustness of a
representation to various transformations (rotations, viewpoint
and illumination changes, blurring, etc.). One image in each
group is treated as the query and the correct retrieval results
are the other images of the group. The collection includes a
large variety of scene types (natural, man-made, water and fire
effects, etc.). Retrieval accuracy is measured in terms of mAP.

Oxford [5] and Paris [11] consist of images collected from
Flickr by searching for particular Oxford and Paris landmark
buildings, respectively. Both collections have been manually
annotated to generate a comprehensive ground truth for 11
different landmarks, each represented by 5 possible queries.
This gives a set of 55 queries over which an image retrieval
system can be evaluated. Differently from Holidays, all images
of these collections are in “upright” orientation because they
are displayed on the web. Retrieval accuracy is measured by
mAP in both datasets, treating each query image as not present
in the database in the query that involves iﬂ

UKB [3] is an image recognition benchmark that contains
10200 images of 2550 distinct objects (4 images per object).
Performance is measured by querying the database once for
each image and counting the average number of relevant
images (including the query itself) ranked in the top 4 positions
(4 x Recall@4).

3Note that the evaluation software provided with the Oxford dataset treats
query images as positive examples, giving significantly higher mAP scores
since the query image is always returned in the first position.
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TABLE III: Retrieval performance of full as well as PCA-projected (d'=128) VLAD vectors using different types of features.
The best result in each dataset is marked with an asterisk for full vectors and typeset in bold for PCA-projected vectors.

Dataset VLAD+SIFT VLAD+RootSIFT VLAD+SURF VLAD+CSURF
d=8192 d' =128 d=8192 d' =128 d=4096 d' =128 d=12288 d' =128
Holidays (mAP) 0.561 0.534 0.589 0.547 0.649 0.638 0.717* 0.697
Oxford (mAP) 0.243 0.131 0.242 0.124 0.328%* 0.238 0.256 0.167
Paris (mAP) 0.207 0.083 0.203 0.068 0.321%* 0.180 0.296 0.254
UKB (4xR@4) 2.794 2.896 2.896 2.849 3.196 3.237 3.520%* 3.482

To evaluate the accuracy at a more challenging retrieval
scenario where more images can be confused with those in
the set of relevant images for each query, we merge each
collection with additional images that act as distractors. For
this purpose, we use a subset of S0K images (Flickr50K) from
the MIR Flickr 1M collection [39] for most experiments. To
evaluate the accuracy and the efficiency of the framework on
a very large scale, in Section [[II-G| we use a larger set of
10M distractor images (ImageNETI0M) that contains images
downloaded from ImageNET [40] (fall 2011 release URLs).
Finally, FlickrlOOK, another subset from the MIR Flickr 1M
collection (disjoint from all previous datasets), is used for
performing the various learning tasks (visual vocabularies,
PCA matrices, product quantizers). We believe that the choice
of an independent learning dataset, better reflects the accuracy
of a real system where relevant images are only a small
fraction of the overall image database. All datasets are listed
in Table

B. Image Pre-processing & Feature Extraction

All images used in the evaluation were first scaled to a
maximum size of 512 x 384 pixels prior to feature extrac-
tion. This down-scaling amounts to an almost 4-fold size
reduction for the images of the four benchmark collections,
while most distractor images are already around this size. As
shown in Subsection the use of larger images leads to
significantly improved accuracy. However, larger images also
increase feature extraction time. Furthermore, compared to
other studies where collection images are usually larger than
distractor images, we believe that using approximately equal
sizes for collection and distractor images represents a more
challenging evaluation scenario.

For feature extraction, we used the high-quality open-source
implementations of SURF and SIFT provided in BoofCVEl
For SIFT, BoofCV implements the feature detection and the
description algorithms as described in [[10] (with minor algo-
rithmic changes) while for SUREF it slightly deviates from the
original algorithms implementing the SURF-S [41] version.

V. EXPERIMENTAL RESULTS

A. Comparison of Local Features

Table shows the results obtained on Holidays, Oxford,
Paris and UKB with full and PCA-projected (d'=128) VLAD
vectors generated using SIFT, RootSIFT, SURF and CSURF
features. In all cases, a visual vocabulary of k = 64 visual
words is used.

4http://boofcv.org

TABLE IV: Extraction times for different types of features on
512x384 images (results averaged over 100 images). Extrac-
tion was performed using one core of an i5 2.4 GHz processor.

SIFT/RootSIFT
350.6

SURF
135.7

CSURF
205.6

Feature:

Time (ms):

We observe that the VLAD+SURF combination signifi-
cantly outperforms both VLAD+SIFT and VLAD+RootSIFT
in all datasets, when full vectors are used. This is an interesting
result since the main motivation for using SURF in place of
SIFT was SURF’s better extraction efficiency (see Table [[V).
Investigating this issue further, we noticed that the version
of SURF implemented in BoofCV (SURF-S [41]) applies
several algorithmic improvements on the original algorithm,
resulting in improved stability and runtime performance. Ad-
ditionally, the results show that, compared to VLAD+SIFT
and VLAD+RootSIFT, VLAD+SUREF retains a higher per-
centage of its initial accuracy when dimensionality reduction
is applied. Being half-dimensional than SIFT (D=64 versus
D=128), SURF result in more compact VLAD vectors that
are more amenable to dimensionality reduction.

With respect to VLAD+CSURE, while it achieves the best
overall performance on Holidays and UKB, it is outperformed
by VLAD+SURF on Oxford and Paris. A closer examination
of the images of the four datasets shows that the query images
of Holidays and UKB exhibit a larger chromatic variability
(i.e. each query is chromatically distinct) compared to the
query images of Oxford and Paris. Therefore, exploiting color
information is more useful in these datasets, while in Oxford
and Paris shape is the most distinctive factor.

Overall, the results of this subsection suggest that SURF
constitutes an excellent replacement for SIFT and RootSIFT
in the context of VLAD since it leads to consistently increased
search accuracy and at the same time it can be extracted much
faster. In cases where color is expected to be a discriminative
factor CSURF constitutes an even better alternative, at the cost
of increased extraction time and a larger representation size.
Since we focus on very efficient settings, we employ SURF
for the rest of the experiments.

B. The Effect of Feature Filtering Methods

1) Filtering based on the richness of feature structure: In
this experiment we study the effect of the entropy-based and
variance-based filtering methods presented in Section
Since SURF take values in a continuous range, in order to
calculate entropy we first discretize them by applying equal
width binning separately on each component of the descriptor.


http://boofcv.org

SPYROMITROS-XIOUFIS et al.: A COMPREHENSIVE STUDY OVER VLAD AND PRODUCT QUANTIZATION IN LARGE-SCALE IMAGE RETRIEVAL 9

0,66
_A-Z8 O
0,64 ags -7
%3
0,62
4 X -
o et ,@ O
< 0,60 £ =
£ -»-random o 1% ,,;gj % O
0,58 —%-entropy < & Ix“
0,56 -/s variance «, ’
O no X
0,54
0,80 0,90 0,95 1,00 0,80 0,90 0,95 1,00 0,80 0,90 0,95 1,00
0 3000 6000

% retained / distractors added

Fig. 2: Filtering results using full VLAD vectors on Holidays.
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Fig. 3: Filtering results using PCA-projected (d'=128) VLAD
vectors on Holidays (top) and Oxford (bottom).

We use 128 bins whose ranges are computed on a set of
200K SUREF features (different numbers of bins have also been
evaluated with similar results). Using images from Flickr100K,
we compute appropriate thresholds values for both entropy
and variance so that approximately 20%, 10% and 5% of
the features are discarded. We also use random filtering to
discard the same percentages of features. Figure 2] shows mAP
results on Holidays when 4096-dimensional (kK = 64) VLAD
vectors are used, for different percentages of features retained
and with different levels of distractors. We observe that all
filtering methods operate worse as the percentage of filtered
features increases, with the exception of variance and 6000
distractors where there is a slight increase in performance
when retaining 90% of the features (compared to 95%). Both
entropy-based and variance-based filtering give better results
than random filtering on all operating points, indicating that
both criteria are good at detecting less-discriminative features.
Furthermore, the proposed variance-based filtering always
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Fig. 4: Outlier rejection results using PCA-projected (d'=128)
VLAD vectors on Holidays (top) and Oxford (bottom).

outperforms entropy-based filtering suggesting that variance is
indeed a better filtering criterion than entropy. Comparing the
results with those obtained without filtering, we observe that
all filtering methods perform worse than no filtering with zero
additional distractors. However, as the number of distractors
increases, variance-based filtering (discarding 5% or 10% of
the features) gives the best results.

Figure [3] shows mAP results on Holidays and Oxford when
PCA-projected (d'=128) VLAD vectors are used, for different
percentages of features retained. In this case, all filtering
methods give similar results that are worse than no filtering.
This can be attributed to the fact that features with poor
internal structure are always assigned to a subset of visual
words that fail to explain the variability in the data and as
a result their influence is discounted after the application of
PCA. Since the use of low-dimensional, PCA-projected VLAD
vectors is essential for good accuracy of very efficient PQ
schemes (as we show in Section [V-H), we conclude that
entropy and variance-based filtering are not appropriate for
large-scale retrieval and are therefore not considered for the
rest of the experiments.

2) Filtering based on a feature-vocabulary relation: In this
experiment we evaluate the outlier feature rejection methods
described in Section [III-B2| For the dist method, [[26] reports
that C'=90 was experimentally found to give the best results.
Here, we additionally report results using C'=85 and C'=95.
The percentile values for each visual word are computed on
Flickr100K. Similarly, the a and b parameters of the std and
ratio methods are tuned to reject approximately 5%, 10% and
15% of the features (this amounts to to a=1.39, 1.36 and 1.34
and 0=0.98, 0.99 and 0.995 respectively).

Figure [] shows mAP results on Holidays and Oxford when



TABLE V: Sum vs. mean aggregation (mAP).

Dimensionality

Dataset 128 1024 full
sum  mean sum  mean sum  mean
Holidays 0.633 0.554 | 0.679 0.598 | 0.649 0.601
Holidays+50K | 0.498 0.396 | 0.567 0.474 | 0.522 0.475
Oxford 0243 0.191 | 0.310 0.228 | 0.327 0.246
Oxford+50K 0.175 0.096 | 0.230 0.115 | 0.226 0.128
Paris 0.290 0.201 | 0.327 0.234 | 0350 0.272
Paris+50K 0.164 0.085 | 0.196 0.104 | 0.209 0.116

PCA-projected (d'=128) VLAD vectors are used, for different
percentages of features retained, with zero and 50K additional
distractors. In contrast to the results of [26], we see that the
dist method performs worse than no filtering for all C' values
on both datasets. The same holds for std and ratio. A possible
explanation for the different results compared to [26] is that in
our experiment, we use an independent dataset for learning the
percentiles (this represents a more realistic scenario). Also the
evaluation in [26] was performed using an image-level ROC
curve analysis, a non-standard method. Overall, our evaluation
suggests that filtering outlier features does not have an impact
on retrieval accuracy.

C. Sum versus Mean Aggregation

In this experiment we compare the performance of mean-
aggregated VLAD vectors with the performance of the original
sum-aggregated VLAD. Table |V| shows the results obtained
on Holidays, Oxford and Paris (with zero and 50K additional
distractors) using both PCA-projected and full-dimensional
vectors. Our results contradict those presented in [27]. We
see that in all cases, the originally proposed VLAD method
outperforms the extension that uses mean aggregation. These
results are in agreement with the discussion of Section [III-C]
where we argued that by normalizing the sum, the mean
aggregation formula discards information about the number
of features assigned to a similar position in the Voronoi cell.

D. Vocabulary Size and PCA

In this experiment we study the impact of vocabulary
size on the quality of the VLAD+SURF representation. In
order to keep the assignment cost low and to reduce the
impact of dimensionality reduction in accuracy (as explained
in Section [[II-D), we limit our analysis on vocabulary sizes
up to k=512 centroids.

Figure [5] shows the retrieval performance on Holidays using
VLAD+SURF vectors of varying vocabulary size. As ex-
pected, accuracy increases with vocabulary size. Interestingly,
using VLAD+SURF vectors and k=512 we obtain a mAP
score of 68.8% that is similar to the one obtained in [[1]] where a
significantly more expensive setting was used: FV+PCA-SIFT
with £=4096.

Figure [6] shows mAP results obtained on Holidays and
Oxford using PCA-projected VLAD+SUREF vectors produced
from vocabularies of different sizes. We report results for
vectors with up to 1024 dimensions that are more suitable for
large-scale retrieval. The results confirm that larger vocabulary
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on Oxford (bottom).

1024

sizes suffer more from dimensionality reduction. The largest
vocabulary (k=512), gives worse results than most of the
smaller vocabularies for all projection lengths on both datasets.
The best results are obtained using k=128 (followed closely by
k=256) for all projection lengths. Interestingly, with d’=1024 a
68.7% mAP is obtained on Holidays that is similar to the best
score obtained using full dimensional VLAD+SURF vectors
(k=512 and d=32768). Also, using only d’ = 128 dimensions,
a 63.7% mAP is obtained that is 12.7% higher than the best
mAP (56.5%) reported in [ 1] for the same dimensionality. Note
that with this size, 1M vectors can fit in 1GB of main memory.

By comparing Figures [5] and [6] (top) we see that for vocab-
ulary sizes smaller than & = 256 and a small dimensionality
reduction we achieve better accuracy than using full vectors
produced from the same vocabulary. This phenomenon was
also observed in [1], but it was not explained. Here, we provide
a justification of this increase in performance, extending the
analysis presented in [15]] for BoW vectors. Similarly to BoW,
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VLAD are usually compared using cosine similarity that is
equivalent to the inner product when the vectors are L2
normalized. In case that no features are assigned to a par-
ticular visual word ¢;, the corresponding vector of aggregated
differences v; will be the vector of all zeros 0. Given two
images a and b and the corresponding VLAD vectors v* and
v®, and assuming that v¢ = 0, the contribution of visual word
¢; to the cosine similarity of v and v” will be the same
when either v? = 0 or v? # 0. This way, the information
that two visual words are jointly missing from two images is
not taken into account although it can be a strong indication of
similarity, especially for small vocabularies. [[15]] showed that
by subtracting the mean BoW vector (calculated on a learning
set) from the original BoW vector, the similarity measure
is improved. By applying PCA this centering is performed
implicitly. This explains the observed increase in accuracy
(compared to using full vectors) for smaller vocabularies and
a limited reduction. For larger vocabularies and/or heavier
reductions, the positive effect of centering is cancelled by the
large projection error.

E. The Effect of Whitening

In this experiment we study the effect of whitening on
VLAD vectors. Figure [7] shows results for Holidays and
Oxford E} On Holidays, we see that whitening improves the ac-
curacy of 128-dimensional vectors for most vocabulary sizes.
The best mAP result for 128-dimensional vectors without
whitening is 63.7% while with whitening we obtain 65.7%, a
3% relative improvement. The situation is similar on Oxford
where for 128-dimensional vectors, whitening improves the
results for all vocabulary sizes. Here, the relative improvement
is even larger (18%), as the previous best mAP result of
25.4% increases to 30.0%. The picture is different for 1024-
dimensional vectors, where, while a significant improvement is
observed on Oxford for all vocabulary sizes, on Holidays, the
best accuracy is obtained without whitening. This difference is
probably due to the abundance of visual word co-occurrences
(the problem that whitening tries to address) on Oxford [38].

As a general trend, we observe that in both datasets whiten-
ing has a more positive impact for 128-dimensional vectors
and for larger vocabularies (k=256 and k=512). A related
observation was made in [15]], where it was suggested that for
large projection lengths, whitening may have a negative impact
because it magnifies the noise of the low-energy components.
For VLAD+SUREF vectors generated from a k=512 vocabulary
(d=32768), d'=1024 is still a small projection length. In con-
clusion, we suggest that whitening should always be performed
Jjointly with PCA on VLAD vectors when we are interested in
low-dimensional representations.

FE. Multiple Vocabularies

In this experiment we evaluate the multiple vocabulary ag-
gregation method described in Section As in Section[V-D]
we consider vocabularies with a maximum total number of

SResults for additional projection lengths and under the presence of
additional distractor images are provided in the supplementary material.
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Fig. 7: Retrieval performance (mAP) obtained with 128-
dimensional (left) vs. 1024-dimensional (right) VLAD vectors
produced with vocabularies of different sizes, with and without
whitening on Holidays (top) and Oxford (bottom).

TABLE VI: Multiple vocabulary setups.

Total complexity 32 64 128 256 512
2x16 | 4x16 | 8x16 | 16x16 | 32x16
2 2x32 | 4x32 8x32 16x32
g 2x64 | 4x64 8x64
2 2x128 | 4x128
2x256

k=512 visual words to keep the assignment complexity reason-
able. Table[V]|lists the evaluated multiple vocabulary setups. In
order to obtain a different learning set for each vocabulary in a
multiple vocabulary setup, we take different random samples
of 100K features from a set of approximately 70M SURF
features extracted from Flickr100K.

Figures [8al and [8b| show results on Holidays using a single
and multiple vocabularies of different sizes to generate 128-
and 512-dimensional VLAD vectors respectively. Figures
and show the corresponding results on Oxford®} The
best results for both datasets and projection lengths are ob-
tained using multiple vocabulary aggregation. Specifically, the
4x128 setup is the top performer in all cases, increasing the
performance of the best single vocabulary setup by 3.7%
(0.5%) for 128-dimensional vectors and by 4.4% (5.0%) for
512-dimensional vectors on Holidays (Oxford). However, we
can see that extreme setups (i.e. many small vocabularies)
perform worse than more conservative setups, even worse than
single vocabulary setups of the same total complexity. This
performance trend is different to the one observed in [15]] with
BoW vectors where performance improved with increasing
number of vocabularies (of a fixed total complexity). Finally,
we observe that the relative improvements are larger for 512-

SResults for additional projection lengths are provided in the supplementary
material.
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Fig. 8: Multiple vocabularies experiment on Holidays and
Oxford with vectors projected to 128 and 512 dimensions.

dimensional vectors compared to 128-dimensional in both
datasets. Comparing these results with the results of Figure [3]
where full vectors are used, we observe that using only 128-
dimensional vectors, we achieve a similar mAP (69%) as
with 32768 dimensional full VLAD vectors. Also this result
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TABLE VII: Comparison against the state-of-the-art on short
vectors. Accuracy is measured by mAP on Holidays and
Oxford and by 4xR@4 on UKB. Results with an asterisk
on Oxford indicate that Paris was used for learning instead of
an independent dataset.

Representation k || Holidays | Oxford | UKB
BoW+PCASIFT [1] 20K || 45.2 15.9 2.95
VLAD+PCASIFT [[1]] 64 || 55.7 25.7 3.35
g FV+PCASIFT [[1] 64 || 56.5 243 3.33
g mBOW+SIFT [[15]] 4x8K || 56.7 41.3% 3.19
> mVLAD+SIFT [15] 4x256 || 61.4 3.36
& VLAD;+ROOTSIFT [30] | 256 || 62.5 44.8%
—  VLAD*+ROOTSIFT [31] 64 32.5%
VLAD+CSURF 64 || 73.8 29.3 3.50
mVLAD+SURF 4x128 || 71.8 38.7 3.32

is significantly better than the 61.4% mAP reported in [[15]]
for 128-dimensional VLAD vectors coming from a k =4x256
multiple vocabulary setup.

G. Comparison with the state-of-the-art on short vectors

In this section we compare our optimized VLAD represen-
tation with reference state-of-the-art results, after modifying
the experimental setup that we used in previous subsections
to match the setup most commonly used in similar studies.
Specifically, we: a) use larger, 1024x768 dimensional images
for all datasets and b) calculate mAP on Oxford using the pro-
vided evaluation software which treats query images as pos-
itive examples. Table [VII] shows results on Holidays, Oxford
and UKB, obtained using 128-dimensional vectors of various
types. The last 2 rows correspond to our PCA-projected and
whitened VLAD+CSURF and multiple vocabulary aggregated
VLAD+SUREF vectors (mVLAD+SUREF).

On Holidays we improve the previous best reported
result [30] by 18% with VLAD+CSURF and by 15%
with mVLAD+SURFE. On Oxford, our mVLAD+SURF and
VLAD+SURF representations obtain mAP scores that are
59% and 21% better than the best result reported in [I]]
using an independent learning dataset (better results have been
reported in [[15] and [30] but using Paris for learning). Finally,
VLAD+CSURF improves the state-of-the-art [[15] by 4% on
UKB while mVLAD+SUREF obtains slightly lower results.

H. Product Quantization and Large-Scale Experiments

In this experiment we study the parameters of PQ discussed
in Section[[l-G| PQ is applied on PCA-projected and whitened
VLAD vectors generated using four vocabularies of size
k=128 that were found to give the best results in Section
To study the joint effects of d’, m and k, we use three
mXxks schemes (6x13, 8x10, 10x8) that allocate approximately
the same number of bits (78 and 80), and for each scheme
we evaluate the performance using six different projection
lengths d' = {20/24,48/50,96/100, 120,240,480}ﬂ Note
that with such a small memory footprint, up to 100M vectors
can be stored in 1GB of memory. Figures [9a] [9b] and

TThe alternative d’ values (e.g. 20/24) are used because d’ should be an
exact multiple of m.
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Fig. 9: mAP results using 6x13, 8x10 and 10x8 PQ schemes
and uncompressed PCA-projected VLAD vectors, for dimen-
sionality reduction to varying dimensions d’.

show mAP results on Holidays, Oxford and Paris respectively.
In all datasets, we observe a great variation with respect to
d’, with the best results obtained with d’ between 48 and
100. With such a small quantization code, larger dimensional
vectors incur a significant quantization loss. With respect to
the parameters m and ks, we observe that all quantization
schemes exhibit similar accuracy near the optimal d'. These
results are different from [21]] (where for a fixed code size
quantization schemes with smaller values for m were found
better) and in favor of schemes with smaller ks values due to
the fact that they are more efficient. Furthermore, experimental
results provided in the supplementary material, suggest that
the random transformation step is helpful only for projection
lengths d’ > 100 while for smaller d’ the results are similar
to not applying random transformation.

Large-scale Experiments on Holidays+ImageNET10M: Fig-
ure [I0] shows the performance of various large-scale sys-
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Fig. 10: mAP results on Holidays + ImageNET10M

tems on datasets of increasing size (10K, 100K, 1M, 10M)
constructed by combining the images of Holidays and Ima-
geNET10M. We report results for the following systems:

1) VLAD-k4x128-d'96w: our VLAD+SURF with k=4x128,
reduced to d'=96 with PCA+whitening.

2) FV-k64-d'96: FV+PCA-SIFT with k=64, reduced to d’=96
with PCA, results from [1].

3) VLAD-k4x256-d’'128w: VLAD+SIFT with k=4x256, re-
duced to d'=128 with PCA+whitening, results from [[15].

4) VLAD-%k4x128-d'48w-PQ8x10: our VLAD+SURF with
k=4x128, reduced to d’'=48 with PCA+whitening and encoded
to 80 bits using the 8x10 PQ scheme.

5) FV-k64-d’'96-PQ16x8: (2) encoded to 128 bits using the
16x8 PQ scheme, results from []1].

6) VLAD-E4x256-PQ128: (3) encoded to 128 bits using PQ
(d’ and PQ scheme not given), results from [15].

7) VLAD-k4x128-d’'48w-IVFPQ8x10: (4) combined with in-
verted lists (IVFADC w=64/8192).

8) FV-k64-d’'96-IVFPQ16x8: (5) combined with inverted lists
(IVFADC w=64/8192), results from [1[].

Looking at the results obtained using uncompressed VLAD
vectors (triangles), we observe that our 96-dimensional repre-
sentation is significantly better than both the 128-dimensional
representation of [15] and the 96-dimensional representation
of [[1] for all distractor levels. Looking at the results using
PQ encoded vectors and ADC search (circles), we observe
that we outperform other state-of-the-art systems that use 128
bits per image by using only 80 bits. When no additional dis-
tractors are present, our VLAD-k4x128-d'48w-PQ8x10 sys-
tem obtains a 57.6% mAP while FV-k64-d’'96-PQ16x8 and
VLAD-£k4x256-PQ128 obtain 50.6% and 53.1%, respectively.
Looking at the results using PQ encoded vectors and IVFADC
search (squares), we observe that our VLAD-k4x128-d'48w-
IVFPQS8x10 system, which uses only 80 bits per image,
obtains slightly better results than FV-k64-d'96-IVFPQ16x8
which uses 128 bits per image. Interestingly, we notice that
PO+ADC schemes outperform PQ+IVFADC schemes for up
to 100K distractors. This suggests that PO+ADC should be



TABLE VIII: Classification performance (mAP) of different
image representations.

Method d d' | mAP
BOW 500 500 | 0.111
VLAD 32768 128 | 0.192
VLAD+ 32768 128 | 0.233
cVLAD+ 24576 128 | 0.259

preferred over PQ+IVFADC for small-medium databases since
it also has comparable or better efficiency as discussed below.

Timings: With our single core implementation, search-
ing the 10M dataset using 96-dimensional vectors takes (on
average): 3.7 s when no encoding is used, 744 ms with
the PQ+ADC 8x10 scheme and only 24 ms with the non-
exhaustive PQ+IVFADC 8x10, 64/8192 scheme. For smaller
datasets (up to 100K with our setup) ADC is slightly faster
than IVFADC. We observed that the main overhead of IV-
FADC for small databases is the calculation of multiple (w)
lookup tables (that negates the benefit of scanning a small
subset of the database) and not the assignment to the coarse
quantizer as mentioned in [21].

L. Classification Experiments

Although our primary focus is on image representations
for example-based large-scale retrieval, we expect that the
improvements reported so far for VLAD can be of interest
for large-scale image classification as well. To evaluate our
hypothesis, we conducted classification experiments on the
NUS-WIDE [42]] dataset. NUS-wide is among the largest
benchmark datasets for image classification containing 260K
images from Flickr with manual ground truth annotations for
81 concepts. An interesting property of the dataset is that each
image can be annotated with multiple concepts rendering the
problem into a multi-label classification one. For all images
we extract the following three types of vectors:

1) VLAD: original VLAD vectors (as described in [1]]) using
SIFT features and a single k=256 visual vocabulary, reduced
to d'=128 with PCA.

2) VLAD+: improved VLAD vectors (as described in this
paper) using SURF features and multiple k=4x128 visual
vocabularies, reduced to d’=128 with PCA+whitening.

3) ¢cVLAD+: improved VLAD vectors (as described in this
paper) using CSURF features and a k=128 visual vocabulary,
reduced to d'=128 with PCA+whitening.

Additionally, we use baseline Bag-of-Words (BoW) features
provided along with NUS-WIDE (see [42] for details). Prior to
learning, all types of vectors (including BoW) are normalized
to unit length. For multi-label classification we apply the One-
vs-All approach (implementation from Mulan [43]]) coupled
with Logistic Regression (implementation from LibLINEAR
[44]). Performance for each dataset is measured in terms of
mAP, using the original train-test splits. The results are re-
ported in Table All VLAD based representations perform
impressively better that the BoW baseline. We also see that
VLAD+ achieves a large 21.4% increase over standard VLAD.
Finally, using the new CSURF descriptor, cVLAD+ achieves
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the best overall performance that is 233% better than the
performance of BoW.

VI. CONCLUSIONS

Through a comprehensive study of the VLAD+PQ frame-
work, we constructed 128-dimensional vectors that obtain
significantly better accuracy than the state-of-the-art on three
popular image retrieval benchmarks and 80-bit compressed
image signatures that outperform less efficient setups on
the Holidays benchmark. Furthermore, we showed that the
proposed modifications lead to significant improvements on
the image classification domain. Aside the above performance
improvements, we believe that the extensive experimental
study presented here and the accompanying experimental
testbed offer valuable insights to image retrieval researchers
and practitioners on the role of different feature extraction,
aggregation and indexing steps involved in the VLAD+PQ
framework. More specifically, the following practical conclu-
sions are drawn from our empirical study:

o SUREF constitutes an excellent replacement for SIFT (and
RootSIFT) in the context of VLAD since it leads to
consistently increased search accuracy and at the same
time it can be extracted much faster. In cases where
color is expected to be a discriminative factor CSURF
constitutes an even better alternative.

o Feature filtering techniques based on either the richness
of feature structure or the feature-vocabulary relation do
not improve the VLAD representation.

o The originally proposed sum-aggregated VLAD outper-
forms the mean-aggregated extension.

o Whitening should always be performed jointly with
PCA on VLAD vectors when we are interested in low-
dimensional representations.

« When appropriate multiple vocabulary setups are used,
the multiple vocabulary aggregation technique can offer
significant improvements over using a single vocabulary.

« When aggressive compression is applied, the selection of
PQ parameters m and k, (for a constant number of bits)
has negligible impact on accuracy. Thus, schemes with
smaller k; values should be preferred due to being more
efficient. On the other hand, there is great variation in
accuracy with respect to d’ and thus its value should be
carefully selected.

o« PQ+IVFADC should be preferred over PQ+ADC for
datasets larger than 100K images as it is more accurate
and has better efficiency.

APPENDIX
A GRAPHICAL ILLUSTRATION OF SUM VERSUS MEAN
VLAD AGGREGATION

Figure [T1] shows (on the left) a visual vocabulary with three
visual words and the quantized (2-dimensional) features of
two hypothetical images. On the right we see a graphical
illustration of the VLAD signatures of the images using
sum (right-top) and mean (right-bottom) aggregation. The
aggregated residual for each visual word c; is depicted with
an arrow v; starting from the origin. The distance between
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Fig. 11: Graphical illustration of sum versus mean aggregation.

two VLAD signatures depicted in this way is the sum of
the Euclidean distances between the corresponding aggregated
residuals. Looking at the quantized features of each image
we observe that the two images differ significantly since the
majority of the features of image x are quantized in c¢; while

the

majority of the features of image o are quantized in

co. While this difference is captured by the sum-aggregated
VLAD signatures, the mean-aggregated VLAD signatures of
the images are identical due to the fact that mean-aggregation
discards information about the number of features quantized
in each visual word.
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