
A Hybrid Approach for Cold-start
Recommendations of Videolectures

Eleftherios Spyromitros-Xioufis, Emmanouela Stachtiari
Grigorios Tsoumakas, and Ioannis Vlahavas

Department of Informatics, Aristotle University of Thessaloniki, 54124 Greece
{espyromi,emmastac,greg,vlahavas}@csd.auth.gr

Abstract. This paper presents the solution which ranked 2nd in the
“cold-start” recommendations task of the ECML/PKDD 2011 discovery
challenge. The task was the recommendation of new videolectures to new
users of the Videolectures.net Web site. The proposed solution is a hybrid
recommendation approach which combines content-based and collabora-
tive information. Structured and unstructured textual attributes which
describe each lecture are synthesized to create a vector representation
with tf/idf weights. Collaborative information is incorporated for query
expansion with a novel method which identifies neighboring lectures in a
co-viewing graph and uses them to supplement missing attributes. The
cosine similarity measure is used to find similar lectures and final rec-
ommendations are made by also accounting the coexistence duration of
lectures. The results of the competition show that the proposed approach
is able to give accurate “cold-start” recommendations.

1 Introduction

Recommender systems are designed to suggest items which are predicted to be
interesting to users, based on some evidence. This technology has allowed for
businesses on the web to keep a sense of a local shop where customers are fa-
miliar to the owner, while targeting at a global market. Recommender systems
filter items to support users to easier decide what to buy. For an e-commerce,
like Amazon.com, providing personalized suggestions of products leads to a bet-
ter alignment with the designed sales’ policy, which could aim at augmenting
the sales, or enlarging their market. Web sites that don’t make profit out of
products can also benefit from a recommender system which attracts users by
addressing their specialized needs. Examples of such applications include rec-
ommending movies at Grouplens.org, videos at Youtube.com etc. Except for
identifying which items to recommend, it is also important to determine a rank-
ing for displaying those items, since the top displayed recommendations are more
likely to be viewed or visited.

Videolectures.net is an online repository of video lectures which took place
at scientific events like conferences, summer schools, workshops etc. Its goal is to
promote science ideas by providing high quality didactic content to the scientific
community and to the general public. All lectures, accompanying documents,

information and links are systematically selected and classified through the ed-
itorial process taking also into account users’ comments. ECML/PKDD 2011
discovery challenge was organized in order to improve the Web site’s current
recommender system. The first task of the challenge is tackled here and it simu-
lates a new-user and new-item recommendation mode, the so-called “cold-start”
recommendations problem.

There are two main categories of recommender systems. Collaborative filter-
ing methods [3, 8, 2] make use of the observed activity of users in terms of rating,
viewing, or buying items, in order to recommend to a user those items that were
appreciated by other similar (or neighboring) users. Content-based or informa-
tion filtering methods [7, 9, 10] recommend items with descriptive characteristics
which match user’s taste or a given query. Many hybrid systems [4, 2] have also
been developed combining collaborative and content-based methods.

Collaborative filtering systems can recommend items even when nothing is
known about their description, which in many cases may not be available or
may be extremely noisy. However, it gives poor recommendations to infrequent,
new, or anonymous users, because their observed activity is small or nonexistent.
They also fail to address “unusual” users (neighboring users may not be found)
and “unusual” items (they may have no ratings yet). Regarding content-based
techniques, a known advantage over collaborative filtering is that they perform
well in “cold-start” situations: they deal with new users by recommending items
with similar description to a query item. Another strength is that they are in-
different to the frequency of the selection of items, so new (or rare) items will
also be returned. Among its drawbacks is that performance depends a lot on
feature selection and content assignment to the items, which for some domains
(like multimedia) requires advanced methods.

The solution proposed here is mainly content-based: for a query lecture we
recommend lectures that are similar in their descriptive features, taking also
into account the duration that they coexisted in the Web site. We deal with the
problem of missing attributes in queries by a query expansion method, which
introduces collaborative information in the method. Missing attributes are re-
placed with the corresponding attributes of the most neighboring lectures in a
co-viewing graph.

The rest of the paper is organized as follows. Section 2 refers to related work
on recommender systems. Section 3 gives an overview of the task and introduces
the evaluation system that we developed in order to assess the performance of
our method. Section 4 describes the given solution and finally Section 5 concludes
this paper.

2 Related Work

A variety of collaborative filtering techniques have been developed [3, 5, 8]. Typ-
ically these techniques compute similarity scores between pairs of users and give
recommendations for a user by taking into account the feedback of other users
proportionally to their similarity to the given user. As a measure of similarity,

correlations of the feedback of users have been used in [8]. An alternative to
the typical approach is an item to item collaborative filtering algorithm which
was presented in [5]. This technique keeps an item to item similarity matrix, in
which items that tend to be purchased by common customers have high similar-
ity. Upon a recommendation request, the algorithm first aggregates items that
are similar to each of the user’s purchases and ratings and then recommends
the most popular or correlated items. Our query expansion method, being also
based on item to item collaborative information, differs in that we form a graph
instead of a matrix. This representation allows us to apply Dijkstra’s shortest
path algorithm to find similar items. These items are not recommended (since
the recommendations should come from a different pool of items) but used to
expand the query item.

Pure content-based systems rely on content of items to make recommen-
dations [7, 10]. For example, the authors in [6] suggest text-categorization of
movie synopses in the domain of movie recommendation. They also examined
the use of semantically richer representations than the standard bag of words
representation, such as phrases instead of words. Another approach [10] builds a
discriminative classifier for each user profile, using a factored model as its prior,
where different factors contribute in different levels. Opposite to collaborative
filtering, content-based systems can even recommend previously unrated items
to users without any observed behavior in the system, and perform better in
cases that users have particular interests.

Some hybrid systems aim at combining collaborative with content informa-
tion in the features of each example and then provide recommendations using
content-based methods. For example, experiments for movie recommendation
were reported in [2] where features were drawn from content and user ratings
and an inductive rule learner was applied. Other hybrid methods augment the
existing feedback using content-based techniques and then produce recommen-
dations through collaborative methods. Such an approach in the movie recom-
mendation domain [4] tackles sparsity of existing feedback by generating ratings
in an automatic manner using content-based agents. Our method resembles the
first example, since it is mainly content-based and it exploits some collaborative
information to expand the content of queries if needed.

3 Task Description

3.1 Task Overview

The solution of the “cold-start” recommendations task should deal with the
“cold-start” problem, in the sense that new lectures should be recommended to
new users. The scenario assumes that each user has watched only one lecture
from a set of old lectures which are lectures published at an early stage of the
site’s life. Given this old lecture as query, the task is to return a ranked list of
30 similar lectures from a set of new lectures. New lectures are considered to be
unseen at the time of recommendation.

3.2 The Given Data

The given data contains two disjoint sets of lectures: the test and the training
lectures. All the test lectures have been published in the site after July 1st, 2009.
The majority of the training lectures were published before July 1st, 2009, with
a smaller subset of lectures having been published after that date. A subset of
the training lectures were selected to form the set of query lectures which are all
published prior to July 1st, 2009.

Lecture co-viewing information is also given in a table which contains the
pairwise co-viewing frequencies for the lectures of the training set. In general,
all lecture co-viewing frequencies were taken on July 2010. By applying the
train/test split on July 1st, 2009, the split is both “vertical” (all test lectures
are published after July 1st, 2009) and “horizontal” (the training set contains
approximately half of the lectures published after July 1st, 2009). As we will
discuss in Section 4.4, this split allows learning the temporal impact on lecture
co-viewing frequencies from the training set.

For each lecture we have information about its language, event type, parent
event, date of recording, publication date, name description, slide titles, cate-
gory/ies and author/s. For the training lectures, the total number of views is
also given. Except for lectures we also have information on events and the event
taxonomy used to group lectures. Table 1 gives the details of the database tables
which contain the given data.

Table name Description
authors Contains data on 8,092 authors registered on Videolectures.net and

their information. However, not all authors are assigned to a lecture.
authors lectures Contains pairwise information on which author authored which lecture

or event. A single author can author multiple lectures (or events), and
one lecture (or event) can be authored by multiple authors.

categories Contains information on categories in scientific taxonomy used on Vide-
olectures.net in a pairwise manner (parent and child pairs). The taxon-
omy is a direct acyclic graph (several categories have multiple parent
categories). Only the root category does not have a parent. There are
348 distinct categories.

categories lectures Contains information on pairs of categories and assigned lectures (or
events). Some lectures (or events) belong to more than one categories.

events Contains information on events and the event taxonomy used to group
lectures. The taxonomy is a forest (a disjoint union of trees) since: a)
each lecture is part of only one event, b) an event has only one parent
and c) there are root events that do not have a parent. Events contain
a set of lectures rather than videos. There are 519 distinct events.

lectures train, lectures test Contain information about the 6,983 training and the 1,122 test lec-
tures.

pairs Contains records about pairs of lectures viewed together (not necessar-
ily consecutively) with at least two distinct cookie-identified browsers.
There are 363,880 distinct pairs.

task1 query This is the query file for the “cold-start” recommendations task. It
contains only lecture ids from the subset of the lectures train table, for
which a recommended ordered list of 30 lectures from the lectures test
table is expected as a submission. There are 5,704 query lectures.

Table 1. Details of the given data.

3.3 Evaluation method

Taking into account the scarcity of items available for learning, recommending
and evaluation in the “cold-start” recommendations task, the challenge orga-
nizers defined an evaluation measure called mean average R-precision (MARp),
inspired from standard information retrieval measures. Given q query lectures,
a set of solution lists S = s1, . . . , sq and recommended lists R = r1, . . . , rq for
these lectures and a set of cut-off lengths Z = 5, 10, 15, 20, 25, 30, this measure
is defined as:

MARp(S,R) =
1

q

q∑
i=1

AvgRp(si, qi, Z), (1)

where for a given solution list s, recommended list r and set of cut-off lengths
Z, the average R-precision (AvgRp) is defined as:

AvgRp(s, r, Z) =
∑
z∈Z

Rp@z(s, r), (2)

where for a given solution list s, recommended list r and cut-off length z the
R-precision at this cut-off length (Rp@z(s, r)) is defined as:

Rp@z(s, r) =
|sz ∩ rz|

min(|s|, z)
, (3)

where lz denotes a list containing the first z elements of list l.
The preliminary results, comprising of randomly sampled 20% of the final

results, are evaluated after submission and published on a leaderboard, allowing
comparison with other participants. The final results are scored on the full test
dataset.

3.4 Internal Evaluation

In order to be able measure the performance of our recommender we developed
an internal evaluation system which allowed us to experiment with variations of
our approach and tune its parameters without submitting results to the leader-
board (only 60 submissions were allowed in total). To simulate the “cold-start”
recommendations task, we split the given training lectures in two sets. The first
set contained all the lectures of the original training set which had been pub-
lished prior to July 1st, 2009 and formed the new training set. The second set
contained the rest of the lectures of the original training set (published after
July 1st, 2009) and formed the new test set. The set of query lectures was the
same as in the original task, since all the query lectures appear prior to July 1st,
2009 and were all contained in the new training set. Given a query lecture, we
recommended the 30 most relevant lectures from the new test set. The ground
truth was created using the co-viewing information which was available in the
pairs table (described earlier). Specifically, for each query lecture, we found the
(at most) 30 test lectures with which it had the highest co-viewing frequency and

ranked them in descending order according to co-viewing frequency. The AvgRp
measure was calculated by comparing our recommendations to the ground truth
and finally averaged over all query lectures to get the MARp score. It was found
that the accuracy results obtained using our internal evaluation system were (in
most cases) quite close to the final evaluation results. In the following section
we refer to variations we tried and parameters we tuned using our evaluation
system without, however, giving the exact evaluation results since they were not
recorded.

4 Our Solution

4.1 Basic Recommendation Model

We tackled the “cold-start” recommendations problem by using a well-known
content-based recommendation technique which has its roots in the theory of
Information Retrieval and is known as the vector space model [1]. Each lecture
was represented as a text document by synthesizing various sources of textual
information related to it. Each document was then transformed into a vector
of size k where k is the total number of distinct terms (words) in the whole
collection of documents (the union of the test and the query lectures). To measure
the importance of each term inside a document, we used term frequency/inverse
document frequency (tf/idf) weights:

TFt,d =
ft,d

maxx{fx,d}
(4)

where ft,d is the frequency of the term t in document d and maxx{fx,d} is the
maximum frequency of a term in that document.

IDFt = log
N

nt
(5)

where N is number of documents in the collection and nt is the number of
documents with the the term t.

The tf/idf weight for a term t in document d is defined as:

wt,d = TFt,d · IDFt (6)

In order to measure the similarity between two vectors q and d we used the
cosine similarity:

Scosine(q, d) =

∑k
i=1 wti,qwti,d√∑k

i=1 w
2
ti,q

√∑k
i=1 w

2
ti,d

(7)

The above formulas for calculating the tf/idf weights combined with the
cosine similarity were found to give the best results among other variations that
we tried.

4.2 Synthesis of Textual Attributes

In order to create the document representation of each lecture we synthesized the
various textual attributes related to it, which were distributed among the given
database tables. The used attributes fall into two categories: unstructured text
attributes (name, description, slide-titles) and structured text attributes with a
known closed set of values (event type, language, parent event id, category/ies,
author/s). We found that this semi-structured representation, which included
both attributes with restricted values and unstructured text attributes worked
better than using unstructured text alone (the typical approach).

Structured and unstructured text attributes were treated differently in terms
of preprocessing. To preprocess the unstructured attributes, we first removed any
non alphanumeric characters. Then, we used an English stop-word list to filter
out common terms and removed terms with less than 2 or more than 20 char-
acters (this allowed us to get rid of long DNA sequences in the descriptions of
some biology/genetics videos). We also removed terms consisting only of num-
bers. Stemming of English words was applied without improvement in the results
which can be attributed to the fact that the collection included non-English doc-
uments which were improperly stemmed. Perhaps, applying stemming only to
the English documents or using language specific stemmers would produce bet-
ter results. Filtering out infrequent terms performed worse than keeping all the
available terms.

A different type of preprocessing was applied to the structured attributes.
Their values were prefixed with the attributes’ names. For example, the value
“education” of the category attribute was substituted by “category education”.
This substitution was performed in order to distinguish a term inside a lecture’s
name or description from the same term as the value of a structured attribute.
For example, the term “education” in the title of the lecture “Women in univer-
sity education”, which refers to gender issues, should be distinguished from the
same term as a lecture’s category.

Next, we give a more detailed description of the structured attributes:

– Parent event id. The parent event to which the lecture belongs. While the
sets of query and new lectures are disjoint, it may happen that a query and
a new lecture share the same parent event. This is considered a piece of
information contributing to the similarity between two lectures.

– Lecture type. The specific type of the lecture, which could be one of the
following: lecture, keynote, debate, tutorial, invited talk, introduction, inter-
view, opening, demonstration video, external lecture, thesis proposal, best
paper, panel, advertisement, promotional video, thesis defence, summary.

– Language. The language of the lecture. Although the majority of the lectures
in the collection were in English, there were also non-English lectures (699
out of 6983 in the training set and 213 out of 1122 in the test set) belonging
to 10 different languages. This attribute was included in order to increase
the probability of recommending lectures of the same language.

– Category/ies. The categories under which a lecture has been categorized.
Obviously, lectures belonging to the same category are likely to be similar.

We also tried including the ancestors of the actual categories into the textual
representation of lectures. This was based on the intuition that two lectures
belonging to categories which share a common ancestor are probably more
similar than two lectures whose categories have no common ancestors. Al-
though intuitively rational, this variation did not improve the evaluation
results.

– Author/s. The authors of the presentation related to each lecture. Users are
often interested in lectures of the same author.

A description of the unstructured attributes is given here:

– Name. The name of the lecture or event in natural language. Terms in lecture
names are usually highly descriptive (e.g. “Research on position of women in
science” and “Women in technical sciences research”. However, some times
names are misleading (e.g. “Where did they all go?”).

– Description. The description of the lecture or event in natural language. Note
that not all lectures/events are given a description. However, it is expected
to be a very informative attribute.

– Slide titles. The titles of the slides accompanying the lecture. Note that slide
titles are not available for all lectures. Usually slide titles in the beginning
and the end of a presentation (“Introduction”, “Conclusions”) are not as
informative as the titles in the middle. However, the tf/idf scheme will assign
small weights to terms which are frequent in all documents.

One can notice that some attributes contribute more than others to the sim-
ilarity between two lectures. For example, a lecture having the same author and
category with a query lecture should be favored as a recommendation compared
to a lecture that only shares some common terms with the query in its descrip-
tion. In order to take advantage of this intuition and to compensate for the large
number of terms in the unstructured attributes compared with the few terms
of the structured attributes, we assigned a different weight to each attribute by
repeating its terms in the textual representation of each query lecture. The final
weights were tweaked using the internal evaluation system. The terms of parent
event id, lecture type, language, category/ies, author/s and name were repeated
sixteen times, the terms of description four times and the terms of slide titles
one time.

4.3 Query Expansion

We noticed that some query lectures had missing attributes (descriptions, slide-
titles, authors and/or events). This resulted in uncertain recommendations due
to the sparsity of the tf/idf vectors. We tried to tackle this problem by using
neighboring lectures to enrich the original queries. The lecture pairs table was
used for this purpose. The pairs contained in this table involve only lectures
from the training set, thus the co-viewing information can not be used for rec-
ommending new lectures. However, this information can be used for identifying
training lectures which are frequently co-viewed with query lectures and are thus
assumed to have similar content.

Finding Neighbors To find neighboring lectures, we construct a co-viewing
graph where the training lectures represent the vertices. For every pair of lectures
in the pairs table we add an undirected edge connecting the lectures of the pair.
The weight of the edge is equal to the pair’s frequency. These edges show the
strength of connection between two nodes or the likelihood of moving from one
lecture to another. A straightforward approach to find the nearest neighbors of a
query lecture in the graph, would be to find all the lectures which are connected
to the query with some edge and then rank them in descending order according to
edge weight. This approach identifies only lectures which are directly connected
to the query as neighbors. However, there are cases where two lectures have
very low or zero co-viewing frequency but have both been co-viewed many times
with a third lecture. With the previous approach these two lectures would not
be returned as neighbors, although it is likely that they are similar. In order
to overcome this problem we developed a method which is based on Dijkstra’s
shortest path algorithm and is able to identify neighbors even if they are not
directly connected to the query lecture. Since Dijkstra’s algorithm requires cost
(distance) edges, we apply a transformation to the weights of the edges. This is
done by first finding the weight of the edge with the largest weight maxw in the
original graph and then using the formula shown in Equation 8 where w(x, y) is
the weight of the edge connecting the vertices x and y before the transformation
and w′(x, y) is the transformed weight.

w′(x, y) = maxw − w(x, y) + 1 (8)

Given a source vertex (lecture), Dijkstra’s algorithm finds the shortest path
between that vertex and every other vertex. The algorithm guarantees that in its
k-th iteration, the shortest paths between the source and the k nearest vertices
have been identified. Since we are interested only in the k nearest neighbors, we
stop the algorithm on its k-th iteration, thus achieving a small execution time.
In our internal evaluation we found that this way of finding nearest neighbors in
the co-viewing graph yielded better results than the straightforward approach
and we therefore used it in our recommender.

Using Neighbors Two different ways to use the nearest neighbors for expand-
ing the original query were tested. In the first approach, the query lecture was
expanded by including all the attributes of its nearest neighbors. The evalua-
tion showed that we could obtain better results with this approach compared
with using only the original query. Even better performance was achieved by
assigning larger weight to the attributes coming from the original query than
the attributes coming from the query’s neighbors. A degradation in performance
was observed when more than two nearest neighbors were considered. This is at-
tributed to the fact that including attributes from distant neighbors adds noise
to the query.

In the second approach, instead of expanding all the query lectures with
information from their nearest neighbors we tried to do that selectively, only in
the cases where the original query was missing some attributes. For example, if

the original query had no description assigned, we looked for a description at
its nearest neighbor. The process was repeated until a neighbor with description
was found or until the distance of the neighboring lecture to the original query
lecture exceeded a fixed threshold. The threshold was used to ensure that missing
attributes will be supplemented using attributes of really close neighbors. This
approach outperformed the previous one.

4.4 The Temporal Effect

An important factor for improving the evaluation score was to consider how the
ground truth was generated. Ideally, recommender systems success should be
measured through user satisfaction analysis. For the challenge, a quantitative
measure was needed. In order to be able to score solutions, the organizers took a
snapshot of the Videolectures.net database on July 2010 and lecture co-viewing
frequencies were recorded for all lectures (both train and test) at that moment.
The list of relevant lectures for each query lecture was created by ranking the test
lectures in descending order according to withheld lecture co-viewing frequencies.

By observing co-viewing frequencies in the training data (no co-viewing in-
formation was available for the test data), we noticed that the duration of co-
existence between lectures had an impact in the frequencies. In fact, the more
the time that two lectures coexisted in the site the more likely it was to have a
high co-viewing frequency. Intuitively, a lecture that was published in Videolec-
tures.net just one week before the day that the snapshot was taken could not
have had many co-views with any of the other lectures, even with the ones most
similar to it.

Algorithm 1: Make recommendations

Input: a query lecture lq, the set of test lectures LT , k
Output: the sorted list of recommended lectures LR

1 // Find the k most similar items to lq based on the cosine similarity Scosine and
initialize the recommended list.

2 LR ← kNearestNeighborscosine(lq,LT)
3 foreach lt ∈ LR do
4 Calculate the coexistence-based similarity Sduration(lq, lt) between lq and lt
5 Stotal(lq, lt)← Sduration(lq, lt) · Scosine(lq, lt)

6 Sort LR on Stotal

7 Return the top 30 items of LR

To account the impact of both the content-based similarity and the impact of
the coexistence duration in co-viewing frequencies, we used the algorithm listed
in Algorithm 1. We first find the k nearest neighbors of the (expanded) query in
the test set according to the cosine similarity. k is a parameter of the algorithm
with values ranging between 30 and |LT | where LT is the test set. Then, we

multiply the cosine similarity between the query and each one of its k nearest
neighbors with a similarity based on their coexistence duration, to get a total
similarity score. The coexistence-based similarity is just the time (in ms) that
two lectures coexisted divided by the maximum coexistence duration (approx-
imately one year) between a query lecture and a test lecture. Both similarities
are normalized to the [0,1] scale. To make the final recommendations, we sort
the list of neighbors on the combined score and return the top 30 lectures.

The value for the parameter k was tweaked using the internal evaluation
system and the best results where obtained with k = 40. By taking the temporal
effect into account, the overall performance was increased by 10%.

5 Conclusions and Future Work

In this paper we presented the recommendation system that we developed for the
“cold-start” recommendations task of the ECML/PKDD 2011 Discovery Chal-
lenge. The system uses a traditional content-based filtering technique to rec-
ommend similar lectures, based on both structured and unstructured attributes
related to each lecture. Collaborative information is also incorporated to the
system using a novel method which identifies neighboring lectures in terms of
co-viewing and uses them to supplement missing attributes. Finally, temporal
aspects are studied and taken into account to produce the final recommenda-
tions. The results of the competition show that the proposed hybrid approach is
able to produce accurate recommendations in “cold-start” situations. We expect
that better results can be obtained if the coexistence duration between pairs
of lectures is taken into account in the process of finding neighbors in the co-
viewing graph. It would also be interesting to examine whether a better way to
combine the content-based similarity and the coexistence-based similarity could
learned from the training data.

References

1. Baeza-Yates, R.A., Ribeiro-Neto, B.: Modern information retrieval. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA (1999)

2. Basu, C., Hirsh, H., Cohen, W.W.: Recommendation as classification: Using social
and content-based information in recommendation. In: AAAI/IAAI. pp. 714–720
(1998)

3. Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using collaborative filtering to
weave an information tapestry. Commun. ACM 35, 61–70 (December 1992)

4. Good, N., Schafer, J.B., Konstan, J.J., Borchers, A., Sarwar, B., Herlocker, J.,
Riedl, J.: Combining collaborative filtering with personal agents for better recom-
mendations. In: Proceedings of the 1999 Conference of the American Association
of Artifical Intelligence (AAAI-99) (1999)

5. Linden, G., Smith, B., York, J.: Amazon.com recommendations: item-to-item col-
laborative filtering. IEEE Internet Computing 7, 76–80 (January 2003)

6. Mak, H., Koprinska, I., Poon, J.: Intimate: A web-based movie recommender using
text categorization. Web Intelligence, IEEE / WIC / ACM International Confer-
ence on 0, 602 (2003)

7. Pazzani, M., Billsus, D.: Content-based recommendation systems. In: Brusilovsky,
P., Kobsa, A., Nejdl, W. (eds.) The adaptive web, Lecture Notes in Computer
Science, vol. 4321, pp. 325–341. Springer, Berlin / Heidelberg (2007)

8. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: Grouplens: an open
architecture for collaborative filtering of netnews. In: Proceedings of the 1994 ACM
conference on Computer supported cooperative work. pp. 175–186. CSCW ’94,
ACM, New York, NY, USA (1994)

9. Wang, Y., Wang, S., Stash, N., Aroyo, L., Schreiber, G.: Enhancing content-based
recommendation with the task model of classification. In: Cimiano, P., Pinto, H.S.
(eds.) EKAW. Lecture Notes in Computer Science, vol. 6317, pp. 431–440. Springer
(2010)

10. Zhang, L., Zhang, Y.: Discriminative factored prior models for personalized
content-based recommendation. In: Huang, J., Koudas, N., Jones, G.J.F., Wu,
X., Collins-Thompson, K., An, A. (eds.) CIKM. pp. 1569–1572. ACM (2010)

