
Algorithms for Electric Vehicle Scheduling in
Mobility-on-Demand Schemes

Emmanouil S. Rigas∗, Sarvapali D. Ramchurn†, Nick Bassiliades∗

∗Department of Informatics, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
{erigas, nbassili}@csd.auth.gr

†Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ, UK
sdr1@soton.ac.uk

Abstract—We study a setting where electric vehicles
(EVs) can be hired to drive from pick-up to drop-off
points in a mobility-on-demand (MoD) scheme. Each
point in the MoD scheme is equipped with a battery
swap facility that helps cope with the EVs’ limited
range, while the goal of the system is to maximise the
number of customers that are serviced. Thus, we first
model and solve this problem optimally using Mixed-
Integer Programming (MIP) techniques and show that
the solution scales up to medium sized problems. Given
this, we develop a greedy approach that is shown to
output solutions that are close to the optimal and can
scale to thousands of consumer requests and EVs. Both
algorithms are evaluated in a setting using data of
actual locations of shared vehicle pick-up and drop-
off stations in Washington DC, USA and the greedy
algorithm is shown to be on average 90% of the optimal
in terms of average task completion.

I. Introduction
In a world where over 60% of the total population

will be leaving in, or around cities, the current personal
transportation model is not viable as it is based almost
entirely on privately owned internal combustion engined
vehicles. These vehicles cause high pollution (e.g., air and
sound), and suffer from low utilization rates [1]. One of
the key elements of the vision of future Smart Cities is the
development of Mobility-on-Demand (MoD) systems, es-
pecially ones using fleets of compact-sized Electric Vehicles
(EVs) [2]. Such vehicles emit no tailpipe pollutants and,
once powered by electricity (partially) produced from re-
newable sources, they can play an important role towards
the transition to a new and sustainable transportation era.

A number of MoD schemes, such as ZipCar1, or Car-
Share2 have recently been proposed, albeit most of them
using normal cars. However, EVs present new challenges
for MoD schemes. For example, EVs have a limited range
that requires them to either charge regularly or have
their battery swapped when they stop. Moreover, if such
MoD schemes are to become popular, it will be important
to ensure that charging/swap capacity is managed and
scheduled to allow for the maximum number of consumer
requests to be serviced across a large geographical area. In

1http://www.zipcar.com/.
2http://www.enterprisecarshare.com/.

this context, Pavone et al. have developed mathematical
programming-based rebalancing mechanisms for deciding
on the relocation of vehicles to restore imbalances across
a MoD network, either using robotic autonomous driving
vehicles [3], or human drivers [4], while Smith et al. [5]
use mathematical programming to optimally route such
rebalancing drivers. Moreover, Carpenter et al. [6] propose
solutions for the optimal sizing of shared vehicle pools.
However, in all these works internal combustion engined
vehicles are assumed and hence do not account for the
limited range of EVs and how to balance the load (i.e.,
number of pending requests at specific nodes) across the
network (i.e., by choosing which trips to execute) while
serving the maximum number of users.

Against this background, we model the MoD scheme for
EVs and develop novel algorithms to solve the problem of
scheduling trips for MoD consumers in order to maximise
the number of requests serviced while coping with the
limited range of EVs. Crucially, we show how the schedule
of trips in the MoD network is a highly combinatorial
problem, for which an optimal solution scales only up
to medium sized problems. Thus, to cope with large
problems, we also develop a greedy solution. Specifically,
this paper advances the state of the art as follows: 1) We
propose an optimal MIP formulation of the problem of
scheduling EVs in an MoD scheme that maximizes the
number of completed tasks (i.e., trips). 2) We show that
the optimal solution scales up to a few hundred tasks
and we propose a greedy algorithm which achieves near
optimal performance, has low execution time, and scales to
thousands of tasks. 3)We propose a battery swap optimiza-
tion algorithm, which, given an EV’s travelling schedule,
minimizes the number of necessary battery swaps. 4) We
empirically show, using real data of shared vehicle stations
in Washington, DC that the greedy algorithm is on average
90% of the optimal in terms of number of tasks completed,
while it scales to thousands of EVs and tasks.

The rest of the paper is structured as follows. Section II
presents the model of a typical MoD scheme, while Sec-
tion III presents the MIP formulation of the problem and
Section IV the greedy algorithm. Section V describes our
battery swap optimization algorithm, Section VI describes
our empirical evaluation and finally, Section VII concludes.

II. Problem Definition

We study a MoD setting where customers announce
their intentions to drive between pairs of locations at a
particular time, a day ahead. After all intentions have been
collected by the MoD company (we assume a single MoD
company to exist), it applies an optimization algorithm
and schedules the available EVs to drive across a set of
locations. In choosing the tasks it will execute, the MoD
company aims to maximize the number of customers that
will be serviced. We assume that EVs have a limited
driving range which requires them to have their battery
swapped [7] at the stops that form part of the MoD
scheme.3 Battery swap is an efficient alternative to battery
recharging in cases of shared EVs, such as the one we
study here, as the vehicle fleet has a certain size and uses
a specific battery type (we assume all EVs are from the
same model), while batteries’ ownership is not an issue as
a single stakeholder exists.

In more detail, we denote a set of EVs aj ∈ A and a set
of locations lk ∈ L which are pick-up and drop-off stations,
where each lk ∈ L has a maximum capacity ck ∈ N . We
consider a set of discrete time points T ⊂ N, t ∈ T , where
time is global for the system and the same for all EVs.
Moreover, we have a set of tasks δi ∈ ∆ where each task is
denoted by a tuple < kstarti , kendi , tstarti , τi, bi >. kstarti and
kendi are the start and end locations of the task, ti is the
starting time point of the task, while τi is its travel time
(each task has also an end time tendi = tstarti + τi), and
bi is the energy cost of the task. Note here, that one-way
rental is assumed, and therefore, start and end locations
of a task are always different. Henceforth, index j stands
for EVs, k for locations, t for time points and i for tasks.
Each EV aj has a current location at time point t,

denoted as kj,t, and this location changes only each time
aj executes one task (i.e., no EV can change its location
without executing a task). Here, we assume that at time
point t = 0 all EVs are at their initial locations kinitialj,t=0 ∈ L,
and that their operation starts at time point t ≥ 1.
Moreover, each aj has a current battery level bt,j ∈ N ,
a consumption rate conj and therefore, a current driving
range in terms of time τj,t = [bt,j/conj] ∈ N . Now, for a
task δi to be accomplished, at least one EV aj must be
at location kstarti at time point ti. We also define binary
variable prkt,j,k ∈ {0, 1} to capture the location where
each EV is parked at each time point, and binary variable
εj,i,t ∈ {0, 1} denoting whether EV aj is executing task δi
at time point t. Note, that at any t, each EV should either
be parked at exactly one location, or travelling between
exactly one pair of locations.

Once the model is defined, in the next section the MIP
formulation of the problem is presented.

3In a battery swap station the battery is not recharged but instead
it is replaced by an already charged one. Such stations can reduce
battery reloading time, but they come with a high cost [8].

III. MIP Formulation
Once the problem is defined and formulated, here we

present an optimal solution based on Mixed Integer Pro-
gramming (MIP) (solved using IBM ILOG CPLEX 12.5).
Specifically, the aim is to maximize the number of tasks
that are completed (Equation 1). To this end, we define
three binary decision variables: 1) λδi

∈ {0, 1} denoting
whether a task δi is accomplished or not, 2) εj,i,t ∈ {0, 1}
denoting whether EV aj is executing task δi at time t or
not, and 3) prkj,t,k ∈ {0, 1} denoting whether aj is parked
at time point t at location lk or not. Moreover, a set of
constraints is used:

Objective function:

max
∑
δi∈∆

(λδi
) (1)

Subject to:
• Completion constraints:∑

aj∈A

∑
tstart

i
≤t<tend

i

εj,i,t = τi × λδi , ∀δi (2)

∑
aj∈A

∑
tstart

i
>t≥tend

i

εj,i,t = 0, ∀δi (3)

εj,i,t+1 = εj,i,t∀a,∀δi, ∀t : tstarti ≤ t < tendi − 1 (4)∑
tstart

i
≤t<tend

i

εj,i,t ≤ τj,tstart
i

,∀δi, ∀aj (5)

• Temporal, spatial, and routing constraints:∑
lk∈L

prkj,t,k = 1−
∑
δi∈∆

εj,i,t,∀aj , ∀t (6)

2×
∑
δi∈∆

εj,i,tstart
i

=
∑
lk∈L

∑
t∈T

|prkj,t+1,k − prkj,t,k| , ∀aj (7)∑
aj∈A

prkj,t,k = prkj,t−1,k+
∑

∆st(t,k)

λδi−
∑

∆end(t,k)

λδi∀t,∀lk

(8)
prkj,tstart

i
,kstart

i
− 1 ≥ εj,i,tstart

i
, ∀δi, ∀aj (9)

prkj,tend
i

,kend
i
≥ εj,i,tend

i
, ∀δi,∀aj (10)∑

aj∈A

(prkj,t,k) ≤ cl, ∀lk,∀t (11)

prkj,t=0,k = kinitiala ,∀aj , lk (12)

The completion constraints ensure the proper execution
of tasks. In more detail, for each executed task, the time
travelled must be equal to the duration of the trip con-
cerned (Equation 2), while, at the same time no travelling
must take place when a task is not executed (Equation 3).
Moreover, each task is executed by only one EV at a time
(Equation 4 together with Equation 7). Now, for an EV
to execute a task, its full range, calculated based on the
battery level at the starting time of the task, must not
be violated (Equation 5). Note, that we assume all EVs
to have a fixed average consumption, and that each time
an EV reaches a parking station a fully charged battery
is swapped into it. Also note, that the number of battery
swaps is minimized a posteriori (see Section V).

The temporal, spatial and routing constraints ensure the
proper management of the EVs. In more detail, Equa-
tion 6 requires that for each time point at which an
EV is executing a task, this EV cannot be parked at
any location and also assures (together with Equation 4)
that at each time point, each EV executes at most one
task. Moreover, Equation 7 ensures that no EV changes
location without executing a task (the sum of all changes
of EVs’ locations as denoted in prk decision variable, must
be double the total number of tasks that are executed)-
note, that this constraint is linearized at run time by
CPLEX. On top of this, for every location, the total
number of EVs changes only when EVs depart or arrive
to execute, or after executing tasks (Equation 8). Note,
that although this constraint is covered by Equation 7, it
is added to the formulation as it significantly speeds up the
execution time. For example, for a setting with 8 locations,
15 EVs and 70 tasks, constraint 7 reduces the average
execution time drops from 450 seconds to 220 seconds.
Note, that ∆st(t, k) = {di ∈ ∆: tstarti = t, kstarti = k} and
∆end(t, k) = {di ∈ ∆: tendi = t, kendi = k}. Now, whenever
a task is to be executed, the EV that will execute this
task must be at the task’s starting location one time point
before the task begins (Equation 9), and similarly, when-
ever a task has been executed, the EV that has executed
this task must be at the task’s ending location the time
point the task ends (Equation 10). Moreover, at every time
point, the maximum capacity of each location must not
be violated (Equation 11). Finally, at time point t = 0,
all EVs must be at their initial locations (Equation 12),
which also means that no tasks are executed at t = 0.
The solution presented here calculates the optimal

schedule for the EVs. However it comes with a high com-
putational and time cost (see Section VI-A) and therefore,
it is usable for small and medium sized problems. For this
reason, an algorithm that can calculate solutions close
to the optimal, but with a low time and computational
complexity, is essential. Given that greedy algorithms
based on heuristic search have been proved to be effective
in similar highly combinatorial problems [9], in the next
section, such a greedy algorithm is presented.

IV. Greedy Scheduling Formulation
The intuition of the greedy scheduling algorithm pre-

sented in this section is the following. Given that EVs
change locations only when being driven by customers,
the tasks that an EV will be able to execute in the future
are directly related to the ones it has already executed
in the past (i.e., the end location of one task will be
the start location for the next one). In the case of the
MIP formulation, CPLEX finds the optimal schedule for
EVs’ travelling to maximize task execution. However, in
the case of the greedy algorithm exhaustive search is not
an option as this would dramatically increase time and
computational complexity. For this reason we apply a one-
step look ahead heuristic search mechanism which, as we
show later, achieves close to the optimal performance.

In more detail, for each t and for each lk, the number of
the available EVs, as well as the number of the remaining
tasks to be executed are taken into consideration. Given
that all tasks to be executed are known in advance, if the
number of available EVs is greater than, or equal to the
number of tasks remaining to be executed, we can safely
assume that enough EVs are available to execute all tasks
(note, that more EVs may arrive later after executing
tasks). In this case, each task is executed according to
its starting time. In the case where the number of EVs
is lower than the number of the remaining tasks, optimal
selection of the tasks to be executed must be achieved.
As mentioned before, a one-step look ahead technique is
used. In more detail, at each time point, tasks remaining
to be executed from each lk are sorted (within a set Ok)
based on the number of the remaining tasks to be executed
at their destination divided by the number of EVs at the
destination plus one (i.e., the one that will go there after
executing the task). Given that the aim of this algorithm
is to maximize the number of completed tasks, selecting
to execute tasks that lead EVs to destinations where the
probability of executing more tasks is higher sounds like
the best choice. Therefore, a task is executed only if it
belongs to the top cutoff% of Ok (cutoff% is provided
to the scheduling algorithm by the user).

The greedy scheduling formulation that is presented
here, consists 1) of a pre-processing phase and 2) of the
main scheduling algorithm (Algorithm 1) which applies a
task execution Algorithm.

A. Pre-processing
During the pre-processing phase, the initialization of

the sets and the variables takes place. In more detail,
sets ∆k ⊆ ∆, Ok ⊆ ∆k and CTk,t ⊆ ∆k are created
and initialized to the empty set. Then, all tasks starting
from location lk ∈ L are assigned to set ∆k, and for each
location lk and time point t, CTk,t is populated with all
tasks to be executed at t. Moreover, the variable Rt,kstart

i

containing the number of tasks remaining to be executed
from each location and each time point t, is created and
initialized. Finally, the variable prkj,t,k is initialized with
the initial location of each EV, and another variable evst,k
counting the number of EVs parked at each location, is also
initialized. In the next section, the steps for the assignment
of an EV to a task are presented.

B. Task Execution
After each time an EV is assigned to a task the following

steps are executed: a) EV aj is set to be working on task
δi, by changing the value of variable εj,i,t from 0 to 1 for
the duration of the trip. b) The parked location of EV aj
is updated based on the end location of the task and the
arrival time. c) The total number of tasks completed is
increased by one, and d) the total number of EVs parked
at the start and end location of the trip are updated for
the correct time points. Note, that following the same
modelling of the problem as in the MIP formulation

(Equation 10), once an EV arrives at a destination, it stays
there for at least one time point. This time point is used
for the necessary battery swap. In the next section, the
main scheduling algorithm is presented.

C. The EV-MoD Scheduling Algorithm
Coming to the greedy scheduling algorithm (Algo-

rithm 1), for each time point t and for every pick-up and
drop-off location lk, the following steps are executed:
1) For each lk, pairs of task id and number of tasks

remaining to be executed at the destination of each
task, divided by the number of EVs at the destina-
tion plus one are assigned to Ok. Later, Ok is sorted
in descending order of the number of tasks remaining
to be executed at the destination. We then keep the
top cutoff% values of Ok (lines 1 -6).

2) For all δi ∈ CTk,t awaiting to be executed at the
current time point, the following steps are executed
repetitively for each task:

3) If the number of the EVs parked at the current loca-
tion is greater than or equal to the tasks remaining
to be executed, then all tasks are set to be executed
sequentially (lines 7-11): a) If the execution of the
task, does not lead to a violation of the maximum
capacity of the destination location (waiting queues
are assumed not to exist), then: b) once an EV
parked at the current location having enough range
to complete the task is found, it is assigned to the
task and the task is executed. If no such EV is found,
then the task is not completed.

4) If the number of the EVs parked at the current loca-
tion is less than the tasks remaining to be executed,
then (lines 12-19): a) If the execution of the task,
does not lead to a violation of the maximum capacity
of the destination location, then: b) The current task
is executed if it belongs to the Ok set. c) Once an
EV that is parked at the current location and has
enough range to complete the task has been found,
it is assigned to the task is executed. If no such EV
is found, then the task is not executed.

Once the execution of algorithm 1 is finished, the trav-
elling schedule of all EVs, as well as the total number
of completed tasks is returned as an output. In the next
section, the analysis of the average case time complexity
of the greedy algorithm is presented.

D. Complexity Analysis
While the algorithm is greedy, some time consuming

calculations such as the sorting of Ok still exist and
therefore, the analysis of the complexity of it is important.

Theorem 1. (Complexity class of Algorithm 1)

The complexity of Algorithm 1 is O(|∆| × log |∆|
|T |×|L|).

Proof:

Cost = |T | × |L| × (|∆ + |∆| × log|∆|+ |∆|+ |∆|) (13)

Given that the sorting (|∆| × log|∆|) is the most time
consuming calculation, Equation 13 becomes:

Cost = O(|T | × |L| × (|∆| × log|∆|)) (14)

In the average case where tasks are equally distributed
across locations and time points, equation 14 becomes:

Cost = O(|T | × |L| × |∆|
|T | × |L|

× log(|∆|
|T | × |L|

)) (15)

which is equal to:

Cost = O(|∆| × log(|∆|
|T | × |L|

)) (16)

Therefore, the average case complexity of Algorithm 1 is
O(|∆|×log(|∆|

|T |×|L|). This result is also verified experimen-
tally (Section VI-A).

In the next section, the battery swap optimization
algorithm is presented.

Algorithm 1 EVs Scheduling Algorithm.
Require: ∆ and A and L and T and ∀di ∈ ∆, τi, and ∀aj ∈ A,

kinitialj , τmaxj , and ∀lk ∈ L, ck.
1: for all (t ∈ T and lk ∈ L) do
2: for all (δi ∈ CTk,t) do
3: {Add all pairs of task id and number of tasks remaining to

be executed at the destination divided by the number of
EVs +1 to Ok.}

4: Ok ← Ok ∪ {δi, Rtend
i

,kend
i

/(evskend
i

,t + 1)}
5: end for
6: Sort Ok in descending order of the number of tasks at

the destination, and keep cutoff% values from Ok.
{If available EVs at start, ≥ total task number.}

7: if (evst,kstart
i

> Rtstart
i

,kend
i

) then
8: for all (δi ∈ CTk,t) do
9: If evst+τi,k

end
i

< ckend
i

, search for an aj to
execute δi: prkj,t,k = 1 AND τj,tstart

i
≥ τi

10: Once an EV is found, execute task.
11: end for
12: {If available EVs at start < total task number.}
13: else
14: for all (δi ∈ Ok) do
15: If evst+τi,k

end
i

< ckend
i

, Search for an aj to
execute δi: prkj,t,k = 1 AND τj,tstart

i
≥ τi

16: Once an EV is found, execute task.
17: end for
18: end if
19: end for
20: Return ε , prk , taskSum

V. Battery Swap Optimization
Both the MIP and the greedy algorithms calculate the

schedule of each EV assuming that after every stop, a fully
charged battery is swapped into it. In other words the
longest single trip that an EV can travel is constrained by
its maximum battery capacity. However, such a battery
swap is sometimes redundant. For this reason, here we
present a simple heuristic algorithm (Algorithm 2) which
takes as input the EV’s travelling schedule and minimizes
the number of battery swaps.

In more detail, for every EV aj , all tasks δi that are
executed by aj are assigned to set Ωj , and are later sorted
in ascending order of their start execution time (lines
1,2). Once all tasks have been assigned to sets, for every
δi ∈ Ωj the execution time of i is added to variable
sum until this variable becomes greater than or equal to
the maximum range of aj multiplied with 50% (i.e., the
battery is discharged only up to the 50% of its full capacity
to prolong its life time4). When this happens, the final task
is not executed before a battery swap, and for this reason
it is assigned to set Ω′j and the sum is initialized again to
zero. In the end of this procedure, Ω′j contains all tasks
before the execution of which a battery swap must take
place (lines 3-9). In the next section, a detailed evaluation
of both scheduling algorithms, as well as of the battery
swap optimization algorithm is presented.

Algorithm 2 EVs Battery Swap Optimization.
Require: ε.
1: ∀ δi ∈ ∆ and aj ∈ A, if εj,i,t = 1 then Ωj ← Ωj + δi
2: ∀aj ∈ A: Sort Ωj according to tstarti in ascending order.
3: for all (aj ∈ A) do
4: sum = 0
5: for all (δi ∈ Ωj) do
6: sum = sum+ τi
7: If sum ≥ τmaxj × 0.5: Ω′j ← Ω′j + δi and sum = 0
8: end for
9: end for
10: Return Ω′.

VI. Evaluation
Here we evaluate our algorithms on a number of settings

in order to determine their ability to handle potentially
large numbers of tasks, locations, and EVs. To this end,
we use real data on the locations of pick-up and drop-off
points owned by ZipCar in Washington DC, USA which
are available as open linked data,5 while the distance and
duration of all trips (combinations of all locations acting
as start or end points for a trip) were calculated using
Google maps. Note, that Washington DC is one of the
cities with the highest traffic congestion in the USA6 [10]
and therefore, a MoD scheme would fit perfectly in such
a setting as it has the potential to reduce the congestion
caused by privately owned vehicles. The evaluation of our
algorithms is executed in three main parts: EXP1: The
execution time and the scalability of both the optimal
and the greedy algorithms, EXP2: the performance of
the greedy algorithm against the optimal in terms of the
average number of completed tasks, EXP3: the sensitivity
analysis of the greedy algorithm and, EXP4: the efficiency
of the battery swap optimization algorithm.

For EXP1, EXP2 and EXP4 all experiments were ex-
ecuted in the following setting: 1) One time point was
selected to be equal to 15 mins, and in total 58 time points
exist (i.e., equivalent to the execution of the MoD service

4http://goo.gl/A0feT.
5http://opendata.dc.gov/datasets/.
6http://mobility.tamu.edu.

from 7:00 to 18:00). 2) cutoff = 85%, 3) 15 EVs exist, and
4) tasks can be formulated based on one of 56 possible
trips. All tasks were categorized into three groups (i.e.,
from suburbs to the city center, around the city center,
and from the city center to suburbs), where these groups
were selected based on realistic data of the expected flow
of traffic within the city over the day. Start times of tasks
from each group were drown from a uniform distribution.

A. EXP1: Execution Time and Scalability
Execution time and scalability is a major factor in the

usability of a given scheduling algorithm. For this reason,
here, keeping all parameters but the number of tasks fixed,
we measure the execution time of both the optimal and
the greedy algorithms (using an Intel i7 CPU and 6 GB of
RAM). Given these execution times (see Figures 1, 2), we
could argue that for the optimal algorithm the execution
time increases slightly over-linear, but with a rather high
rate of growth, while for the greedy one, the execution time
increases near-linearly with a rather low rate of growth.
For example, the greedy algorithm can solve problems with
6000 tasks in under 5 seconds, while the optimal needs over
700 seconds for a setting with 200 tasks. Moreover, we have
observed that for a setting with 500 tasks and 25 EVs, the
average execution time of the optimal algorithm is over
4000 seconds. Thus, we argue the optimal algorithm to
be usable for problems with up to a few hundred of tasks
and a few tenths of EVs, while the greedy to be usable
for problems with thousands of tasks and EVs. We next
discuss how efficient the solutions it computes are.

B. EXP2: Completion of Tasks
Given the high execution times of the optimal algorithm,

the question now comes to how close the greedy algorithm
performs in terms of average task completion against the
optimal. To answer this question, the greedy algorithm was
evaluated against the optimal and given identical values as
input. In Figures 3 and 4, a comparison between the two
algorithms in terms of the number of completed tasks for
various numbers of tasks and fixed number of EVs and
locations is presented. Up to the number of 110 tasks, the
greedy algorithm is on average at 90% of the optimal. In
other words, the large difference in execution times leads
to relatively small deficit in terms of performance. We next
discuss the sensitivity analysis of the greedy algorithm.

C. EXP3: Sensitivity Analysis
Here we further evaluate our greedy algorithm where

we vary both the number of locations and the number of
EVs. In this experiment, we fix the number of tasks to
be completed to 200, and vary the number of EVs as well
as the number of the locations of the pick-up and drop-
off points (here we use synthetic data for the locations).
Given that the number of tasks to be completed remains
fixed, one could expect that by increasing the number of
EVs, the number of completed tasks would also increase.
In the case where the number of locations remains fixed

this is indeed the case (see Figure 5). However, in the
case where the number of locations increases we note an
opposite trend. It is interesting to see that when 30 EVs
and 9 locations exist, the number of completed tasks is
actually higher compared to the case where 80 EVs and 49
locations exist. We can potentially explain this as follows:
1) as the number of locations increases, the number of EVs
located at each one at t = 0, decreases and therefore, the
probability of an EV being able to execute a future task
starting from a given location decreases, and 2) as the
number of locations increases, the number of all possible
trips increases exponentially, and therefore, EVs tend to
spread around too much. Thus, similarly to the previous
point, the probability of an EV being able to execute a
future task decreases. We next discuss the efficiency of
the battery swap optimization algorithm.

D. EXP4: Battery Swap Optimization
Here, we evaluate our proposed battery swap optimiza-

tion algorithm against a setting where no such optimiza-
tion takes place, based on the results as presented in VI-B.
In doing so, we assume all EVs to carry the same battery
type, which provides them with an average range of 80
kms, and an average trip length to be approximately 10
kms. Given these data, the battery swap minimization
algorithm is shown to achieve a reduction of up to 80%
in the number of necessary battery swaps.

Based on these observations we can conclude that de-
spite the fact that the optimal algorithm is practical for
settings with small and medium size, while the greedy
algorithm has good scalability, and performs well. This
performance depends on the number of EVs, the number
of pick-up and drop-off locations, and as a consequence of
this, the number of all possible trips. Also, an optimization
of the battery swaps is needed to reduce redundant swaps.

Figure 1. Optimal Algorithm Execution Time (15 EVs)

Figure 2. Greedy Algorithm Execution Time (100 EVs)

Figure 3. Optimal vs Greedy- Number of tasks completed

VII. Conclusions and Future Work
We have studied the problem of scheduling a set of

shared EVs across a number of predefined pick-up and
drop-off locations and we propose an MIP formulation
for it, aiming to optimize (maximize) the number of

Figure 4. Greedy gap to Optimal (15 EVs).

Figure 5. Sensitivity of the Greedy Algorithm
completed tasks (trips undertaken across locations across
a period of time). Moreover, given that this solution scales
poorly, we also propose an offline close to optimal greedy
algorithm, which can scale up to thousands of tasks and
EVs while there is a tradeoff in terms of performance
(completion of tasks). In both cases, in order to tackle with
the limited range of EVs we use a simple battery swap
scheme. Finally, we evaluate our algorithms in a setting
partially using real data, and we observe that the greedy
algorithm is on average 90% of the optimal. Future work
will look into possible relocation mechanisms for the EVs,
in order to further improve the task completion rates, as
well as, the optimization of the initial location of the EVs.

References
[1] J. Tomic and W. Kempton, “Using fleets of electric-drive vehi-

cles for grid support,” Journal of Power Sources, vol. 168, no. 2,
pp. 459 – 468, 2007.

[2] W. J. Mitchel, C. E. Borroni-Bird, and L. D. Burns, Reinventing
the automobile: Personal urban mobility for the 21st century.
MIT Press, 2010.

[3] M. Pavone, S. L. Smith, E. Frazzoli, and D. Rus, “Robotic load
balancing for mobility-on-demand systems,” The International
Journal of Robotics Research, vol. 31, no. 7, pp. 839–854, 2012.

[4] M. Pavone, S. L. Smith, F. Emilio, and D. Rus, “Load balancing
for mobility-on-demand systems,” Robotics: Science and Sys-
tems, 2011.

[5] S. Smith, M. Pavone, M. Schwager, E. Frazzoli, and D. Rus,
“Rebalancing the rebalancers: optimally routing vehicles and
drivers in mobility-on-demand systems,” in American Control
Conference (ACC), 2013, June 2013, pp. 2362–2367.

[6] T. Carpenter, S. Keshav, and J. Wong, “Sizing finite-population
vehicle pools,” IEEE Transactions on Intelligent Transportation
Systems, vol. PP, no. 99, pp. 1–11, 2014.

[7] S. Storandt and S. Funke, “Cruising with a battery-powered
vehicle and not getting stranded,” in 26th Conf. on Artificial
Intelligence (AAAI), 2012.

[8] I. Bayram, G. Michailidis, M. Devetsikiotis, F. Granelli, and
S. Bhattacharya, “Smart vehicles in the smart grid: Challenges,
trends, and application to the design of charging stations,” ser.
Power Electronics and Power Systems, 2012, pp. 133–145.

[9] S. D. Ramchurn, M. Polukarov, A. Farinelli, C. Truong, and
N. R. Jennings, “Coalition formation with spatial and temporal
constraints,” in AAMAS, 2010, pp. 1181–1188.

[10] D. Schrank, E. B., and T. Lomax, “Tti 2012 urban mobility
report,” Tech. Rep., 2012.

