
EMERALD: A Multi-Agent System for Knowledge-based
Reasoning Interoperability in the Semantic Web

Kalliopi Kravari, Efstratios Kontopoulos and Nick Bassiliades,

Dept. of Informatics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
{kkravari, skontopo, nbassili}@csd.auth.gr

Abstract. The Semantic Web aims at augmenting the WWW with meaning,
assisting people and machines in comprehending Web content and better
satisfying their requests. Intelligent agents are considered to be greatly favored
by Semantic Web technologies, because of the interoperability the latter will
achieve. One of the main problems in agent interoperation is the great variety in
reasoning formalisms, as agents do not necessarily share a common rule or
logic formalism. This paper reports on the implementation of EMERALD, a
knowledge-based framework for interoperating intelligent agents in the
Semantic Web. More specifically, a multi-agent system was developed on top
of JADE, featuring trusted, third party reasoning services, a reusable agent
prototype for knowledge-customizable agent behavior, as well as a reputation
mechanism for ensuring trust in the framework. Finally, a use case scenario is
presented that illustrates the viability of the proposed framework.

Keywords: semantic web, intelligent agents, multi-agent system, reasoning.

1 Introduction

The Semantic Web (SW) is a rapidly evolving extension of the WWW that derives
from Sir Tim Berners-Lee’s vision of a universal medium for data, information and
knowledge exchange. The SW aims at augmenting Web content with meaning (i.e.
semantics), making it possible for people and machines to comprehend the available
information and better satisfy their requests. Until now, the fundamental SW
technologies (content representation, ontologies) have been established and
researchers are currently focusing their attention on logic and proofs.

Intelligent agents (IAs) are considered the most prominent means towards realizing
the SW vision [1]. Via the use of IAs, programs are extended to perform tasks more
efficiently and with less human intervention. The gradual integration of multi-agent
systems (MAS) with SW technology will affect the use of the Web in the future; the
next generation of the Web will consist of groups of intercommunicating agents
traversing it and performing complex actions on behalf of their users. Intelligent
agents are considered to be greatly favored by SW technologies, because of the
interoperability the latter will achieve.

Nevertheless, a critical issue is now raised: agent interoperation is overwhelmed
from the variety of representation and reasoning technologies. On the other hand,
agents do not necessarily share a common rule or logic formalism. In fact, it will often
be the case that two or more intercommunicating agents will ‘understand’ different
(rule) languages. On the other hand, it would be unrealistic to attempt imposing
specific logic formalisms in a rapidly changing world like the Web.

We propose a novel, more viable approach, which involves trusted, third-party
reasoning services that will infer knowledge from an agent’s rule base and verify the
results. More specifically, this paper reports on the implementation of EMERALD, a
framework for interoperating, knowledge-based IAs in the SW. A JADE MAS was
extended with reasoning capabilities, provided as agents. Furthermore, the framework
features a generic, reusable agent prototype for knowledge-customizable agents (KC-
Agents), consisted of an agent model (KC Model), a yellow pages service (Advanced
Yellow Pages Service) and several external Java methods (Basic Java Library). Also,
since the notion of trust is vital here, a reputation mechanism was integrated in the
framework. Finally, the paper presents a use case scenario that illustrates the usability
of the framework and the integration of all the technologies involved.

The rest of the paper is structured as follows: Section 2 gives a brief overview of
EMERALD, followed by descriptions of its various components. More specifically,
the featured reasoning services are presented, as well as the knowledge-customizable
agent prototype (KC-Agents). Since trust is essential in a framework like EMERALD,
section 5 presents the deployed reputation mechanism. Finally, section 6 illustrates an
apartment renting use case scenario, which better displays the potential of the
framework. The paper is concluded with references to related work and conclusions,
as well as directions for future improvements.

2 Framework Overview

As mentioned in the introduction, EMERALD is a common framework for
interoperating knowledge-based intelligent agents in the SW. The motivation behind
our work was to leverage the weaknesses in agent intercommunication outlined above
and attempt to deploy trusted, third-party reasoning services instead. EMERALD is
developed on top of JADE [2], the popular MAS Java framework.

Fig. 1 illustrates a general overview of EMERALD: Each human user controls a
single all-around agent. Agents can intercommunicate, but do not necessarily share a
common rule/logic formalism; therefore, it is vital for them to find a way to exchange
their position arguments seamlessly. Our approach does not rely on translation
between rule formalisms but on exchanging the rule base results. The receiving agent
uses an external reasoning service to grasp the semantics of the rulebase, i.e. the set of
rule base conclusions. In EMERALD, reasoning services are “wrapped” by an agent
interface, called the Reasoner, allowing other IAs to contact them via ACL messages.
Reasoners are, in essence, agents offering reasoning services to the rest of the agent
community. Currently, the framework features a variety of few but widely diverse
Reasoners (see section 3), but the available array can be easily extended.

Moreover, agents are knowledge-customizable, meaning that they are not confined
in having their logics and strategies/policies hard-wired. Instead, they can be either
generic or customizable; each agent contains a rule base that describes its knowledge
of the environment, its behaviour pattern as well as its strategy/policy. By altering the
rule base, the agent’s knowledge and/or behaviour will instantly be modified
accordingly. Currently, EMERALD provides a knowledge-based agent module based
on Jess language, but our goal is to provide a range of modules based on a variety of
rule languages (i.e. Prolog/Prova, RuleML). The use case scenario presented later in
this work (section 6) demonstrates this feature.

Fig. 1. Overview of the proposed framework.

Overall, the goal is to apply as many standards as possible (ACL, RuleML, RDF/S,
OWL), in order to encourage the application and development of the framework. In
practice, the SW serves as the framework infrastructure.

3 Reasoning Services

EMERALD integrates a number of reasoning engines that use various logics. The
Reasoner, a reasoning service provided by a JADE IA, can call an associated
reasoning engine in order to perform inference and provide results (Fig. 2). The
procedure is straightforward: each Reasoner stands by for new requests (ACL
messages with a “REQUEST” communication act) and as soon as it receives a valid
request, it launches the associated reasoning engine and returns the results (ACL
message with an “INFORM” communication act). Consequently, although Reasoners
seem to be fully autonomous agents, actually they behave more like a web service.

Fig. 2. Input – Output of a Reasoner agent.

EMERALD currently implements a number of Reasoners that offer reasoning
services in two major reasoning formalisms: deductive and defeasible reasoning.
Deductive reasoning is based on classical logic arguments, where conclusions are
proved to be valid when the premises of the argument (rule condition) are true.
EMERALD implements two such reasoners, which are actually based on the logic
programming paradigm, namely R-DEVICE [3] and Prova [4]. R-DEVICE is a
deductive object-oriented knowledge base system for querying and reasoning about
RDF metadata. R-DEVICE, transforms RDF triples into objects and uses a deductive
rule language for querying and reasoning about them, in a forward-chaining Datalog
fashion. Prova is a rule engine that supports distributed inference services, rule
interchange and rule-based decision logic and combines

Defeasible reasoning [5] constitutes a simple rule-based approach for efficient
reasoning with incomplete and inconsistent information. When compared to
mainstream non-monotonic reasoning, the main advantages of defeasible reasoning
are enhanced representational capabilities and low computational complexity.
Currently, EMERALD supports two Reasoners that use defeasible reasoning, the DR-
Reasoner and the SPINdle-Reasoner based on DR-DEVICE [6] and SPINdle [7],
accordingly. DR-Reasoner was

declarative rules, ontologies
and inference with dynamic object-oriented programming.

presented in [8];

4 KC-Agents: The prototype

DR-DEVICE accepts as input the
address of a defeasible logic rule base, written in the OORuleML-like syntax. The
rule base contains only rules; the facts for the rule program are contained in RDF
documents, whose addresses are declared in the rule base. Finally, conclusions are
exported as an RDF document. On the other hand, SPINdle-Reasoner, supports
reasoning on both standard and modal defeasible logic. It accepts defeasible logic
theories represented using XML or plain text (with pre-defined syntax), processes
them and finally exports the results via XML.

EMERALD provides a generic, reusable agent prototype for knowledge-customizable
agents (KC-Agents) that offers certain advantages, concerning, among others,
modularity, reusability and interoperability of behavior between agents. The current
prototype consists of an agent model (KC Model), a yellow pages service (Advanced
Yellow Pages Service - AYPS) and some external Java methods (Basic Java Library -
BJL). Fig. 3 displays the above prototype.

Fig. 3. The KC-Agents Prototype

4.1 The KC Model

The KC Model is a model for customizable agents equipped with a rule engine and a
knowledge base (KB) that contains environment knowledge (in the form of facts),
behaviour patterns (in the form of rules) and strategies. By altering the KB, both the
agent’s knowledge and behaviour are modified accordingly. KC model’s abstract
specification, presented in [9], contains facts and rules. A short description is
presented below

The generic rule format is: result ← rule (preconditions). The agent’s internal
knowledge is a set of facts F ≡ F

for better comprehension.

u È Fe, where Fu ≡ {fu1, fu2, …, fuk} are user-defined
facts and Fe ≡ {fe1, fe2, …, fem} are environment-asserted facts. The agent’s behaviour
is represented as a set of potential actions–rules P ≡ A È S, where A ≡ {a | fe←a(fu1,
fu2, …, fun) Ù {fu1, fu2,..., fun}ÍFu Ù feÎFe} are the rules that derive new facts by
inserting them into the KB and S ≡ C È J are the rules that lead to the execution of a
special action. Note that special actions can either refer to agent communication C ≡
{c | ACLMessage←c(f1, f2, …, fp) Ù {f1, f2,..., fp}ÍF} or Java calls J ≡ {j |
JavaMethod←j(f1, f2, …, fq) Ù {f1, f2,..., fq

The overall goal for EMERALD is to provide a variety of KC modules (KC
Model’s implementations) based on several rule engines and languages. Currently,
EMERALD provides a KC

}ÍF}.

j module, based on Jess [10]. KCj

4.2 Advanced Yellow Pages Service (AYPS)

 module is equipped with
a Jess rule engine and its knowledge base contains knowledge, in the form of Jess
facts and behaviour patterns, in the form of Jess production rules.

Moreover, an advanced customized procedure for the yellow pages service is
provided, both for registered and required services. In JADE, the traditional yellow
pages service is provided by the Directory Facilitator (DF) agent. This procedure
allows an agent to get the proper results from the DF agent, but, since these results
have the form of ACL Message content, this means that the developer has to manually
convert them, in order to use them as facts.

With our advanced yellow pages service (AYPS) model, the service is fully
automated: the services that each agent provides and/or requests are declared in a
separate file, accessible only by the specific agent. As soon as the agent wishes to
advertise one or more services, AYPS is activated and places them into a repository.
On the other hand, if the agent requires some specific service, AYPS traverses the
repository and returns the proper providers. Concerning the KCj

AYPS also implements a reputation mechanism (section 5) available for each
EMERALD agent at any time. Thus, AYPS is able to provide not only the name but
also the reputation value of a provider.

 module, AYPS
returns the providers as Jess facts with a designated format: (service_type (provider
provider_name)).

4.3 Basic Java Library (BJL)

In order to provide a standard communication interface between the KB and the
JADE agent, we have developed a library of Java methods (Basic Java Library - BJL)
that can be evoked from KC-agent’s actions (in the current implementation Jess
production rules). A generic syntax specification is:

 ;;;
 (defrule call_method

preconditions
 =>
 (bind ?t (new Basic))

where ?t is bound to a new instance of BJL and ?str is the returned value.
 (bind ?str (?t method's_name argument(s))))

For instance, method createRulebase creates a backup of a rule base, determining
the RDF data input, and method extractTriples extracts triples from an RDF file and
stores them as facts. In order to extract ‘knowledge’ from these facts, suitable rules
can be executed. A sample rule finding out the attribute A of B is the following, in the
context of KCj module:
 (defrule find_A
 (triple (subject ?x) (predicate rdf:type) (object dr-device:xx))
 (triple (subject ?x) (predicate dr-device:B) (object ?A))
 =>

5 Trust

 (assert(A ?A)))

Trust has been recognized as a key issue in SW MAS, where agents have to interact
under uncertain and risky situations. Thus, a number of researchers have proposed, in
different perspectives, models and metrics of trust, some involving past experience or
using only a single agent’s previous experience. Five such metrics are described in
[11], among them Sporas seems to be the most widely used metric, although CR
(Certified Reputation) is one of the most recently proposed methodologies. The
overall goal for EMERALD is to adopt a variety of trust models, both proposed in the
literature and original.

Currently, EMERALD adopts two reputation mechanisms, a decentralized and a
centralized one. The decentralized mechanism is a combination of Sporas and CR,
and was presented in [8]. In the centralized approach, presented here, AYPS keeps the
references given from agents interacting with Reasoners or other agents in
EMERALD. Each reference is in the form of Refi=(a, b, cr, cm, flx, rs), where a is the
trustee, b is the trustor and cr (Correctness), cm (Completeness), flx (Flexibility) and
rs (Response time) are the evaluation criteria. Ratings vary from -1 (terrible) to 1
(perfect), r[-1,1], while newcomers start with reputation equal to 0 (neutral). The
final reputation value (Rb) is based on the weighted sum of the relevant references
stored in AYPS and is calculated according to the formula:

åRb=w1*cr+w2*cm+w3*flx+w4*rs, where w1+w2+w3+w4=1. AYPS supports two
options for Rb, a default where the weights are equivalent, namely wk[1,4]

The simple evaluation formula of the above approach, compared to the
decentralized one, leads to time profit as it needs less evaluation and calculation time.
Moreover, it provides more guaranteed and reliable results (R

=0.25 each
and a user-defined, where the weights vary from 0 to 1 depending on user priorities.

b

6 Use case

) as it is centralized
(AYPS), overcoming the difficulty to locate references in a distributed mechanism.
Agents can use either one of the above mechanisms or even both, complementarily,
namely they can use the centralized mechanism provided by AYPS in order to find
the most trusted service provider and/or they can use the decentralized approach for
the rest EMERALD agents.

Reasoning is widely used in various applications. This section presents an apartment
renting use case paradigm that applies both deductive and defeasible logic. The
scenario aims at demonstrating the overall functionality of the framework and, more
specifically, the usability of the Reasoners and the modularity of the KC-Agents
prototype and its ability to easily adapt to various applications.

The scenario, adopted from [12], involves two independent parties, represented by
IAs and one of the four Reasoners provided in EMERALD. The first party is the
customer, a potential renter that uses defeasible logic and wishes to rent an apartment
based on his requirements (e.g. size, location) and personal preferences. The other
party is the broker, who uses deductive logic and possesses a database of available
apartments. His role is to match customer’s requirements with the apartment
specifications and eventually propose suitable apartments to the potential renter. The
R-Reasoner and the DR-Reasoner are the two reasoners involved in the paradigm.
The scenario is carried out in ten distinct steps (shown in Fig 4). A similar but more
simplistic brokering scenario was presented in [8], where only one type of logic
(defeasible) was applied and the broker did not possess any private interaction
strategy, expressed in any kind of logic, but it was just mediating between the
customer and the Reasoner.

Initially, the customer finds a broker, by asking the AYPS (step 1). The AYPS
returns a number of potential brokers accompanied with their reputation ratings (step
2). Customer selects the more trusted broker and sends his requirements to him, in
order to get back all the available apartments with the proper specifications (step 3).
The broker has a list of all available apartments which cannot be communicated to the
customer, because they belong to the broker’s private assets. However, since the
broker cannot process customer’s requirements using defeasible logic, he finds a
defeasible logic reasoner (DR-Reasoner) (step 4), by using the AYPS (this step is not
shown). DR-Reasoner returns the apartments that fulfill all requirements (step 5);
however, the broker checks the results in order to exclude the unavailable apartments
or apartments reserved for a special private-to-the-broker reason. Thus, the broker
agent requests from the R-Reasoner to process the results with his own private

interaction strategy expressed in a deductive logic rulebase (step 6). When he receives
the remaining apartments (step 7), he sends them to customer’s agent (step 8).

Fig. 4. Apartment renting scenario steps.

Eventually, the customer receives the appropriate list and has to decide which
apartment he prefers. However, his agent does not want to send customer’s
preferences to the broker, in order not to be exploited; thus, customer’s agent selects
his most preferred apartment by sending to the DR-Reasoner his preferences, as a
defeasible logic rulebase, along with the list of acceptable apartments (step 9). The
Reasoner replies and proposes the best apartment to rent (step 10). The apartment
selection procedure ends. Now the customer has to negotiate with the owner for the
renting contract. This process is carried out in two basic steps, as shown in Fig. 5: first
the customer’s agent has to find out the apartment owner’s name and then negotiate
with him for the rent. The customer sends a REQUEST message to the broker
containing the chosen apartment and waits for its owner’s name. The broker, sends
back his reply via an INFORM message. Afterwards, the customer starts a negotiation
process with the owner, negotiating among others, the price and rental duration.

Fig. 5. Negotiation scenario steps.

Following the generic, abstract specification for agents, the customer agent’s
description contains a fact, ruleml_path, which is part of its internal knowledge and
represents the rulebase URL. Moreover, due to the dynamic environment (AYPS is
constantly updating the environment), a new fact with the agent name (agent_name)
is added to the working memory. Agent behavior is represented by rules; one of these
is the ‘read’ rule that calls the BJL’s fileToString method. It has only a single
precondition (actually fact), the ruleml_path, as shown below.

cust
uF ≡ {ruleml_path}, cust

eF ≡ {agent_name}
custJ ≡ {rule_base_content ← (bind ((new Basic) fileToString ruleml_path))}

Similarly, the broker agent’s description contains facts and rules: fact url
represents (part of) its internal knowledge and stands for the URL of the RDF
document containing all available apartments, while reasoner_name (DR-Reasoner’s
name) is added by the environment due to AYPS and rules “request” and “read”
(BJL’s fileToString) comprise part of the agent’s behavior.

brok
uF ≡ {url}, brok

eF ≡ {reasoner_name}
brokC ≡ {(ACLMessage (communicative-act REQUEST)

 (sender Broker) (receiver reasoner_name) (content “request”))
 ← request (reasoner_name)}

brokJ ≡ {rule_base_content ←(bind ((new Basic) fileToString url))}

7 Related Work

DR-BROKERING, a system for brokering and matchmaking, is presented in [13]. The
system applies RDF in representing offerings and a deductive logical language for
expressing requirements and preferences. Three agent types are featured (Buyer,
Seller and Broker) and a DF agent plays the role of the yellow pages service. Also,
DR-NEGOTIATE [14], another system by the same authors, implements a negotiation
scenario using JADE and DR-DEVICE. Similarly, our approach applies the same
technologies and identifies roles such as Broker and Buyer. Conversely, we provide a
number of independent reasoning services, offering both deductive and defeasible
logic. Moreover, our approach takes into account trust issues, providing two
reputation approaches in order to guarantee the interactions’ safety.

The Rule Responder [15] project builds a service-oriented methodology and a rule-
based middleware for interchanging rules in virtual organizations, as well as
negotiating about their meaning. Rule Responder demonstrates the interoperation of
distributed platform-specific rule execution environments, with Reaction RuleML as a
platform-independent rule interchange format. We have a similar view of reasoning
service for agents and usage of RuleML. Also, both approaches allow utilizing a
variety of rule engines. However, contrary to Rule Responder, EMERALD is based
on FIPA specifications, achieving a fully FIPA-compliant model and deals with trust
issues. Finally, and most importantly, our framework does not rely on a single rule
interchange language, but allows each agent to follow its own rule formalism, but still
be able to exchange its rule base with other agents, which will use trusted third-party
reasoning services to infer knowledge based on the received ruleset.

8 Conclusions and Future Work

This paper argued that agents are vital in realizing the Semantic Web vision and
presented EMERALD, a knowledge-based multi-agent framework that provides

reasoning interoperability, designed for the SW. EMERALD, developed on top of
JADE, is fully FIPA-compliant and features trusted, third party reasoning services, a
generic, reusable agent prototype for knowledge-customizable agents, consisted of an
agent model, a yellow pages service and several external Java methods. Also, since
the notion of trust is vital here, a reputation mechanism was integrated for ensuring
trust in the framework. Finally, the paper presents a use case scenario that illustrates
the usability of the framework and the integration of all the technologies involved.

As for future directions, it would be interesting to verify our model’s capability to
adapt to an even wider variety of Reasoners and KC modules, in order to form a
generic environment for cooperating agents in the SW. Another direction would be
towards developing and integrating more trust mechanisms. As pointed out, trust is
essential, since each agent will have to make subjective trust judgements about the
services provided by other agents. Considering the parameter of trust would certainly
lead to more realistic and efficient applications. A final direction could be towards
equipping the KC-Agents prototype with user-friendly GUI editors for each KC
module, such as the KCj

References

 module.

[1] Hendler J.: Agents and the Semantic Web. IEEE Intelligent Systems, 16(2):30-37 (2001)
[2] JADE, http://jade.tilab.com/
[3] Bassiliades N., Vlahavas I.: R-DEVICE: An Object-Oriented Knowledge Base System

for RDF Metadata. Int. J. on Semantic Web and Information Systems, 2(2): 24-90
[4] Prova,

 (2006)
www.prova.ws

[5] Nute D.: Defeasible Reasoning, 20th Int. Conference on Systems Science, IEEE Press, pp.
470-477 (1987)

[6] Bassiliades N., Antoniou G., Vlahavas I.: A Defeasible Logic Reasoner for the Semantic
Web. Int. J. on Semantic Web and Information Systems

[7] Lam H., Governatori G.: The Making of SPINdle. RuleML-2009 Int. Symp. on Rule
Interchange and Applications, Springer, pp. 315-322 (2009)

, 2(1):1-41 (2006)

[8]

[9]

Kravari K., Kontopoulos E., Bassiliades N.: A Trusted Defeasible Reasoning Service for
Brokering Agents in the Semantic Web. 3rd Int. Symp. on Intelligent Distributed
Computing (IDC’09), Springer Berlin/Heidelberg, Vol. 237, pp. 243-248, Cyprus (2009)
Kravari K., Kontopoulos E., Bassiliades N.:

[10] JESS,

Towards a Knowledge-based Framework for
Agents Interacting in the Semantic Web, IEEE/WIC/ACM Int. Conf. on Intelligent Agent
Technology (IAT'09), Vol. 2, pp. 482-485, Italy (2009)

http://www.jessrules.com/
[11] Macarthur K.: Trust and Reputation in Multi-Agent Systems. AAMAS, Portugal (2008)
[12] Antoniou G., Harmelen F.: A Semantic Web Primer. MIT Press (2004)
[13] Antoniou G., Skylogiannis T., Bikakis A., Bassiliades N., “DR-BROKERING – A

Defeasible Logic-Based System for Semantic Brokering”, IEEE Int. Conf. on E-
Technology, E-Commerce and E-Service, pp. 414-417 (2005)

[14] Skylogiannis T., Antoniou G., Bassiliades N., Governatori G., Bikakis A.: DR-
NEGOTIATE - A System for Automated Agent Negotiation with Defeasible Logic-based
Strategies. Data & Knowledge Engineering, 63(2):362-380 (2007)

[15] Paschke A., Boley H., Kozlenkov A., Craig B., “Rule responder: RuleML-based Agents
for Distributed Collaboration on the Pragmatic Web”, 2nd Int. Conf. on Pragmatic Web,
ACM, vol. 280, pp. 17-28 (2007)

http://jade.tilab.com/�
http://www.prova.ws/�
http://www.jessrules.com/�

