
Proof Explanation in the DR-DEVICE System

Nick Bassiliades1, Grigoris Antoniou2 and Guido Governatori3

1 Aristotle University of Thessaloniki, Greece
nbassili@csd.auth.gr

2 FORTH-ICS, Greece and University of Crete, Greece
antoniou@ics.forth.gr

3University of Queensland, Australia
guido@itee.uq.edu.au

Abstract. Trust is a vital feature for the Semantic Web: If users (humans and
agents) are to use and integrate system answers, they must trust them. Thus,
systems should be able to explain their actions, sources, and beliefs, and this is-
sue is the topic of the proof layer in the design of the Semantic Web. This paper
presents the design of a system for proof explanation on the Semantic Web,
based on defeasible reasoning. The basis of this work is the DR-DEVICE sys-
tem that is extended to handle proofs. A critical aspect is the representation of
proofs in an XML language, which is achieved by a RuleML language exten-
sion.

1 Introduction

The development of the Semantic Web proceeds in steps, each step building a layer
on top of another. At present, the highest layer that has reached sufficient maturity is
the ontology layer in the form of the description logic-based language OWL [8]. The
next step in the development of the Semantic Web will be the logic and proof layers.
The implementation of these two layers will allow the user to state any logical princi-
ples, and permit the computer to infer new knowledge by applying these principles on
the existing data. Rule systems appear to lie in the mainstream of such activities.

Many recent studies have focused on the integration of rules and ontologies, and
various solutions have been proposed. The Description Logic Programs is the ap-
proach followed in [13]; DLPs derive from the intersection of Description Logics and
Horn Logic, and enable reasoning with available efficient LP inferencing algorithms
over large-scale DL ontologies. We also distinguish the approaches presented in [16]
and [20], which study the integration of Description Logics and Datalog rules. Two
representative examples of rule languages for the Semantic Web are TRIPLE [22] and
SWRL [14]. They both provide a model for rules on the Semantic Web. TRIPLE is
based on F-Logic and provides support for RDFS and a subset of OWL Lite, while
SWRL extends OWL DL with Horn-style rules.

Different, but equally interesting research efforts, deal with the standardization of
rules for the Semantic Web. Works in this direction include (a) the RuleML Markup
Initiative [9], whose ultimate goal is to develop a canonical Web language for rules

using XML markup, formal semantics, and efficient implementations; and (b) the re-
search conducted by the Rule Interchange Format (RIF) Working Group, which was
recently launched by W3C.

Apart from classical rules that lead to monotonic logical systems, recently re-
searchers started to study systems capable of handling conflicts among rules and rea-
soning with partial information. Recently developed nonmonotonic rule systems for
the Semantic Web include DR-Prolog [1], SweetJess [12], dlvhex [10] and DR-
DEVICE [5], a defeasible reasoning system for the Semantic Web, implemented in
CLIPS, which integrates well with RuleML and RDF.

The upper levels of the Semantic Web have not been researched enough and con-
tain critical issues, like accessibility, trust and credibility. The next step in the archi-
tecture of the Semantic Web is the proof layer and little has been written and done for
this layer. The main difference between a query posed to a traditional database system
and a semantic web system is that the answer in the first case is returned from a given
collection of data, while for the semantic web system the answer is the result of a rea-
soning process. While in some cases the answer speaks for itself, in other cases the
user will not be confident in the answer unless he/she can trust the reasons why the
answer has been produced. In addition it is envisioned that the semantic web is a dis-
tributed system with disparate sources of information. Thus a semantic web answer-
ing system, to gain the trust of a user must be able, if required, to provide an explana-
tion or justification for an answer. Since the answer is the result of a reasoning
process, the justification can be given as a derivation of the conclusion with the
sources of information for the various steps.

In this work we describe the design of an extension of the nonmonotonic rules sys-
tem DR-DEVICE, to extract and present explanations of answers. This work can be
viewed as a contribution to the realization of a proof layer for a nonmonotonic rule
language on the semantic web.

2 Defeasible Logics

The root of defeasible logics lies on research in knowledge representation, and in par-
ticular on inheritance networks. Defeasible logics can be seen as inheritance networks
expressed in a logical rules language. In fact, they are the first nonmonotonic reason-
ing approach designed from its beginning to be implementable.

Being nonmonotonic, defeasible logics deal with potential conflicts (inconsisten-
cies) among knowledge items. Thus they contain classical negation, contrary to usual
logic programming systems. They can also deal with negation as failure (NAF), the
other type of negation typical of nonmonotonic logic programming systems; in fact,
[24] argues that the Semantic Web requires both types of negation. In defeasible lo-
gics, often it is assumed that NAF is not included in the object language. However, as
[3] argues, it can be easily simulated when necessary. Thus, we may use NAF in the
object language and transform the original knowledge to logical rules without NAF
exhibiting the same behavior.

Conflicts among rules are indicated by a conflict between their conclusions. These
conflicts are of local nature. The simpler case is that one conclusion is the negation of

the other. The more complex case arises when the conclusions have been declared to
be mutually exclusive, a very useful representation feature in practical applications.

Defeasible logics are skeptical in the sense that conflicting rules do not fire. Thus
consistency of drawn conclusions is preserved.

Priorities on rules may be used to resolve some conflicts among rules. Priority in-
formation is often found in practice, and constitutes another representational feature
of defeasible logics.

The logics take a pragmatic view and have low computational complexity. This is,
among others, achieved through the absence of disjunction and the local nature of pri-
orities: only priorities between conflicting rules are used, as opposed to systems of
formal argumentation where often more complex kinds of priorities (e.g. comparing
the strength of reasoning chains) are incorporated.

Generally speaking, defeasible logics are closely related to Courteous Logic Pro-
grams [11], as discussed in, e.g., [5].

The Language

A defeasible theory D is a couple (R,>) where R a finite set of rules, and > a superior-
ity relation on R. Rules containing free variables are interpreted as the set of their
variable-free instances.

There are three kinds of rules: Strict rules are denoted by A → p, and are inter-
preted in the classical sense: whenever the premises are indisputable then so is the
conclusion. An example of a strict rule is “Professors are faculty members”. Written
formally: professor(X) → faculty(X). Inference from strict rules only is called
definite inference. Strict rules are intended to define relationships that are definitional
in nature, for example ontological knowledge.

Defeasible rules are denoted by A ⇒ p, and can be defeated by contrary evidence.
An example of such a rule is faculty(X) ⇒ tenured(X) which reads as follows:
“Professors are typically tenured”.

Defeaters are denoted as A ~> p and are used only to prevent some conclusions,
not to actively support conclusions. An example of such a defeater is assistant-
Prof(X) ~> ¬tenured(X) which reads as follows: “Assistant professors may be
not tenured”.

A superiority relation on R is an acyclic relation > on R (that is, the transitive clo-
sure of > is irreflexive). When r1 > r2, then r1 is called superior to r2, and r2 inferior
to r1. This expresses that r1 may override r2. For example, given the defeasible rules
r: professor(X) => tenured(X)
r’: visiting(X) => ¬tenured(X)

which contradict one another, no conclusive decision can be made about whether a
visiting professor is tenured. But if we introduce a superiority relation > with r’ > r,
then we can indeed conclude that a visiting professor is not tenured.

The system works roughly in the following way: to prove a conclusion A defeasi-
bly, there must be a firing rule with A as its head (that is, all literals in the rule body
have already been proved); in addition, we must rebut all attacking rules with head the
(strong) negation of A. For each such attacking rule we must establish either (a) that
this rule cannot fire because we have already established that one of the literals in its

body cannot be proved defeasibly (finite failure), or (b) that there is a firing rule with
head A superior to the attacking rule.

A formal definition of the proof theory is found in [3]. A model theoretic semantics
is found in [17].

3 System Functionality

In this section we mainly concentrate on the functionality of the proof explanations
facility of the DR-DEVICE system (Fig. 1). More details on the architecture and the
implementation of the system can be found in [5].

Input
RuleML document

(Rulebase)

Input
RDF document

(Facts)

Output
RDF document

(Results)

Output
RuleML document

(Proofs)

DR-DEVICE

USER

Submits
rulebase

Creates
rulebase

Uses as
facts

Input

Output

Uses for
explanations

Returns
Results

Reads
Results Reads Proof

3

12

4

5
6

8

7

9

10

Fig. 1. Functionality of the DR-DEVICE system.

The DR-DEVICE system accepts as input a defeasibe logic rulebase (step 4) in a
RuleML-like syntax [9]. The rulebase has been created by a user (step 1) and its ad-
dress is submitted to the DR-DEVICE system (step 3) through the stand-alone user in-
terface of the system [6], or through a web-based interface hat we are currently devel-
oping. The rulebase contains only rules; the facts for the rule program are (input) RDF
documents, whose addresses are declared in the rulebase header (step 2). The rule
conclusions are materialized inside DR-DEVICE as objects (step 5) and when the in-
ference procedure terminates, the instances of designated derived classes are exported
as an RDF document (step 6). The RDF document includes:
• The RDF Schema definitions for the exported derived classes.
• Those instances of the exported derived classes, which have been proven, either

positively or negatively, either defeasibly or definitely.
Furthermore, the system exports the grounds for all derived objects in a separate

RuleML document (steps 6, 7). To this end we have extended RuleML with an XML
schema for proofs of both classically (definitely) derived objects and defeasibly de-
rived objects, which is discussed in the next section. DR-DEVICE returns to the user
(step 8) the address of the RDF document with the results and the address of the
RuleML document with the proof traces. Finally, the user can access the results (step

9) and the proofs (step 10) through a web browser or through a specialized software
that can customize the visualization. Notice, that DR-DEVICE can also provide ex-
planations about non-proved objects.

4 Proof Schema

The XML Schema for proof traces1 explaining DR-DEVICE’s results is an extension
of the RuleML’s 0.91 schema2. Actually, the rule language of DR-DEVICE is also an
extension of RuleML. Extensions (for the rule language) deal with two aspects of DR-
DEVICE, namely defeasible logic and its CLIPS implementation. Defeasible logic
extensions include rule types, superiority relation among rules and conflicting literals,
while CLIPS-related extensions deal with constraints on predicate arguments and
functions. More details about the rule language can be found in [5].

The top-level element of the proof schema is the optional Grounds element, which
is a top-level element of a RuleML document, although it should actually be an alter-
native to an Assert element. The latter could not be achieved using the redefinition
mechanism of XML Schema, since element extensions deal only with sequences and
not choices. Grounds consist of multiple proved or even not proved rule conclusions.
Proofs can be either definite, i.e. using classical strict rules, or defeasible, which can
use all three rule types of defeasible logic.

Definitely proved literals consist of the literal itself and the definite proof tree. The
literal can be a positive atom or its negation, or even a reference to an RDF resource.
Notice that DR-DEVICE uses RDF resources as facts and its conclusions are also ma-
terialized as RDF resources. A literal is definitely proved if there is a strict clause, ei-
ther a strict rule or a fact, whose body literals are also definitely proven. Rules can ei-
ther be in-lined in the proof tree or an external reference can exist to rules in another
RuleML document. Similarly, the proofs for body literals can either be encapsulated
in the proof tree of the rule head or can be referenced from another place of the proof
document.

On the other hand, defeasible proofs are more complicated since they require either
a defeasible or a strict rule (collectively called supportive rules), whose body literals
are defeasibly proven. Notice that a definite proof subsumes a defeasible proof, that is
why the Definite_Proof element is an alternative to the Defeasible_Proof
element. Furthermore, the defeasibe conclusion must not be strongly attacked, i.e. the
negation of the conclusion must not be definitely proved. Finally, the rules that defea-
sibly attack the current one must all be blocked, so the defeasible conclusion of this
rules prevails.

A rule can be blocked in three ways. A defeasible rule (or a defeater) is blocked ei-
ther when its body literals are not defeasibly proven or when it is attacked by another
superior defeasible rule, whose body literals are defeasibly proven. A strict rule is
blocked if its body literals are not definitely proven. Finally, inferior defeasible rules
are considered as blocked.

1 http://lpis.csd.auth.gr/systems/dr-device/dr-device-0.91.xsd
2 http://www.ruleml.org/0.91/xsd/nafnegdatalog.xsd

Not proved conclusions follow a similar structure, i.e. the supportive rule that
could not prove something must be included along with the reason why this hap-
pened. In the case of a defeasible non-proof, reasons include either the non-proof of
some of the body literals or a definitely proved negated literal or an undefeated defea-
sible attacker. A defeasible attacker can be a defeasible rule or a defeater, whose body
literals are proven and whose possible attackers have been blocked. Notice that in or-
der for a conclusion to not be defeasibly provable it must also be not definitely prov-
able. The latter is similar to the blocked strict rule case above.

5 Proof Example

In this section we include a full example of the functionality of DR-DEVICE concern-
ing both the inferencing and proof provision procedures. Assume that the user wants
to submit the following rulebase (shown in simple logical notation) and wants to find
out why the conclusion rich(antonis) is defeasibly derived.
wins_lotto(antonis) owns(antonis)
r1: wins_lotto(X) ⇒ rich(X) r2: paid_well(X) ⇒ rich(X)
r3: owns(X) ⇒ ¬rich(X) r1 > r3

r4: gamble(X) ⇒ ¬rich(X)

The rulebase is submitted to DR-DEVICE as a RuleML document (Fig. 2). Notice
that facts are not directly included in the RuleML document but in a separate input
RDF document (Fig. 3), as indicated by the rdf_input attribute of the top-level
RuleML element in Fig. 2. The rdf_export_classes attribute indicates which are
the exported conclusions, the rdf_export attribute designates the output RDF
document (Fig. 4) and the proof attribute designates the output RuleML document
(Fig. 5) that contains the proofs for the exported conclusions.

DR-DEVICE atoms follow an object-oriented structure; the operator is a class
name and the arguments are named slots. The DR-DEVICE system employs an ob-
ject-oriented RDF data model ([5], [7]), where properties as normal encapsulated at-
tributes of resource objects. The operator of an atom corresponds to the type of an
RDF resource, the oid element to the URI of the resource and the slot arguments to
the resource’s properties.

The exported results in Fig. 4 contain the materialization of the derived object as
an RDF resource, which also contains some system-defined properties, such as
truthStatus that indicates if the conclusion was definitely or defeasibly proven,
and proof that references the proof ID of the corresponding proof tree in the output
proof document (Fig. 5). The latter indicates that the corresponding RDF resource
was defeasibly proved using defeasible rule r1, whose body literal was also defeasibly
proved via a definitive proof due to the existence of a fact (RDF resource of the input
RDF document). Furthermore, the negated conclusion was not definitely proven, be-
cause there are no appropriate strict rules, which is indicated by the fact that the
not_strongly_attacked element is empty. Finally, defeasible rules r3 and r4
which attack r1 are both blocked; r3 is blocked because it is attacked by the superior
rule r1 and r4 is blocked because its body literal cannot be proved.

Fig. 2. Rulebase example parts.

Fig. 3. Input RDF document example.

Fig. 4. Output RDF document example.

6 Related Work

Besides teaching logic [4], not much work has been centered around explanation in
reasoning systems so far. Rule-based expert systems have been very successful in ap-
plications of AI, and from the beginning, their designers and users have noted the
need for explanations in their recommendations. In expert systems like [21] and Ex-
plainable Expert System [23], a simple trace of the program execution rule firing ap-
pears to provide a sufficient basis on which to build an explanation facility and they
generate explanations in a language understandable to its users.

<RuleML rdf_import="http://.../ex1.rdf" rdf_export_classes="rich"
 rdf_export="export-ex1.rdf" proof="http://.../proof-ex1.ruleml"
 xsi:schemaLocation="http://www.ruleml.org/0.91/xsd
 http://.../dr-device/dr-device-0.91.xsd">
 <Assert>
 <Implies ruletype="defeasiblerule">
 <oid><Ind uri="&ex_rb;r1">r1</Ind></oid>
 <head> <Atom> <op><Rel>rich</Rel></op>
 <slot><Ind>person</Ind> <Var>x</Var></slot> </Atom> </head>
 <body> <Atom> <op><Rel uri="ex:person"/></op>
 <slot><Ind>ex:name</Ind><Var>x</Var></slot>
 <slot> <Ind>ex:wins_lotto</Ind>
 <Data xsi:type="xs:string">true</Data> </slot> </Atom> </body>
 <superior> <Ind uri="&ex_rb;r3"/> </superior>
 </Implies>
...
 <Implies ruletype="defeasiblerule">
 <oid><Ind uri="&ex_rb;r3">r3</Ind></oid>
 <head> <Neg> <Atom> <op><Rel>rich</Rel></op>
 <slot><Ind>person</Ind><Var>x</Var></slot> </Atom> </Neg> </head>
 <body> <Atom> <op><Rel uri="ex:person"/></op>
 <slot><Ind>ex:name</Ind><Var>x</Var></slot>
 <slot> <Ind>ex:owns</Ind>
 <Data xsi:type="xs:string">true</Data> </slot> </Atom> </body>
 </Implies>
...
 </Assert>
</RuleML>

<rdf:RDF ... >
 <ex:person rdf:ID="Inst_6"
 ex:name="antonis" ex:owns="false"
 ex:paid_well="true" ex:wins_lotto="true"/>
</rdf:RDF>

<rdf:RDF xmlns:defeasible="http://.../defeasible.rdfs#"
 xmlns:dr-device="http://.../export-ex1.rdf#" ... >
...
 <dr-device:rich rdf:about="http://.../export-ex1.rdf#rich1">
 <dr-device:person>antonis</dr-device:person>
 <defeasible:truthStatus>defeasibly-proven</defeasible:truthStatus>
 <defeasible:proof
 rdf:datatype="&xsd;anyURI">'http://.../proof-ex1.ruleml#proof1'</defeasible:proof>
 </dr-device:rich>
</rdf:RDF>

Fig. 5. Proof example.

Work has also been done in explaining the reasoning in description logics [18].
This research presents a logical infrastructure for separating pieces of logical proofs
and automatically generating follow-up queries based on the logical format.

The most prominent work on proofs in the Semantic Web context is Inference Web
[19]. The Inference Web (IW) is a Semantic Web based knowledge provenance infra-
structure that supports interoperable explanations of sources, assumptions, learned in-
formation, and answers as an enabler for trust. It supports provenance, by providing
proof metadata about sources, and explanation, by providing manipulation trace in-
formation. It also supports trust, by rating the sources about their trustworthiness.

IW simply requires inference rule registration and PML format. It does not limit it-
self to only extracting deductive engines. It provides a proof theoretic foundation on
which to build and present its explanations, but any question answering system may
be registered in the Inference Web and thus explained. So, in order to use the Infer-
ence Web infrastructure, a question answering system must register in the IWBase its
inference engine along with its supported inference rules, using the PML specification
format. The IW supports proof generation service that facilitates the creation of PML
proofs by inference engines.

<RuleML rdf_import="http://.../ex1.rdf" rdf_export="http://.../export-ex1.rdf"
 rulebase="http://.../dr-device/proof/ex/ex1.ruleml"
 xsi:schemaLocation="http://www.ruleml.org/0.91/xsd http://.../dr-device-0.91.xsd">
 <Grounds>
 <Proved>
 <Defeasibly_Proved> <oid><Ind uri="&pr_ex;proof1">proof1</Ind></oid>
 <Literal> <RDF_resource uri="http://.../export-ex1.rdf#rich1"/>
 <Defeasible_Proof>
 <supportive_rule> <rule_ref rule="&ex_rb;r1"/> </supportive_rule>
 <defeasible_body_grounds>
 <Defeasibly_Proved>
 <Literal> <Atom> <op><Rel uri="ex:person"/></op>
 <slot> <Ind>ex:name</Ind>
 <Data xsi:type="xs:string">Antonis</Data></slot>
 <slot> <Ind>ex:wins_lotto</Ind>
 <Data xsi:type="xs:string">true</Data> </slot> </Atom>
 </Literal>
 <Definite_Proof>
 <strict_clause>
 <Fact> <RDF_resource uri="http://...ex1.rdf#Inst_6"/> </Fact>
 </strict_clause>
 </Definite_Proof>
 </Defeasibly_Proved>
 </defeasible_body_grounds>
 <not_strongly_attacked/>
 <defeasible_attackers_blocked>
 <Blocked>
 <Blocked_Defeasible_rule>
 <rule_ref rule="&ex_rb;r3"/>
 <Attacked_by_Superior> <rule_ref rule="&ex_rb;r1"/>
 </Attacked_by_Superior> </Blocked_Defeasible_rule> </Blocked>
 <Blocked>
 <Blocked_Defeasible_rule>
 <rule_ref rule="&ex_rb;r4"/>
 <not_defeasible_body_grounds>
 <Not_Defeasibly_Proved>
 <Literal> <Atom> <op><Rel uri="ex:person"/></op>
 <slot> <Ind>ex:name</Ind>
 <Data xsi:type="xs:string">Antonis</Data></slot>
 <slot> <Ind>ex:gambles</Ind>
 <Data xsi:type="xs:string">true</Data> </slot>
 </Atom> </Literal>
 <Not_Defeasible_Proof/>
 <Not_Definite_Proof/>
...
</RuleML>

Closest to this paper is the work [2] that also focuses on explanation extraction and
presentation for defeasible reasoning on the semantic web, but relies on an XSB-
based reasoning engine and is embedded in a multi-agent environment, while it pro-
vides few details regarding the extensions of RuleML.

7 Conclusion and Future Work

This work presented a new system that aims to increase the trust of the users for Se-
mantic Web applications. The system automatically generates an explanation for
every answer to user’s queries, in a formal and useful representation. It can be used by
individual users who want to get a more detailed explanation from a reasoning system
in the Semantic Web, in a more human readable way. Also, an explanation could be
fed into a proof checker to verify the validity of a conclusion; this is important in a
multi-agent setting. Our reasoning system is based on defeasible logic (a non-
monotonic rule system) and we used the related reasoning engine DR-DEVICE. One
contribution of our work is a RuleML extension for a formal representation of an ex-
planation using defeasible logic.

In future work, we intend to improve the explanation facility to make it more intui-
tive and human-friendly, to suit users unfamiliar with logic. This effort includes proof
visualization and visual rule execution tracing through integrating the work described
in this paper with a tool for rule visualization [15] we have developed. Also, integra-
tion with the Inference Web infrastructure will be explored. Finally, we will investi-
gate the use of the system in semantic web applications in which explanation and trust
are essential elements.

Acknowledgments

This work was partially supported by the REWERSE Network of Excellence, and a
GSRT Greek-Australian Project “Defeasible Reasoning for Semantic Web e-
Commerce Applications”.

References

[1] Antoniou G., Bikakis A., "DR-Prolog: A System for Defeasible Reasoning with Rules and
Ontologies on the Semantic Web", IEEE Tran. on Knowledge and Data Engineering,
19(2), pp. 233-245, 2007.

[2] Antoniou G. et al. “Proof Explanation for the Semantic Web Using Defeasible Logic”,
submitted.

[3] Antoniou G., Billington D., Governatori G. and Maher M.J., “Representation results for
defeasible logic”, ACM Trans. on Computational Logic, 2(2), 2001, pp. 255-287.

[4] Barwise J. and Etchemendy J., The Language of First-Order Logic. Center for the study
of Language and Information 1993.

[5] Bassiliades N., Antoniou G., Vlahavas I., "A Defeasible Logic Reasoner for the Semantic
Web", Int. Journal on Semantic Web and Information Systems, 2(1), pp. 1-41, 2006.

[6] Bassiliades N., Kontopoulos E., Antoniou G., “A Visual Environment for Developing De-
feasible Rule Bases for the Semantic Web”, Proc. RuleML-2005, pp. 172-186, Springer-
Verlag, LNCS 3791, Galway, Ireland, 2005.

[7] Bassiliades N., Vlahavas I., “R-DEVICE: An Object-Oriented Knowledge Base System
for RDF Metadata”, Int. Journal on Semantic Web and Information Systems, 2(2), pp. 24-
90, 2006.

[8] Bechhofer S., van Harmelen F., Hendler J., Horrocks I., McGuinness D.L., Patel-
Schneider P.F., Stein L.A., OWL web ontology language reference, www.w3.org/TR/
owl-ref/, W3C Recommendation, 10 February 2004.

[9] Boley H., Tabet S., The Rule Markup Initiative, www.ruleml.org.
[10] Eiter T., Ianni G., Schindlauer R., Tompits H., "dlvhex: A System for Integrating Multiple

Semantics in an Answer-Set Programming Framework.". Proc. WLP 2006, pp. 206-210.
[11] Grosof B. N., “Prioritized conflict handing for logic programs”, Proc. of the 1997 Int.

Symposium on Logic Programming, pp. 197-211, 1997.
[12] Grosof B. N., Gandhe M. D. and Finin T. W., “SweetJess: Translating DAMLRuleML to

JESS“, Proc. RuleML 2002.
[13] Grosof B. N., Horrocks I., Volz R. and Decker S., “Description Logic Programs: Combin-

ing Logic Programs with Description Logic”, Proc. 12th Intl. Conf. on the World Wide
Web (WWW-2003), ACM Press, 2003, pp. 48-57.

[14] Horrocks I., Patel-Schneider P. F., Bechhofer S., Tsarkov D., “OWL Rules: A Proposal
and Prototype Implementation”, Journal of Web Semantics, 3(1), pp. 23-40, 2005.

[15] Kontopoulos E., Bassiliades N., Antoniou G., “Visualizing Defeasible Logic Rules for the
Semantic Web”, 1st Asian Semantic Web Conf. (ASWC'06), Beijing, China, 2006,
Springer-Verlag, LNCS 4185, pp. 278-292.

[16] Levy A. and Rousset M.-C., “Combining Horn rules and description logics in CARIN”,
Artificial Intelligence, 104(1-2), 1998, pp. 165 – 209.

[17] Maher M.J., “A Model-Theoretic Semantics for Defeasible Logic”, Proc. Workshop on
Paraconsistent Computational Logic, pp. 67-80, 2002.

[18] McGuinness D. L. and Borgida A., “Explaining Subsumption in Description Logics”,
Proc. IJCAI 1995, pp. 816-821.

[19] McGuinness D. L. and da Silva P., “Explaining answers from the Semantic Web: the In-
ference Web approach”, Journal of Web Semantics, 1(4), 2004, pp. 397-413.

[20] Rosati R., “On the decidability and complexity of integrating ontologies and rules”, Jour-
nal of Web Semantics, 3(1), 2005, pp. 41-60.

[21] Shortliffe E., Computer-based medical consultations: MYCIN, Elsevier, 1976.
[22] Sintek M. and Decker S., “TRIPLE - A Query, Inference, and Transformation Language

for the Semantic Web", Proc. Int. Semantic Web Conference, 2002, pp. 364-378.
[23] Swartout W., Paris C. and Moore J., “Explanations in Knowledge Systems: Design for

Explainable Expert Systems”, IEEE Expert, 6(3), 1991, pp. 58-64.
[24] Wagner G., “Web Rules Need Two Kinds of Negation”, In Proc. First Workshop on Se-

mantic Web Reasoning, LNCS 2901, Springer 2003, pp. 33-50.

