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Abstract. The full realization of the semantic Web services demands efficient 
algorithms able to perform the procedures of service discovery, composition 
and invocation. In this paper, we present ProSeDisCo, our approach for 
developing a semantic Web service discovery and composition framework on 
top of the CLIPS rule-based system. More specifically, we describe our 
methodology of utilizing production rules over Web services semantic 
descriptions expressed in the OWL-S ontology. The purpose of these rules is to 
discover and create a Web service choreography that matches users’ input and 
output requirements by utilizing a rule-based OWL reasoning engine in order to 
match semantically the requirements imposed by the users and the 
advertisements of the Web services.  
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1 Introduction 

The advent of Web services is a proof that nowadays the need for communication 
among loosely coupled distributed systems is bigger than ever. Web services offer a 
well-defined interface through which other programs may interact by sending 
messages based on Internet protocols and Web standards. They may also be combined 
in order to achieve a complex service whose functionality cannot be achieved by a 
single one, a procedure that is called service composition. The description of a service 
interface is based on the Web Service Description Language (WSDL [23]) that 
describes the syntax of the input and output messages using XML, as well as other 
details needed for the invocation of the service. The communication is based on the 
Simple Object Access Protocol (SOAP [22]), an XML-based framework that provides 
a message construct that can be exchanged over a variety of underlying protocols. 

Obviously, the procedures of discovery, composition and invocation of Web 
services are heavily based on human intervention. The XML representation of 
services’ characteristics guarantees syntactic interoperability while it is unable to 
capture the semantics of the information. Programmers need to manually code any 
interaction procedure with a single or among many services and take care of 
potentially future modifications, resulting in a time consuming and costing process. In 
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B2B and e-commerce environments, quick and automated procedures among partners 
are of great importance and even if the technology of Web services is a step towards 
the automation of business interactions, it cannot serve the full potentials. Web 
services do not offer semantic description of their capabilities in order to enable the 
automated discovery and use by other programs, restricting their application only to 
static and predefined procedures defined by programmers. 

Semantic Web initiative tries to solve such problems related to knowledge 
representation by suggesting standards, tools and languages for information 
annotation. Thus, the combination of Semantic Web techniques with Web services 
seems the best way to give the appropriate semantic notion to Web services in order 
to achieve the desirable level of automation. This combination has lead to the notion 
of semantic Web services. This term refers to existing Web services whose 
descriptions have been augmented with Semantic Web annotations techniques in 
order to allow automatic discovery, composition and invocation. Towards this need, 
many languages and frameworks have been proposed, such as OWL-S [14], WSMO 
[25] or WSDL-S [24], following different approaches [3] [16] [19]. 

In this paper, we present ProSeDisCo (Production rules for Services Discovery and 
Composition), a framework that supports Web service discovery and composition 
based on OWL-S descriptions. We have chosen OWL-S because we believe that it is 
a more mature approach (it has been under development since early 2001) and it has 
been used by a substantial number of research efforts. However, we do not state that it 
is the only standard that should be followed in the domain of semantic Web services. 
More efforts need to be done from any related initiative for the proposal of more 
complete frameworks, able to represent any real use case.  

The development of a framework able to discover and compose Web services 
should have the ability to process and “understand” the semantic descriptions that 
follow these services. Since OWL-S is an ontology defined in the OWL [13] 
language, the underlying reasoning system should be able to draw the right 
conclusions that stem from the formal semantics of the OWL language in order to 
enable the semantic handling of Web services’ characteristics. In our framework, we 
use a reasoning system that we have developed, namely O-DEVICE [11] [12], able to 
infer over OWL ontologies following an object-oriented approach. 

ProSeDisCo is based on the utilization of appropriate rules over the object-oriented 
knowledge base that has been created by importing the semantic descriptions of 
services into the O-DEVICE system. These rules traverse the generated schema and 
select the appropriate services that meet users’ needs in order to create a service 
composition plan (orchestration) that satisfies user’s initial request. 

The rest of the paper is organized as follows: in section 2 we give a short 
description about the underlying reasoning engine in order to make aware the reader 
about the general principles of the reasoning procedure and the resulting object-
oriented representation of the information. In section 3 we present the main 
architecture of ProSeDisCo. In section 4 we describe the transformation procedure of 
users’ requests into rules and objects of the knowledge base in order to facilitate the 
composition procedure. In section 5 we describe the principles of the Web service 
discovery procedure while in section 6 we present the composition algorithm. Section 
7 gives a simple example of generating a composition plan. In section 8 we present 
related work and finally, in section 9, we conclude our work. 
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2 The O-DEVICE Reasoning System 

O-DEVICE is a rule-based reasoning engine that handles OWL ontologies by 
performing a transformation of the information into an object-oriented environment. It 
is built over an existing rule system, namely CLIPS [4], and uses an embedded object-
oriented language (COOL) that allows the manipulation of the object-oriented schema 
of the knowledge base by rules. O-DEVICE is an extension of a previously developed 
reasoning system for RDF [18] metadata, namely R-DEVICE [1].  

O-DEVICE is a reasoning system disengaged from the triple-based functionality. 
Instead, we use triples in order to build an object-oriented schema of the ontologies by 
transforming them into classes and objects. TBOX and ABOX reasoning is performed 
via object-oriented production rules that implement a number of entailments. The 
TBOX inference rules alter the schema of the knowledge base in order to reflect the 
formal semantics of the OWL language, whereas the ABOX rules are used in order to 
perform classification (based on sufficient conditions) and Skolemization (based on 
existential quantifiers).   

By importing the OWL-S ontology into O-DEVICE, the appropriate classes, slots 
and objects are created following the object-oriented principles. For every service 
profile that is submitted to the system, the corresponding object of the Profile class is 
generated, having encapsulated the input and output values into its hasInput and 
hasOutput slots. Thus, every service profile is treated as a single object and its 
input/output values are accessed directly by sending messages to the corresponding 
object. We do not elaborate further on our reasoning system since it is out of the 
scope of this paper. Further details concerning the reasoning method and technical 
characteristics can be found in [12]. 

3 Framework Architecture 

The framework defines three types of users, i.e. administrators, providers and clients, 
each of which is eligible to perform a specific set of actions. Fig. 1 depicts the main 
architecture. 

 
Fig. 1. Framework Architecture. 
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Providers: They are users that submit their service descriptions in the framework. 
More precisely, they are responsible for annotating their services based on the 
available ontology information of the Ontology Repository that the framework 
provides. They do not have the authority to add or alter the already existing ontology 
hierarchy, preventing in that way ontology inconsistencies. Each service description is 
submitted by uploading the corresponding service profile to the Profile Repository. 

The Profile Repository stores service descriptions expressed in the OWL-S 
ontology. For the annotation of Web services, OWL-S defines four upper ontologies: 
Service, Service Profile, Service Model and Service Grounding. The Service ontology 
serves as an upper ontology of the other three and contains references to them. The 
Service Profile contains functional and non-functional properties for a service. The 
Service Model contains information about how the service works and the Service 
Grounding specifies details about how an agent can invoke the Web service, such as 
the protocol, the message formats and addresses. In our effort, we currently make use 
only of the input and output descriptions of service profiles during the discovery and 
composition procedures. 
Administrators: They are responsible for the normal operation of the system. Their 
main responsibility is to enrich the framework with ontology information in order to 
enable providers to annotate semantically their services in a more accurate way. The 
providers may also contact the administrators in order to inform them about their 
needs when they are unable to describe correctly their services based only on the 
available ontology information. Notice that administrators are not responsible for a 
correct service description. 

The administrators are also responsible for the removal of existing service 
descriptions due to unavailability or after a provider’s request. Furthermore, statistical 
information about service requests are hold that can be used in order to detect services 
description with potential mistakes in their definitions. These services are unlike to be 
discovered due to description inconsistencies of their inputs or outputs. 
Clients: Their role is limited only to the conduction of queries in order to retrieve 
services that meet their needs. Clients are responsible to define queries that refer to 
concepts and roles of the Ontology Repository, in order to be able for the system to 
process them appropriately.  

4 Internal Representation of Users’ Requirements 

The ontologies of the Ontology Repository and the service advertisements are stored 
into the system in the object-oriented form that is supported by the underlying 
reasoning engine. For that reason, users’ requirements should also be transformed into 
the object-oriented model of the framework. 

4.1 Queries 

Queries specify users’ preferences about the type of input information they provide 
and the type of outputs they want to have as a result. They must refer to existing 
ontology concepts and roles in order to be understood by the system and to facilitate 
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the retrieval procedure. Queries are expressed using a variation of the deductive rule 
language that the system supports [1] which are then translated into CLIPS production 
rules in order to be applied to the knowledge base. The procedures of the query 
transformation and the collection of results are performed through a Mediator service 
which can be considered as the middleware between clients and the framework. 

A query is based on a template rule that contains users’ requirements, as Fig. 2 
depicts. 

1:(query <query-id> 
2:  (owl-s:Profile 
3:   (input <input1>) 
4:   (input <input2>) 
5:   ... 
6:   (input <inputN>) 
7:   (output <output1>) 
8:   (output <output2>) 
9:   ... 
10:   (output <outputM>)) 
11:) 

Fig. 2. Query template 

The template rule consists of conditions that a service or a composition plan should 
satisfy. More specifically, lines 3 to 6 define users’ preferences for the input 
information they willing to give and lines 7 to 10 define users’ requirements about the 
outputs that the requested service should produce. 

4.2 Mediator Service 

The Mediator is responsible for translating the incoming template query into a 
production rule, to submit the resulting rule to the framework, to collect the results 
and finally to send the results back to the client. This procedure is depicted in Fig. 3. 

 
Fig. 3. The interaction between the client and the mediator 

Each user’s request for a service is represented by an object of the class REQUEST. 
This object stores a session id that the mediator assigns in order to determine uniquely 
each request, the request inputs and outputs. The definition of this class, following the 
native COOL syntax, is shown in Fig. 4. 

(defclass REQUEST 
  (is-a USER) 
  (slot session_id (type INTEGER)) 
  (multislot inputs (type SYMBOL)) 
  (multislot outputs (type SYMBOL)))

Fig. 4. Class for representing a user request  
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The mediator is responsible for parsing the incoming query and generating the 
appropriate CLIPS production rule in order to submit it to the system. The submission 
of the rule has the effect of generating the internal representation of the query in the 
form of a request object. For the template query of Fig. 2, there is the corresponding 
template CLIPS rule of Fig. 5 that the mediator populates with values and then 
submits it to the system. 

(defrule generate-requests 
  (not (object  
         (is-a REQUEST)  
         (session_id <session-id>))) 
=> 
  (make-instance (gensym*) of REQUEST 
    (session_id <session-id>) 
    (inputs <input1> <input2> ... <inputN>) 
    (outputs <output1> <output2> ... <outputM>)))

Fig. 5. Rule for generating objects of the REQUEST class 

The system generates an object of the class REQUEST that stores the <session-id> 
in the slot session_id. This is a unique value and it is used in order to uniquely 
identify each client, since there is the possibility more that one clients to use the 
system simultaneously. The object also contains the user’s request information, 
having the input requirements into the inputs multislot and the output requirements 
into the outputs multislot. 

5 Semantic Web Service Discovery 

The discovery of semantic Web services is the procedure of locating Web Services 
that satisfy specific requirements based on their semantic descriptions. In order to 
facilitate the semantic matchmaking procedure in our model, we use the rule-based 
OWL reasoner we have described in section 2, assuming that for each semantic Web 
service there is a corresponding service description in OWL-S that provide semantic 
information about Web services inputs and outputs. 

Following the degree of matching between two concepts presented in [15], we 
define four matching functions in order to satisfy the matchmaking requirements 
between ontology concepts during the composition procedure. Recall that two 
concepts i and j are considered to match only if i = j or i subsumes j or j subsumes i. 
These types of match are used later in order to define a matching score for a 
composition plan or a single Web service. The four matching functions are: 
• sub(setA, setB): returns true if all the concepts of the setA set are semantically 

matched to the setB set, i.e. setA is a semantic subset of setB (setA ⊆ setB).   
• exists(c, S): returns true if the c concept semantically matches at least one concept 

of the S set, i.e. c semantically belongs in the S set (c ∈ S).    
• n-inter(setA, setB): returns true if the two sets have not any semantically similar 

concept, i.e. their semantic intersection is the empty set (setA ∩ setB = ∅). 
• n-same(setA, setB): returns true if the two sets have not semantically the same 

concepts (setA ≠ setB). 
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6 Generating Composition Plans 

In this section we analyze the algorithm for generating composition plans for a service 
request and we present the scoring function we use in order to rank the results. 

6.1 Composition Algorithm 

The composition algorithm follows a bottom-up approach: it starts from the request 
outputs and creates all the possible composition plans that achieve these goals based 
on the request inputs. The algorithm is implemented by a set of object-oriented CLIPS 
production rules that match registered Web services of the knowledge base based on 
their semantic descriptions of their inputs and outputs (profiles) and not just in their 
string representation. This service discovery procedure is based on the functions we 
have described in the previous section. The detailed algorithm is depicted in Fig. 6. 

The algorithm starts by selecting all the Web services that achieve some (or all) 
request outputs and stores them in the Children set (line 03). Based on this set and on 
the user’s outputs (F set), the algorithm utilizes the findClusteredChildren function 
that creates the ClusteredChildren set. This set contains elements of the form f({Web 
services},{Outputs}) that denote all the possible Web service sets that achieve all 
request outputs. In other words, each f element contains the set of single Web services 
that produce the required outputs. 

For each f element, the algorithm creates a COMP construct (line 08). A COMP 
construct contains compositions of Web services and it has an in, out and component 
field that stores the inputs, outputs and the Web services of the composition plan 
respectively. Each Web service in the component field is represented as a CWS 
construct (line 10) with in and out fields and a composition field that holds the COMP 
construct where the CWS Web service belongs. If an input of a COMP construct is 
matched with a request input, then it has the form f(Input,usr), meaning that this input 
can be directly satisfied by the user request. Otherwise, it has the form f(Input,nil) and 
denote that the source of this input is still undetermined. Each COMP construct is 
stored into the CS set (line 17). 

For each compi of the CS set (line 19), the undetermined inputs are collected in the 
F set and the algorithm follows a similar recursive procedure in order to determine 
compositions of Web services that satisfy them (line 21). If the compi does not have 
any undetermined inputs, then it is a complete composition plan and it is stored into 
the FCS set (line 22). The algorithm terminates when the CS list is empty, i.e. when 
all the compi constructs have been examined and the FCS set is returned as the result. 

The FCS set contains composition plans that satisfy exactly request outputs, i.e. the 
plans do not produce outputs that are not requested by the user. Although this is a 
desirable feature, we plan to modify the algorithm in order to propose more relaxed 
results especially in cases where the model is unable to create a composition plan that 
satisfies the requested outputs only. 
01: BEGIN 
02: FCS = Ø, CS = Ø, F = Ousr, Children = Ø 
03: ∀ wsi ∈ WS, sub(out(wsi), F) → Children = Children ∪ {wsi} 
04: IF Children = Ø THEN RETURN Ø 
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05: ClusteredChildren = findClusteredChildren(Children, F) 
06: IF ClusteredChildren = Ø THEN RETURN Ø 
07: ∀ f(wsci,outi) ∈ ClusteredChildren 
08:      CREATE compi ∈ COMP, out(compi) = outi, in(compi) = Ø, components(compi) = Ø 
09:      ∀ wsi ∈ wsci,  
10:          CREATE cwsi ∈ CWS, service-id(cwsi) = wsi, out(cwsi) = Ø, in(cwsi) = Ø, composition(cwsi) = compi 
11:              ∀ out ∈ out(wsi), out(cwsi) = out(cwsi) ∪ { f(out,usr) } 
12:              ∀ in ∈ in(wsi),  
13:                  IF exists(in, Iusr) THEN in(cwsi) = in(cwsi) ∪ { f(in,usr) }  
14:                  ELSE in(cwsi) = in(cwsi) ∪ { f(in,nil) } 
15:              in(compi) = in(compi) ∪ in(wsi), 
16:              components(compi) = components(compi) ∪ { cwsi } 
17:      CS = CS ∪ { compi } 
18: REPEAT 
19: ∀ compi ∈ CS, 
20:      F = Ø 
21:      ∀ in ∈ in(compi) ∧ NOT exists(in, Iusr), F = F ∪ { in } 
22:      IF F = Ø THEN FCS = FCS ∪ { compi } 
23:      ELSE 
24:          Children = Ø 
25:          ∀ wsi ∈ WS, sub(out(wsi), F) → Children = Children ∪ {wsi} 
26:          IF Children ≠ Ø THEN  
27:              ClusteredChildren = findClusteredChildren(Children, F) 
28:              IF ClusteredChildren ≠ Ø THEN 
29:                  ∀ f(wsci,outi) ∈ ClusteredChildren 
30:                      CREATE compk ∈ COMP, out(compk) = out(compi), in(compk) = in(compi) - F,  
31:     components(compk) = components(compi)  
32:                      ∀ wsi ∈ wsci,  
33:       CREATE cwsi ∈ CWS, service-id(cwsi) = wsi, out(cwsi) = Ø, in(cwsi) = Ø,  
34:     composition(cwsi) = compk 
35:       ∀ out ∈ out(wsi), ∃ cwsk ∈ components(compi) ∧ exists(f(out,nil), in(cwsk)) → 
36:           out(cwsi) = out(cwsi) ∪ { f(out,cwsk) }, 
37:           in(cwsk) = in(cwsk) - { f(out,nil) } 
38:           in(cwsk) = in(cwsk) ∪ { f(out,cwsi) } 
39:       ∀ in ∈ in(wsi),  
40:           IF exists(in, Iusr) THEN in(cwsi) = in(cwsi) ∪ { f(in,usr) }  
41:           ELSE in(cwsi) = in(cwsi) ∪ { f(in,nil) } 
42:       in(compk) = in(compk) ∪ in(wsi),  
43:       components(compk) = components(compk) ∪ { wsi } 
44:   CS = CS ∪ { compk } 
45:          CS = CS - { compi } 
46: UNTIL CS = Ø 
47: RETURN FC 
48: END 
49:  
50: PROCEDURE findClusteredChildren(Children, F) { 
51:      ClusteredChildren = Ø 
52:      ∀ wsi ∈ Children, ClusteredChildren = ClusteredChildren ∪ { f({wsi},out(wsi)) } 
53:          REPEAT 
54:          Flag = 0 
55:          ∀ f(wsci,outi) ∈ ClusteredChildren,  
56:              IF ∃ wsi ∈ Children ∧ n-inter(out(wsi), outi) THEN outi = outi ∪ out(wsi), wsci = wsci ∪ {wsi} 
57:              Flag = 1 
58:             ClusteredChildren = ClusteredChildren - { f({wsi},out(wsi)) } 
59:          UNTIL Flag = 0 
60:          ∀ f(wsci,outi) ∈ ClusteredChildren, 
61:              IF n-same(outi, F) THEN ClusteredChildren = ClusteredChildren - { f(wsci,outi) } 
62:  RETURN ClusteredChildren 
63: } 

Fig. 6. Composition algorithm. 



 9 

6.2 Assigning Scores 

Since the resulting composition plans or the single Web Services for a request may be 
more than one, we use the three matching types of concepts of [15] in order to assign 
scores. These scores denote the relevance of the results to a specific request and affect 
the way the results are presented to the client. For each matching type between 
concepts, we define a weight w that denotes the degree of similarity of the concepts. 
• exact match: This type of match exists when the two matched concepts are the 

same or equivalent (in the terms of OWL class equivalence). In our model, we 
consider direct subclass relationships as subsumption relationships and they are 
handled by the other two types of matches. The exact matching weight is we = 3.  

• plug in and subsume matches: These types of matches denote that there is a 
subsumption relationship between the matched concepts (including direct subclass 
relationships). The weight that is assigned to these matches depends on the 
distance between the two concepts in the ontology. The distance d between two 
concepts C1 and C2 is defined as the number of concepts that exist in the (shortest) 
path from C1 to C2 in the ontology (including also in the sum the C1 and C2). For 
example, the distance between two concepts with a direct subclass relationship is 
2. In that way, for plug in matches we define wp = 1 + 2/d and for subsume ws = 
2/d, denoting that plug in matches are always preferable than subsume. 

• fail match: In this case, the matching fails (disjoint concepts).   
 
The score s for a single Web service is computed between request inputs and Web 

service’s inputs and between request outputs and Web service’s outputs. In a similar 
manner, the score for a composition plan is computed by regarding it as a single Web 
service with inputs the initial plan inputs and outputs the final plan outputs. The 
scoring function is defined as the sum of the minimum w after the matching procedure 
of the inputs of the request and the service and the minimum w after the matching 
procedure of the outputs of the request and the service. 

min{ } min{ }in outs weights weights= +  
In the case of composition plans with similar scores, we rank them according to the 

number of the Web services that are involved in the composition plan, i.e. for two 
composition plans Ca and Cb that contain n and k Web services respectively, we 
consider that rank(Ca(n)) > rank(Cb(k)), if n < k. 

7 An Example 

In this section we present an example of generating a composition plan for a service 
request. Suppose the simple ontology of Fig. 7 that describes the domain of an online 
bookstore. We assume that this ontology is already processed by the underlying OWL 
rule reasoner that has generated the corresponding class hierarchy into the object-
oriented knowledge base. 

Different parties have registered their Web services by submitting the descriptions 
in the framework. We assume that there are 4 Web services with the following 
functionalities: 
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• WStpub(in:{Title}, out:{Publisher}): the Web service takes as input a book title 
and returns its publisher. 

• WStper(in:{Title}, out:{Person}): the web service takes as input the title of the 
book and returns instances of any person of the domain. 

• WSti(in:{Title}, out:{ISBN}): the web service takes as input the title of the book 
and returns the ISBN number. 

• WSip(in:{ISBN}, out:{Price}): the web service takes as input an ISBN number 
and returns the price of the book. 

 

 
Fig. 7. A simple taxonomy for an online bookstore. 

The profiles of the above Web services have been submitted in the framework by 
the providers who want to advertise their services. These advertisements contain 
semantic annotations for the inputs and outputs of the service they describe, using 
concepts of the ontology in Fig. 7. 

Suppose, a client wants to retrieve the price and the publisher of a particular book 
based on the title and submits the query depicted in Fig. 8 to the Mediator. Queries 
should utilize existing ontology concepts for the input and output parameters. 

(query book-price 
  (owl-s:Profile 
    (input bookstore:Title) 

    (output bookstore:Publisher)
    (output bookstore:Price))) 

Fig. 8. The input query of retrieving the publisher of a book. 

The Mediator is responsible for assigning a session id to the query, e.g 345 and 
translating the incoming query into a production rule that submits to the system (Fig. 
9). This rule generates an object of the REQUEST class, which is the internal 
representation of user’s request. 

(defrule generate-requests 
  (not (object  
         (is-a REQUEST)  
         (session_id 345))) 
=> 
  (make-instance (gensym*) of REQUEST
    (session_id 345) 
    (inputs bookstore:Title) 
    (outputs bookstore:Price) 
    (outputs bookstore:Publisher))) 

Fig. 9. The production rule that transforms a query into a REQUEST object. 
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The generation of the new object in the knowledge base, triggers the pattern 
matching procedure of the defined production rules that facilitate the composition 
procedure. The algorithm starts by selecting all Web services that match all or some 
of the request outputs. In the example, we have two request outputs and the WSip, 
WStpub, WStper Web services are selected that satisfy them and are added in the 
Children list. Since this list is not empty, the algorithm continues by generating the 
ClusteredChildren list using the function findClusteredChildren. The resulting list is: 

{ ({ , },{ , }), ({ , },{ , })}tpub ip tper ipf W W Publisher Price f W W Person Price  
For each element f of the ClusteredChildren list, the algorithm creates a COMP 

construct. The COMP construct is an abstraction of a composition plan that stores the 
Web services, the inputs and the outputs of the so far generated plan. Each Web 
service that participates in the composition plan is represented as a WSC construct that 
holds the inputs, the outputs (along with the corresponding web services that provide 
and consume those inputs and outputs) and the id of the original Web service. The 
COMP construct (comp1) for the first element of the ClusteredChildren list is 
depicted in Fig. 10.  

 
Fig. 10. A composition plan for the request.  

The f(Title,usr) input denotes that this is a request input whereas the f(ISBN,nil) 
denotes that currently this is an undetermined input. The next step of the algorithm is 
to determine a composition plan that satisfies the undetermined input of the wsc1 
component that belongs to the comp1 composition plan. Following the same 
procedure, a second COMP construct (comp2) is created for the Web services whose 
outputs satisfy the ISBN input. There is only one Web service that produces the 
required input, i.e. the WSti Web service. The comp2 construct is created (and replaces 
comp1) and the algorithm changes the f(ISBN,nil) input of wsc1 to f(ISBN, WSti) in 
order to denote the Web service from which will take the output. Since all the inputs 
of comp2 are request inputs (i.e. there are no other f(Input,nil) to satisfy) the algorithm 
terminates the procedure for creating COMP constructs and the composition plan 
comp2 is stored into the FCS list.  

The same procedure holds for the second f element of the ClusteredChildren list 
and a similar composition plan is created and added to the FCS list with a Person 
output instead of Publisher due to the WStper Web service. Appropriate production 
rules traverse the FCS list and assign scores to each composition plan. Based on the 
scoring function we have described in section 6.2, the composition plan of Fig. 10 is 
assigned with a score value equal to 6. More specifically, the minimum weight w for 
the inputs is 3 since there is an exact match between request input and plan input. The 
minimum weight w of outputs is again 3 since there is an exact match between request 
outputs and plan outputs. Thus:  
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1 min{ } min{ } 3 3 6in out e es weights weights w w= + = + = + =  
For the second composition plan, the minimum weight w for the inputs is 3 since 

there is an exact match between request input and plan input. The minimum weight w 
of outputs is now 2 since there is a plug in match between request outputs and plan 
outputs. Thus:  

2 min{ } min{ } 3 2 5in out e ps weights weights w w= + = + = + =  
Since s1 > s2, the composition plan of Fig. 10 is preferable.  

8 Related Work 

Many research efforts have been focused on the field of Web service discovery and/or 
composition. In this section we briefly present some of these approaches. 

In [17] a toolset for Web service composition is presented. In SWORD each 
service is represented by a rule that expresses the inputs that should hold in order for 
the rule to be activated and to produce particular outputs. These rules are used in an 
expert system (JESS [7]) in order to determine if a composite service that produces a 
desirable output can be realized using existing services (that are represented as rules). 
The difference of our framework is that each service is described using service 
description standards, such as OWL-S and we utilize an OWL reasoner in order to 
match services based on semantic descriptions and not just on simple string matches, 
as a native rule engine does. 

In [20] the authors propose a prototype for semi-automating Web service 
composition. Users create a workflow of services by presenting the available choices 
at each step. Web services descriptions are defined in DAML-S and through an OWL 
Prolog reasoner, the system inferences and selects the matching services based on 
subsumption relationships. Services are also filtered based on constraints which the 
user may specify on their attributes. In contrast to this approach, our framework 
targets at the automatic generation of a composition plan based on the initial user’s 
input and output requirements only. 

IRS-III [2] is a framework which takes a semantic broker based approach to 
creating applications from semantic Web services by mediating between a service 
requester and one or more service providers. The aim of the framework is to enable 
the automated or semi-automated construction of semantically enhanced systems over 
the internet. In contrast to our model, this framework implements and extends the 
WSMO conceptual model for Web services description, publication and execution. 

METEOR-S [21] is a project that deals with the problems of semantic Web service 
description, discovery and composition. It associates semantics to Web services, 
covering input/output, functional/operational descriptions, execution and quality and 
exploits them in the entire Web process lifecycle encompassing semantic description, 
discovery and composition of Web services. In this project, Web services are 
described using WSDL-S descriptions instead of the WSMO or the OWL-S ontology. 

In [10], the authors describe their approach for semantic Web services 
matchmaking. They argue that hybrid approaches to semantic matching that exploit 
both formal and implicit semantics may improve the retrieval performance of 
semantic service matching over purely logic-based ones. In their approach, they 



 13

utilize both logic based reasoning and content based information retrieval techniques 
for services specified in OWL-S. Our system currently supports matchmaking based 
only on simple subsumption relationships but we plan to extend the procedure with 
more techniques. 

In [8] the authors present a logical framework for automated Web service 
discovery which is based on the WSMO conceptual model. They have implemented 
their approach in the F-Logic [9] reasoning engine Flora2 [5]. However, they deal 
only with the discovery aspect of Web services in contrast to our work where we 
define a Web service composition algorithm. 

9 Conclusions  

In this paper we describe ProSeDisCo, a production rule-based framework for Web 
services discovery and composition. Based on the implementation of a rule-based 
OWL reasoner (O-DEVICE) on top of the CLIPS production rule engine, we define a 
model for the facilitation of Web services discovery and composition. Taking 
advantage of the efficiency of the well-known underlying rule engine, we use 
production rules in order to a) semantically match user requests with Web services 
OWL-S descriptions and b) implement a Web service composition algorithm. 

Rules are considered to play a key role for the full realization of the semantic Web. 
Since semantic Web services are heavily based on this initiative, we believe that rules 
will also affect every aspect of them. As far as the OWL-S ontology is concerned, 
rules can be used in order to define pre and post conditions that should be satisfied 
before and after the execution of a Web service, e.g. using the SWRL [6]. Since our 
model is based on rules, we can easily extend it in order to represent such conditions 
using the supported deductive rule language [1].  

Web services nonfunctional parameters can also be represented using rules, e.g. in 
the case of the selection of a Web service based on quality measures. We argue that 
the declaretiveness of rules is a powerful tool and it can be used during the discovery 
as well as the composition procedure. For the latter, we plan to enhance the model 
with the ability of defining composition plans via rules, e.g. in the case of a 
commonly used service that has a static composition plan and to facilitate the plan 
execution procedure. 
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