
 1

A Semantic Web Service Discovery and Composition
Prototype Framework Using Production Rules

Georgios Meditskos and Nick Bassiliades

Department of Informatics

Aristotle University of Thessaloniki, Greece
{gmeditsk, nbassili}@csd.auth.gr

Abstract. The full realization of the semantic Web services demands efficient
algorithms able to perform the procedures of service discovery, composition
and invocation. In this paper, we present ProSeDisCo, our approach for
developing a semantic Web service discovery and composition framework on
top of the CLIPS rule-based system. More specifically, we describe our
methodology of utilizing production rules over Web services semantic
descriptions expressed in the OWL-S ontology. The purpose of these rules is to
discover and create a Web service choreography that matches users’ input and
output requirements by utilizing a rule-based OWL reasoning engine in order to
match semantically the requirements imposed by the users and the
advertisements of the Web services.

Keywords: Semantic Web Services, OWL-S, Production Rules, OWL
Reasoning.

1 Introduction

The advent of Web services is a proof that nowadays the need for communication
among loosely coupled distributed systems is bigger than ever. Web services offer a
well-defined interface through which other programs may interact by sending
messages based on Internet protocols and Web standards. They may also be combined
in order to achieve a complex service whose functionality cannot be achieved by a
single one, a procedure that is called service composition. The description of a service
interface is based on the Web Service Description Language (WSDL [23]) that
describes the syntax of the input and output messages using XML, as well as other
details needed for the invocation of the service. The communication is based on the
Simple Object Access Protocol (SOAP [22]), an XML-based framework that provides
a message construct that can be exchanged over a variety of underlying protocols.

Obviously, the procedures of discovery, composition and invocation of Web
services are heavily based on human intervention. The XML representation of
services’ characteristics guarantees syntactic interoperability while it is unable to
capture the semantics of the information. Programmers need to manually code any
interaction procedure with a single or among many services and take care of
potentially future modifications, resulting in a time consuming and costing process. In

 2

B2B and e-commerce environments, quick and automated procedures among partners
are of great importance and even if the technology of Web services is a step towards
the automation of business interactions, it cannot serve the full potentials. Web
services do not offer semantic description of their capabilities in order to enable the
automated discovery and use by other programs, restricting their application only to
static and predefined procedures defined by programmers.

Semantic Web initiative tries to solve such problems related to knowledge
representation by suggesting standards, tools and languages for information
annotation. Thus, the combination of Semantic Web techniques with Web services
seems the best way to give the appropriate semantic notion to Web services in order
to achieve the desirable level of automation. This combination has lead to the notion
of semantic Web services. This term refers to existing Web services whose
descriptions have been augmented with Semantic Web annotations techniques in
order to allow automatic discovery, composition and invocation. Towards this need,
many languages and frameworks have been proposed, such as OWL-S [14], WSMO
[25] or WSDL-S [24], following different approaches [3] [16] [19].

In this paper, we present ProSeDisCo (Production rules for Services Discovery and
Composition), a framework that supports Web service discovery and composition
based on OWL-S descriptions. We have chosen OWL-S because we believe that it is
a more mature approach (it has been under development since early 2001) and it has
been used by a substantial number of research efforts. However, we do not state that it
is the only standard that should be followed in the domain of semantic Web services.
More efforts need to be done from any related initiative for the proposal of more
complete frameworks, able to represent any real use case.

The development of a framework able to discover and compose Web services
should have the ability to process and “understand” the semantic descriptions that
follow these services. Since OWL-S is an ontology defined in the OWL [13]
language, the underlying reasoning system should be able to draw the right
conclusions that stem from the formal semantics of the OWL language in order to
enable the semantic handling of Web services’ characteristics. In our framework, we
use a reasoning system that we have developed, namely O-DEVICE [11] [12], able to
infer over OWL ontologies following an object-oriented approach.

ProSeDisCo is based on the utilization of appropriate rules over the object-oriented
knowledge base that has been created by importing the semantic descriptions of
services into the O-DEVICE system. These rules traverse the generated schema and
select the appropriate services that meet users’ needs in order to create a service
composition plan (orchestration) that satisfies user’s initial request.

The rest of the paper is organized as follows: in section 2 we give a short
description about the underlying reasoning engine in order to make aware the reader
about the general principles of the reasoning procedure and the resulting object-
oriented representation of the information. In section 3 we present the main
architecture of ProSeDisCo. In section 4 we describe the transformation procedure of
users’ requests into rules and objects of the knowledge base in order to facilitate the
composition procedure. In section 5 we describe the principles of the Web service
discovery procedure while in section 6 we present the composition algorithm. Section
7 gives a simple example of generating a composition plan. In section 8 we present
related work and finally, in section 9, we conclude our work.

 3

2 The O-DEVICE Reasoning System

O-DEVICE is a rule-based reasoning engine that handles OWL ontologies by
performing a transformation of the information into an object-oriented environment. It
is built over an existing rule system, namely CLIPS [4], and uses an embedded object-
oriented language (COOL) that allows the manipulation of the object-oriented schema
of the knowledge base by rules. O-DEVICE is an extension of a previously developed
reasoning system for RDF [18] metadata, namely R-DEVICE [1].

O-DEVICE is a reasoning system disengaged from the triple-based functionality.
Instead, we use triples in order to build an object-oriented schema of the ontologies by
transforming them into classes and objects. TBOX and ABOX reasoning is performed
via object-oriented production rules that implement a number of entailments. The
TBOX inference rules alter the schema of the knowledge base in order to reflect the
formal semantics of the OWL language, whereas the ABOX rules are used in order to
perform classification (based on sufficient conditions) and Skolemization (based on
existential quantifiers).

By importing the OWL-S ontology into O-DEVICE, the appropriate classes, slots
and objects are created following the object-oriented principles. For every service
profile that is submitted to the system, the corresponding object of the Profile class is
generated, having encapsulated the input and output values into its hasInput and
hasOutput slots. Thus, every service profile is treated as a single object and its
input/output values are accessed directly by sending messages to the corresponding
object. We do not elaborate further on our reasoning system since it is out of the
scope of this paper. Further details concerning the reasoning method and technical
characteristics can be found in [12].

3 Framework Architecture

The framework defines three types of users, i.e. administrators, providers and clients,
each of which is eligible to perform a specific set of actions. Fig. 1 depicts the main
architecture.

Fig. 1. Framework Architecture.

 4

Providers: They are users that submit their service descriptions in the framework.
More precisely, they are responsible for annotating their services based on the
available ontology information of the Ontology Repository that the framework
provides. They do not have the authority to add or alter the already existing ontology
hierarchy, preventing in that way ontology inconsistencies. Each service description is
submitted by uploading the corresponding service profile to the Profile Repository.

The Profile Repository stores service descriptions expressed in the OWL-S
ontology. For the annotation of Web services, OWL-S defines four upper ontologies:
Service, Service Profile, Service Model and Service Grounding. The Service ontology
serves as an upper ontology of the other three and contains references to them. The
Service Profile contains functional and non-functional properties for a service. The
Service Model contains information about how the service works and the Service
Grounding specifies details about how an agent can invoke the Web service, such as
the protocol, the message formats and addresses. In our effort, we currently make use
only of the input and output descriptions of service profiles during the discovery and
composition procedures.
Administrators: They are responsible for the normal operation of the system. Their
main responsibility is to enrich the framework with ontology information in order to
enable providers to annotate semantically their services in a more accurate way. The
providers may also contact the administrators in order to inform them about their
needs when they are unable to describe correctly their services based only on the
available ontology information. Notice that administrators are not responsible for a
correct service description.

The administrators are also responsible for the removal of existing service
descriptions due to unavailability or after a provider’s request. Furthermore, statistical
information about service requests are hold that can be used in order to detect services
description with potential mistakes in their definitions. These services are unlike to be
discovered due to description inconsistencies of their inputs or outputs.
Clients: Their role is limited only to the conduction of queries in order to retrieve
services that meet their needs. Clients are responsible to define queries that refer to
concepts and roles of the Ontology Repository, in order to be able for the system to
process them appropriately.

4 Internal Representation of Users’ Requirements

The ontologies of the Ontology Repository and the service advertisements are stored
into the system in the object-oriented form that is supported by the underlying
reasoning engine. For that reason, users’ requirements should also be transformed into
the object-oriented model of the framework.

4.1 Queries

Queries specify users’ preferences about the type of input information they provide
and the type of outputs they want to have as a result. They must refer to existing
ontology concepts and roles in order to be understood by the system and to facilitate

 5

the retrieval procedure. Queries are expressed using a variation of the deductive rule
language that the system supports [1] which are then translated into CLIPS production
rules in order to be applied to the knowledge base. The procedures of the query
transformation and the collection of results are performed through a Mediator service
which can be considered as the middleware between clients and the framework.

A query is based on a template rule that contains users’ requirements, as Fig. 2
depicts.

1:(query <query-id>
2: (owl-s:Profile
3: (input <input1>)
4: (input <input2>)
5: ...
6: (input <inputN>)
7: (output <output1>)
8: (output <output2>)
9: ...
10: (output <outputM>))
11:)

Fig. 2. Query template

The template rule consists of conditions that a service or a composition plan should
satisfy. More specifically, lines 3 to 6 define users’ preferences for the input
information they willing to give and lines 7 to 10 define users’ requirements about the
outputs that the requested service should produce.

4.2 Mediator Service

The Mediator is responsible for translating the incoming template query into a
production rule, to submit the resulting rule to the framework, to collect the results
and finally to send the results back to the client. This procedure is depicted in Fig. 3.

Fig. 3. The interaction between the client and the mediator

Each user’s request for a service is represented by an object of the class REQUEST.
This object stores a session id that the mediator assigns in order to determine uniquely
each request, the request inputs and outputs. The definition of this class, following the
native COOL syntax, is shown in Fig. 4.

(defclass REQUEST
 (is-a USER)
 (slot session_id (type INTEGER))
 (multislot inputs (type SYMBOL))
 (multislot outputs (type SYMBOL)))

Fig. 4. Class for representing a user request

 6

The mediator is responsible for parsing the incoming query and generating the
appropriate CLIPS production rule in order to submit it to the system. The submission
of the rule has the effect of generating the internal representation of the query in the
form of a request object. For the template query of Fig. 2, there is the corresponding
template CLIPS rule of Fig. 5 that the mediator populates with values and then
submits it to the system.

(defrule generate-requests
 (not (object
 (is-a REQUEST)
 (session_id <session-id>)))
=>
 (make-instance (gensym*) of REQUEST
 (session_id <session-id>)
 (inputs <input1> <input2> ... <inputN>)
 (outputs <output1> <output2> ... <outputM>)))

Fig. 5. Rule for generating objects of the REQUEST class

The system generates an object of the class REQUEST that stores the <session-id>
in the slot session_id. This is a unique value and it is used in order to uniquely
identify each client, since there is the possibility more that one clients to use the
system simultaneously. The object also contains the user’s request information,
having the input requirements into the inputs multislot and the output requirements
into the outputs multislot.

5 Semantic Web Service Discovery

The discovery of semantic Web services is the procedure of locating Web Services
that satisfy specific requirements based on their semantic descriptions. In order to
facilitate the semantic matchmaking procedure in our model, we use the rule-based
OWL reasoner we have described in section 2, assuming that for each semantic Web
service there is a corresponding service description in OWL-S that provide semantic
information about Web services inputs and outputs.

Following the degree of matching between two concepts presented in [15], we
define four matching functions in order to satisfy the matchmaking requirements
between ontology concepts during the composition procedure. Recall that two
concepts i and j are considered to match only if i = j or i subsumes j or j subsumes i.
These types of match are used later in order to define a matching score for a
composition plan or a single Web service. The four matching functions are:
• sub(setA, setB): returns true if all the concepts of the setA set are semantically

matched to the setB set, i.e. setA is a semantic subset of setB (setA ⊆ setB).
• exists(c, S): returns true if the c concept semantically matches at least one concept

of the S set, i.e. c semantically belongs in the S set (c ∈ S).
• n-inter(setA, setB): returns true if the two sets have not any semantically similar

concept, i.e. their semantic intersection is the empty set (setA ∩ setB = ∅).
• n-same(setA, setB): returns true if the two sets have not semantically the same

concepts (setA ≠ setB).

 7

6 Generating Composition Plans

In this section we analyze the algorithm for generating composition plans for a service
request and we present the scoring function we use in order to rank the results.

6.1 Composition Algorithm

The composition algorithm follows a bottom-up approach: it starts from the request
outputs and creates all the possible composition plans that achieve these goals based
on the request inputs. The algorithm is implemented by a set of object-oriented CLIPS
production rules that match registered Web services of the knowledge base based on
their semantic descriptions of their inputs and outputs (profiles) and not just in their
string representation. This service discovery procedure is based on the functions we
have described in the previous section. The detailed algorithm is depicted in Fig. 6.

The algorithm starts by selecting all the Web services that achieve some (or all)
request outputs and stores them in the Children set (line 03). Based on this set and on
the user’s outputs (F set), the algorithm utilizes the findClusteredChildren function
that creates the ClusteredChildren set. This set contains elements of the form f({Web
services},{Outputs}) that denote all the possible Web service sets that achieve all
request outputs. In other words, each f element contains the set of single Web services
that produce the required outputs.

For each f element, the algorithm creates a COMP construct (line 08). A COMP
construct contains compositions of Web services and it has an in, out and component
field that stores the inputs, outputs and the Web services of the composition plan
respectively. Each Web service in the component field is represented as a CWS
construct (line 10) with in and out fields and a composition field that holds the COMP
construct where the CWS Web service belongs. If an input of a COMP construct is
matched with a request input, then it has the form f(Input,usr), meaning that this input
can be directly satisfied by the user request. Otherwise, it has the form f(Input,nil) and
denote that the source of this input is still undetermined. Each COMP construct is
stored into the CS set (line 17).

For each compi of the CS set (line 19), the undetermined inputs are collected in the
F set and the algorithm follows a similar recursive procedure in order to determine
compositions of Web services that satisfy them (line 21). If the compi does not have
any undetermined inputs, then it is a complete composition plan and it is stored into
the FCS set (line 22). The algorithm terminates when the CS list is empty, i.e. when
all the compi constructs have been examined and the FCS set is returned as the result.

The FCS set contains composition plans that satisfy exactly request outputs, i.e. the
plans do not produce outputs that are not requested by the user. Although this is a
desirable feature, we plan to modify the algorithm in order to propose more relaxed
results especially in cases where the model is unable to create a composition plan that
satisfies the requested outputs only.
01: BEGIN
02: FCS = Ø, CS = Ø, F = Ousr, Children = Ø
03: ∀ wsi ∈ WS, sub(out(wsi), F) → Children = Children ∪ {wsi}
04: IF Children = Ø THEN RETURN Ø

 8

05: ClusteredChildren = findClusteredChildren(Children, F)
06: IF ClusteredChildren = Ø THEN RETURN Ø
07: ∀ f(wsci,outi) ∈ ClusteredChildren
08: CREATE compi ∈ COMP, out(compi) = outi, in(compi) = Ø, components(compi) = Ø
09: ∀ wsi ∈ wsci,
10: CREATE cwsi ∈ CWS, service-id(cwsi) = wsi, out(cwsi) = Ø, in(cwsi) = Ø, composition(cwsi) = compi
11: ∀ out ∈ out(wsi), out(cwsi) = out(cwsi) ∪ { f(out,usr) }
12: ∀ in ∈ in(wsi),
13: IF exists(in, Iusr) THEN in(cwsi) = in(cwsi) ∪ { f(in,usr) }
14: ELSE in(cwsi) = in(cwsi) ∪ { f(in,nil) }
15: in(compi) = in(compi) ∪ in(wsi),
16: components(compi) = components(compi) ∪ { cwsi }
17: CS = CS ∪ { compi }
18: REPEAT
19: ∀ compi ∈ CS,
20: F = Ø
21: ∀ in ∈ in(compi) ∧ NOT exists(in, Iusr), F = F ∪ { in }
22: IF F = Ø THEN FCS = FCS ∪ { compi }
23: ELSE
24: Children = Ø
25: ∀ wsi ∈ WS, sub(out(wsi), F) → Children = Children ∪ {wsi}
26: IF Children ≠ Ø THEN
27: ClusteredChildren = findClusteredChildren(Children, F)
28: IF ClusteredChildren ≠ Ø THEN
29: ∀ f(wsci,outi) ∈ ClusteredChildren
30: CREATE compk ∈ COMP, out(compk) = out(compi), in(compk) = in(compi) - F,
31: components(compk) = components(compi)
32: ∀ wsi ∈ wsci,
33: CREATE cwsi ∈ CWS, service-id(cwsi) = wsi, out(cwsi) = Ø, in(cwsi) = Ø,
34: composition(cwsi) = compk
35: ∀ out ∈ out(wsi), ∃ cwsk ∈ components(compi) ∧ exists(f(out,nil), in(cwsk)) →
36: out(cwsi) = out(cwsi) ∪ { f(out,cwsk) },
37: in(cwsk) = in(cwsk) - { f(out,nil) }
38: in(cwsk) = in(cwsk) ∪ { f(out,cwsi) }
39: ∀ in ∈ in(wsi),
40: IF exists(in, Iusr) THEN in(cwsi) = in(cwsi) ∪ { f(in,usr) }
41: ELSE in(cwsi) = in(cwsi) ∪ { f(in,nil) }
42: in(compk) = in(compk) ∪ in(wsi),
43: components(compk) = components(compk) ∪ { wsi }
44: CS = CS ∪ { compk }
45: CS = CS - { compi }
46: UNTIL CS = Ø
47: RETURN FC
48: END
49:
50: PROCEDURE findClusteredChildren(Children, F) {
51: ClusteredChildren = Ø
52: ∀ wsi ∈ Children, ClusteredChildren = ClusteredChildren ∪ { f({wsi},out(wsi)) }
53: REPEAT
54: Flag = 0
55: ∀ f(wsci,outi) ∈ ClusteredChildren,
56: IF ∃ wsi ∈ Children ∧ n-inter(out(wsi), outi) THEN outi = outi ∪ out(wsi), wsci = wsci ∪ {wsi}
57: Flag = 1
58: ClusteredChildren = ClusteredChildren - { f({wsi},out(wsi)) }
59: UNTIL Flag = 0
60: ∀ f(wsci,outi) ∈ ClusteredChildren,
61: IF n-same(outi, F) THEN ClusteredChildren = ClusteredChildren - { f(wsci,outi) }
62: RETURN ClusteredChildren
63: }

Fig. 6. Composition algorithm.

 9

6.2 Assigning Scores

Since the resulting composition plans or the single Web Services for a request may be
more than one, we use the three matching types of concepts of [15] in order to assign
scores. These scores denote the relevance of the results to a specific request and affect
the way the results are presented to the client. For each matching type between
concepts, we define a weight w that denotes the degree of similarity of the concepts.
• exact match: This type of match exists when the two matched concepts are the

same or equivalent (in the terms of OWL class equivalence). In our model, we
consider direct subclass relationships as subsumption relationships and they are
handled by the other two types of matches. The exact matching weight is we = 3.

• plug in and subsume matches: These types of matches denote that there is a
subsumption relationship between the matched concepts (including direct subclass
relationships). The weight that is assigned to these matches depends on the
distance between the two concepts in the ontology. The distance d between two
concepts C1 and C2 is defined as the number of concepts that exist in the (shortest)
path from C1 to C2 in the ontology (including also in the sum the C1 and C2). For
example, the distance between two concepts with a direct subclass relationship is
2. In that way, for plug in matches we define wp = 1 + 2/d and for subsume ws =
2/d, denoting that plug in matches are always preferable than subsume.

• fail match: In this case, the matching fails (disjoint concepts).

The score s for a single Web service is computed between request inputs and Web

service’s inputs and between request outputs and Web service’s outputs. In a similar
manner, the score for a composition plan is computed by regarding it as a single Web
service with inputs the initial plan inputs and outputs the final plan outputs. The
scoring function is defined as the sum of the minimum w after the matching procedure
of the inputs of the request and the service and the minimum w after the matching
procedure of the outputs of the request and the service.

min{ } min{ }in outs weights weights= +
In the case of composition plans with similar scores, we rank them according to the

number of the Web services that are involved in the composition plan, i.e. for two
composition plans Ca and Cb that contain n and k Web services respectively, we
consider that rank(Ca(n)) > rank(Cb(k)), if n < k.

7 An Example

In this section we present an example of generating a composition plan for a service
request. Suppose the simple ontology of Fig. 7 that describes the domain of an online
bookstore. We assume that this ontology is already processed by the underlying OWL
rule reasoner that has generated the corresponding class hierarchy into the object-
oriented knowledge base.

Different parties have registered their Web services by submitting the descriptions
in the framework. We assume that there are 4 Web services with the following
functionalities:

 10

• WStpub(in:{Title}, out:{Publisher}): the Web service takes as input a book title
and returns its publisher.

• WStper(in:{Title}, out:{Person}): the web service takes as input the title of the
book and returns instances of any person of the domain.

• WSti(in:{Title}, out:{ISBN}): the web service takes as input the title of the book
and returns the ISBN number.

• WSip(in:{ISBN}, out:{Price}): the web service takes as input an ISBN number
and returns the price of the book.

Fig. 7. A simple taxonomy for an online bookstore.

The profiles of the above Web services have been submitted in the framework by
the providers who want to advertise their services. These advertisements contain
semantic annotations for the inputs and outputs of the service they describe, using
concepts of the ontology in Fig. 7.

Suppose, a client wants to retrieve the price and the publisher of a particular book
based on the title and submits the query depicted in Fig. 8 to the Mediator. Queries
should utilize existing ontology concepts for the input and output parameters.

(query book-price
 (owl-s:Profile
 (input bookstore:Title)

 (output bookstore:Publisher)
 (output bookstore:Price)))

Fig. 8. The input query of retrieving the publisher of a book.

The Mediator is responsible for assigning a session id to the query, e.g 345 and
translating the incoming query into a production rule that submits to the system (Fig.
9). This rule generates an object of the REQUEST class, which is the internal
representation of user’s request.

(defrule generate-requests
 (not (object
 (is-a REQUEST)
 (session_id 345)))
=>
 (make-instance (gensym*) of REQUEST
 (session_id 345)
 (inputs bookstore:Title)
 (outputs bookstore:Price)
 (outputs bookstore:Publisher)))

Fig. 9. The production rule that transforms a query into a REQUEST object.

 11

The generation of the new object in the knowledge base, triggers the pattern
matching procedure of the defined production rules that facilitate the composition
procedure. The algorithm starts by selecting all Web services that match all or some
of the request outputs. In the example, we have two request outputs and the WSip,
WStpub, WStper Web services are selected that satisfy them and are added in the
Children list. Since this list is not empty, the algorithm continues by generating the
ClusteredChildren list using the function findClusteredChildren. The resulting list is:

{ ({ , },{ , }), ({ , },{ , })}tpub ip tper ipf W W Publisher Price f W W Person Price
For each element f of the ClusteredChildren list, the algorithm creates a COMP

construct. The COMP construct is an abstraction of a composition plan that stores the
Web services, the inputs and the outputs of the so far generated plan. Each Web
service that participates in the composition plan is represented as a WSC construct that
holds the inputs, the outputs (along with the corresponding web services that provide
and consume those inputs and outputs) and the id of the original Web service. The
COMP construct (comp1) for the first element of the ClusteredChildren list is
depicted in Fig. 10.

Fig. 10. A composition plan for the request.

The f(Title,usr) input denotes that this is a request input whereas the f(ISBN,nil)
denotes that currently this is an undetermined input. The next step of the algorithm is
to determine a composition plan that satisfies the undetermined input of the wsc1
component that belongs to the comp1 composition plan. Following the same
procedure, a second COMP construct (comp2) is created for the Web services whose
outputs satisfy the ISBN input. There is only one Web service that produces the
required input, i.e. the WSti Web service. The comp2 construct is created (and replaces
comp1) and the algorithm changes the f(ISBN,nil) input of wsc1 to f(ISBN, WSti) in
order to denote the Web service from which will take the output. Since all the inputs
of comp2 are request inputs (i.e. there are no other f(Input,nil) to satisfy) the algorithm
terminates the procedure for creating COMP constructs and the composition plan
comp2 is stored into the FCS list.

The same procedure holds for the second f element of the ClusteredChildren list
and a similar composition plan is created and added to the FCS list with a Person
output instead of Publisher due to the WStper Web service. Appropriate production
rules traverse the FCS list and assign scores to each composition plan. Based on the
scoring function we have described in section 6.2, the composition plan of Fig. 10 is
assigned with a score value equal to 6. More specifically, the minimum weight w for
the inputs is 3 since there is an exact match between request input and plan input. The
minimum weight w of outputs is again 3 since there is an exact match between request
outputs and plan outputs. Thus:

 12

1 min{ } min{ } 3 3 6in out e es weights weights w w= + = + = + =
For the second composition plan, the minimum weight w for the inputs is 3 since

there is an exact match between request input and plan input. The minimum weight w
of outputs is now 2 since there is a plug in match between request outputs and plan
outputs. Thus:

2 min{ } min{ } 3 2 5in out e ps weights weights w w= + = + = + =
Since s1 > s2, the composition plan of Fig. 10 is preferable.

8 Related Work

Many research efforts have been focused on the field of Web service discovery and/or
composition. In this section we briefly present some of these approaches.

In [17] a toolset for Web service composition is presented. In SWORD each
service is represented by a rule that expresses the inputs that should hold in order for
the rule to be activated and to produce particular outputs. These rules are used in an
expert system (JESS [7]) in order to determine if a composite service that produces a
desirable output can be realized using existing services (that are represented as rules).
The difference of our framework is that each service is described using service
description standards, such as OWL-S and we utilize an OWL reasoner in order to
match services based on semantic descriptions and not just on simple string matches,
as a native rule engine does.

In [20] the authors propose a prototype for semi-automating Web service
composition. Users create a workflow of services by presenting the available choices
at each step. Web services descriptions are defined in DAML-S and through an OWL
Prolog reasoner, the system inferences and selects the matching services based on
subsumption relationships. Services are also filtered based on constraints which the
user may specify on their attributes. In contrast to this approach, our framework
targets at the automatic generation of a composition plan based on the initial user’s
input and output requirements only.

IRS-III [2] is a framework which takes a semantic broker based approach to
creating applications from semantic Web services by mediating between a service
requester and one or more service providers. The aim of the framework is to enable
the automated or semi-automated construction of semantically enhanced systems over
the internet. In contrast to our model, this framework implements and extends the
WSMO conceptual model for Web services description, publication and execution.

METEOR-S [21] is a project that deals with the problems of semantic Web service
description, discovery and composition. It associates semantics to Web services,
covering input/output, functional/operational descriptions, execution and quality and
exploits them in the entire Web process lifecycle encompassing semantic description,
discovery and composition of Web services. In this project, Web services are
described using WSDL-S descriptions instead of the WSMO or the OWL-S ontology.

In [10], the authors describe their approach for semantic Web services
matchmaking. They argue that hybrid approaches to semantic matching that exploit
both formal and implicit semantics may improve the retrieval performance of
semantic service matching over purely logic-based ones. In their approach, they

 13

utilize both logic based reasoning and content based information retrieval techniques
for services specified in OWL-S. Our system currently supports matchmaking based
only on simple subsumption relationships but we plan to extend the procedure with
more techniques.

In [8] the authors present a logical framework for automated Web service
discovery which is based on the WSMO conceptual model. They have implemented
their approach in the F-Logic [9] reasoning engine Flora2 [5]. However, they deal
only with the discovery aspect of Web services in contrast to our work where we
define a Web service composition algorithm.

9 Conclusions

In this paper we describe ProSeDisCo, a production rule-based framework for Web
services discovery and composition. Based on the implementation of a rule-based
OWL reasoner (O-DEVICE) on top of the CLIPS production rule engine, we define a
model for the facilitation of Web services discovery and composition. Taking
advantage of the efficiency of the well-known underlying rule engine, we use
production rules in order to a) semantically match user requests with Web services
OWL-S descriptions and b) implement a Web service composition algorithm.

Rules are considered to play a key role for the full realization of the semantic Web.
Since semantic Web services are heavily based on this initiative, we believe that rules
will also affect every aspect of them. As far as the OWL-S ontology is concerned,
rules can be used in order to define pre and post conditions that should be satisfied
before and after the execution of a Web service, e.g. using the SWRL [6]. Since our
model is based on rules, we can easily extend it in order to represent such conditions
using the supported deductive rule language [1].

Web services nonfunctional parameters can also be represented using rules, e.g. in
the case of the selection of a Web service based on quality measures. We argue that
the declaretiveness of rules is a powerful tool and it can be used during the discovery
as well as the composition procedure. For the latter, we plan to enhance the model
with the ability of defining composition plans via rules, e.g. in the case of a
commonly used service that has a static composition plan and to facilitate the plan
execution procedure.

Acknowledgments. This work was partially supported by a PENED program (EPAN
M.8.3.1, No. 03ΕΔ73), jointly funded by the European Union and the Greek government
(General Secretariat of Research and Technology) and by the Greek R&D General Se-
cretariat through a bilateral Greek-Ukrainian project (EPAN-Μ.4.3-A.4.3.6.1, No. 148-γ)

References

1. Bassiliades, N., Vlahavas, I.: R-DEVICE: An Object-Oriented Knowledge Base System for
RDF Metadata, International Journal on Semantic Web and Information Systems, Amit
Sheth , Miltiadis D. Lytras (Ed.), Idea Group, Vol. 2, No. 2, pp. 24-90, 2006

 14

2. Cabral, L., Domingue, J., Galizia, S., Gugliotta, A., Norton, B., Tanasescu, V., Pedrinaci,
C. (2006) IRS-III: A Broker for Semantic Web Services based Applications, The 5th
International Semantic Web Conference (ISWC 2006), Athens, GA, USA

3. Cabral, L., Domingue, J., Motta, E., Payne, T. and Hakimpour, F. (2004). Approaches to
Semantic Web Services: An Overview and Comparisons. In proceedings of the First Euro-
pean Semantic Web Symposium, ESWS 2004, Heraklion, Crete, Greece. LNCS 3053

4. CLIPS: A Tool for Building Expert Systems, http://www.ghg.net/clips/CLIPS.html
5. FLORA-2, The FLORA-2 web site. http://flora.sourceforge.net
6. Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A

semantic web rule language combining OWL and RuleML. W3C Member Submission, 21
May 2004. http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/

7. JESS: Rule Engine for Java, http://herzberg.ca.sandia.gov/jess/
8. Kifer, M., Lara, R., Polleres, A., Zhao, C., Keller, U., Lausen, H., Fensel, D.: A Logical

Framework for Web Service Discovery. In Semantic Web Services Workshop at ISWC,
Hiroshima, Japan, November 2004

9. Kifer, M., Lausen, G., Wu, J.: Logical foundations of object-oriented and frame-based
languages. Journal of the ACM, 42(4):741–843, July 1995

10. Klusch, M., Fries, B., Sycara, K.: Automated Semantic Web Service Discovery with
OWLS-MX. Proceedings of 5th International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), Hakodate, Japan, 2006

11. Meditskos, G., Bassiliades, N.: Towards an Object-Oriented Reasoning System for OWL,
Int. Workshop on OWL Experiences and Directions, B. Cuenca Grau, I. Horrocks, B.
Parsia, P. Patel-Schneider (Ed.), 11-12 Nov. 2005, Galway, Ireland, 2005

12. O-DEVICE: http://lpis.csd.auth.gr/systems/o-device/o-device.html
13. OWL Web Ontology Language Overview, http://www.w3.org/TR/owl-features/
14. OWL-S: Semantic Markup for Web Services, http://www.w3.org/Submission/OWL-S/
15. Paolucci, M., Kawamura, T., Payne, T., Sycara, K.: Semantic matching of web services

capabilities. In: Proceedings of the First International Semantic Web Conference, LNCS
2342, Springer-Verlag (2002) 333–347

16. Paolucci, M., Srinivasan, N., Sycara, K.: Expressing WSMO Mediators in OWLS. In
Proceedings of the workshop on Semantic Web Services: Preparing to Meet the World of
Business Applications held at the 3rd International Semantic Web Conference (ISWC
2004), Hiroshima, Japan, 2004

17. Ponnekanti, S. R., Fox, A.: SWORD: A Developer Toolkit for Web Service Composition.
In Proceedings International WWW Conference(11), Honolulu, Hawaii, USA, 2002.

18. Resource Description Framework (RDF), http://www.w3.org/RDF/
19. Ruben, L., Roman, D., Polleres, A., Fensel, D.: A Conceptual Comparison of WSMO and

OWL-S, Proceedings of the European Conference on Web Services (ECOWS 2004)
20. Sirin, E., Hendler, J., Parsia, B.: Semi-automatic composition of Web services using

semantic descriptions. In Proceedings of Web Services: Modeling, Architecture and
Infrastructure workshop in conjunction with ICEIS2003, 2002

21. Sivashanmugam, K., Miller, J., Sheth, A., Verma, K.: Framework for Semantic Web
Process Composition, International Journal of Electronic Commerce, Winter 2004-5, Vol.
9(2) pp. 71-106

22. SOAP Version 1.2 Part 1: Messaging Framework, http://www.w3.org/TR/soap12-part1/
23. Web Services Description Language (WSDL) 1.1, http://www.w3.org/TR/wsdl
24. WSDL-S, http://www.w3.org/Submission/WSDL-S/
25. WSMO: Web Service Modeling Ontology D2v1.3, http://www.wsmo.org/TR/d2/v1.3/

