
In the Proceedings of the
18th Workshop of the UK

Planning and Scheduling SIG
December, 1999

On the Parallelization of Greedy Regression Tables
Dimitr is Vrakas1, Ioannis Refanidis1, Fabien Milcent2 and Ioannis Vlahavas1

(1)
Department of Informatics,

Aristotle University of Thessaloniki
54006, Thessaloniki, Greece

[dvrakas,yrefanid,vlahavas]@csd.auth.gr

(2)
Ireste School of Engineering,

University of Nantes
44306, Nantes, France

fmilcent@ireste.fr

Abstract

This paper presents PGRT, a parallel
version of a best first planner based on the
Greedy Regression Tables approach. The
parallelization method of PGRT distributes
the task of extracting applicable actions to a
given state among the available processors.
Although the number of operators limits the
scalabili ty of PGRT, it has proven to be quite
eff icient for low scale parallelization. A
modified Operator Reordering method has
been used in order to achieve further increase
in the eff iciency of the parallel algorithm. We
ill ustrate the speedup of PGRT on a variety
of hard logistics problems, adopted from the
AIPS-98 planning competition.

1 Introduction

Heuristic functions are an important
component of many artificial intelli gence
applications, especially when a “quite good”
(not necessarily optimal) solution is required
and there is a tight time limit . Planners are
Artificial Intelli gence applications, which
given an initial state I, a set of possible
actions and certain goals G, produce a plan of
actions, which if applied to I achieves G.

These programs are usually embedded in
systems that must exhibit real-time behavior,
so they are usually equipped with heuristic
functions in order to respond promptly.
Speed is the most desirable aspect of
planning systems and although various
methods, li ke hierarchical planning, case
based planning, transformation to other
problem types e.t.c., have been adopted, the
absence of a good heuristic function makes a
planning system inefficient for practical
domains.

Recently, Refanidis & Vlahavas [16]
introduced a new planner that is based on
Greedy Regression Tables (GRT), a heuristic
function for planning. GRT’s heuristic
function is an enhancement of the simple and
yet powerful idea used in ASP [2]. ASP
calculates the summation of steps needed to
achieve each goal independently, in order to
estimate the distance between an intermediate
state and the goals. GRT seems to outperform
all the other known planners, such as
GRAPHPLAN [1] and its ancestor ASP at
least in some domains as the blocks world,
the logistics and the gripper.

A challenging feature of modern
artificial intelli gence applications is the
abili ty to distribute the workload among

several processors in order to increase the
execution speed. Although the technology of
parallel architectures is quite mature and a
large number of parallel systems are
available at a reasonable cost, there are not
many software products that can exploit these
possibiliti es. Many researchers have tried to
find parallelization techniques for AI
applications and they have mainly focused on
ways to distribute the search tree among the
existing processors [3,4,10,12,13]. These
techniques, which have been enriched with
load balancing [9] and operator reordering
[5,12], produce quite eff icient parallel
algorithms.

In this paper, we show that GRT
examines only a small subpart of the search
tree and thus methods relying on tree
distribution cannot be applied eff iciently to
this planner. We present a different approach,
which distributes the task of f inding the
grounded actions that can be applied to a
given state. Each processor undertakes a
number of operators and finds all the actions
that are ground instances of these operators.
The number of operators limits the scalabili ty
of PGRT, but it is very efficient for low
scalabili ty parallelization. Furthermore, we
present a modified Operator Reordering
method, which can achieve further increase
in the eff iciency of PGRT. This method
changes the order in which the operators are
processed, in order to balance the workload
among the processors.

The rest of the paper is organized as
follows: Section 2 presents previous work in
the area of parallelization methods for AI
problems. Section 3 briefly describes Greedy
Regression Tables, while section 4 presents
the modifications to the initial algorithm and
outlines PGRT. Section 5 presents PGRT’s
performance results in comparison with the
sequential version and section 6 introduces
the modified Operator Reordering method
and its effect on PGRT. Finally, section 7
concludes the paper and poses future
directions.

2 Related Work

In [8], Kumar et al. review a set of
strategies for parallel best-first search of

state-space graphs. The strategies they
present are classified to be either distributed
or centralized, based on the existence or not
of local agendas. In both cases the heuristic
function is used to order the states in the
agenda, i.e. the first state in the agenda is the
one with the smallest estimated distance from
a goal state.

In the centralized model, each one of
the N processors undertakes the best state of
the global agenda, which has not yet been
assigned to any other processor. At the end of
each expansion the successor states are
placed back to the global agenda. The main
advantage of this approach, as discussed in
[7], is that it does not result in much
redundant search. However, the global
agenda is accessed by all the processors very
frequently and since it has to be protected by
semaphores, the processors will stay idle for
quite a long time.

On the other hand, in the distributed
model each processor maintains its own local
agenda and thus there is no need for
semaphores. This model usually uses the
IDA* search algorithm initially presented by
Powley and Korf in [11]. IDA* is a version
of Iterative Deepening search, where the next
level of search is determined by the heuristic
function in use. The state-space is initially
divided and distributed to the existing
processors. The segmentation of the initial
state-space can be done in several ways. In
[12] Powley and Korf introduced PWS, a tree
distribution method in which each processor
searches in a unique depth. Kumar et al., in
[10] and [13] describe a different approach
where the search tree is segmented vertically.
To be more specific, after a suff icient number
of states has been generated, each processor
undertakes one of them, considering it to be
the root and searches the generated subtree.
A large number of variations of these
techniques have been proposed over time.
Moreover, Diane Cook in [3] and [4]
proposed a hybrid approach, which combines
IDA* and vertical segmentation techniques
and seems to outperform all the other
methods.

After the initial distribution of the
state-space, some intercommunication is
necessary, since some of the processors may

be working on promising parts of the search
tree while the others contribute littl e or
nothing to the process of f inding a solution.
Moreover, the communication is necessary
for load balancing, since the local agenda of a
processor may become empty if many non-
expandable states have been examined [9].
Load balancing includes the transfer of states
from one local agenda to another, in order to
equalize the workload in all processors. This
transfer can be performed directly or via a
global memory structure, called blackboard.
In [9], Kumar et al. review a number of
receiver and sender initiated load-balancing
techniques.

There are two main problems related
with the kind of parallelization based on the
distribution of the search space: a) a great
number of states is examined more than once,
since the state-space is not always split i n
disjoined parts and b) these techniques result
in the expansion of more states than
necessary. The first argument does not apply
to IDA* since the search tree is split i n
almost disjoined parts, except for the states
that can be approached by various ways of
different length. However, IDA* examines
all the states at a given level before
proceeding to the next one (argument b). The
alternative approach (vertical segmentation)
suffers from both problems a and b. The
subtrees can not be disjoined, since a state
can usually be approached by different ways.
Furthermore, a subtree might be promising
(i.e. it contains a short solution), while the
others are not and yet the algorithm will
examine all of them. The latter problem
becomes more severe as the heuristic
function produces better estimates, since the
set of promising states will become narrower
and narrower.

 For example, if the heuristic function
was perfect, a simple hill climbing technique
would have examined only l states, where l is
the length of the optimal solution. Any one of
the parallelization methods described
previously would have worked N (number of
processors) times more, since while one of
the processors will be examining the
solution’s states the others will be wasted at
useless parts of the search space. Even if the
accuracy of the heuristic estimate is less than

100%, but still acceptable, the overhead
imposed by the examination of redundant
states would not allow the parallel algorithm
to perform well .

Since GRT’s heuristic is quite
accurate no one of the previous methods
would have proven to be efficient. So in
order to parallelize GRT, we need a different
approach. In the next section we will present
GRT in more detail , in order to show the
parts of the algorithm that could be
parallelized eff iciently. Of course, the
techniques described hereafter can be applied
to any other planner equipped with a quite
accurate heuristic algorithm.

3 Greedy Regression Tables

GRT (Greedy Regression Tables) is a
new heuristic for planning proposed by
Refanidis and Vlahavas [16], which improves
the older ASP [2]. According to [16], ASP
has two main ineff iciencies: a) Each time a
new distance has to be estimated a
proposition graph similar to the one
constructed by GRAPHPLAN [1] has to be
reconstructed from scratch and b) it assumes
that all facts can be achieved independently,
not taking into account the interactions
among them. GRT was initiated from the
need to overcome these two drawbacks.

3.1 Estimating distances backwards

GRT works backward in order to
estimate the distances between each fact in
the domain and the goal state. The estimates
are produced once at the preprocessing phase
and they are used latter in the planning one.
This feature overcomes ASP’s first
ineff iciency, thus increasing the overall speed
of the algorithm.

In order to compute the distances
backwards the operators have to be inverted.
Suppose we have a state S1 and an action a
that is applicable to S1. Suppose also that S2

is a successor state produced by applying a to
S1 (we note that as S2=res(S1,a)). The
inverted action of a, denoted as ~a, is
applicable to S2 and S1=res(S2,~a). Using
STRIPS [6] terminology, ~a can be

constructed by a using the following
formulas:

P(~a)=A(a)+P(a)-D(a)
D(~a)=A(a)
A(~a)=D(a)

where P(X), D(X) and A(X) stand for
precondition, delete and add list respectively.
The heuristic uses the set of inverted actions
and two algorithms presented in [16], in
order to produce the Greedy Regression
Tables in the pre-processing phase.

However, there is a considerable
diff iculty in the process of backward
estimation because the set of goals in most
cases does not form a complete state. For
example, in the logistics problem only the
final locations of the packages are specified
and no information is available for the
location of planes and trucks. This diff iculty
can be overcome if the set of goals is
enriched with all the domain’s facts that are
not in contradiction with the goals. This
process is done manually in the current
version of GRT and therefore PGRT, but in
[15] Refanidis et al. introduce certain
methods, which can automatically enrich
incomplete goal states.

3.2 Interactions among goals

As we stated earlier, ASP does not
take into account the interactions among
goals, but instead it assumes that the total
number of steps needed to achieve a set of
goals from a given state is the sum of the
number of steps needed to achieve each goal
separately. On the other hand, for each
ground fact p, GRT keeps a list, denoted
rel(p), containing all the other facts that may
also be achieved when achieving p.

3.3 PGRT’s phases

GRT works in two phases: the pre-
processing phase and the planning phase. At
the preprocessing phase, the algorithm
constructs the set of inverted actions and
computes the enriched goal state. Then, each
ground fact in the domain is assigned a
distance equal to ∞ (dist=∞), except for those
included in the enriched goal state, which are

initialized to 0 and their related lists to ∅.
The algorithm repeatedly applies the inverted
actions to the enriched goal state, trying to
achieve all the facts of the domain. At each
iteration, the heuristic algorithms compute
estimates for the distances of the newly
achieved facts and construct their li sts of
related facts.

During the planning phase, GRT uses
a simple Best-first algorithm that uses the
distances and the related facts computed at
the pre-processing phase to estimate the
distances between any intermediate state and
the goals.

3.3 N-Best first search

GRT has been embodied in a simple
best-first algorithm and it has behaved very
well i n a variety of domains, including the
ones used in AIPS-98. For the purpose of this
research, we slightly modified the search
algorithm and especially the agenda in order
to cope with more complex problems. The
agenda in the improved version has a limited
size and the search algorithm is similar to the
N-best-first used in one of ASP’s versions.
Since the size of the agenda is kept under a
threshold, the memory requirements of the
modified GRT are quite low and thus GRT
can handle even more diff icult problems.

4 The Algor ithm of PGRT

We performed various tests with GRT
in different domains and we came to certain
interesting conclusions:
i) The most resource consuming part of

the algorithm is the detection of the
actions that can be applied in a given
state. Even with operator schemas, the
work that has to be done is really
hard, since there are thousands or
even milli ons of grounded
instantiations (actions) that have to be
checked.

ii) The heuristic produces quite accurate
estimates and as we present in Table
1, the number of examined states is
relatively close to the length of the
solution produced.

Logistics Problem
(AIPS-98)

Solution
Length

Expanded
states

Prob09 98 252
Prob13 79 155
Prob14 104 149
Prob18 193 468
Prob19 174 413
Prob20 169 448
Prob21 120 318
Prob24 49 85

Table 1. Number of states expanded by GRT.

4.1 Overview

The parallel implementation of GRT
was based on the previous conclusions. In
PGRT the detection of ground actions that
can be applied to a given state S is done in
parallel. To be more specific, suppose that we
have M operator schemas and N processors.
We distribute the operator schemas to the
available processors and each one will be
responsible of f inding the applicable ground
actions originating from the schemas
assigned to it.

The distribution can be done statically
at the beginning; i.e. the first  NM /

schemas will be assigned to the first
processor, the next  NM / schemas to the

second processor and so on. This approach is
easy to implement and the overhead due to
communication among processors is kept
quite low. However, the number of ground
actions originating from different schemas
can vary from 0 to several hundreds (for a
typical logistics problem) resulting in
unbalanced workload among the different
processors.

In the dynamic distribution method
the unexamined operator schemas are kept all
together in a global data structure, denoted as
operator pool. Initially each processor is
assigned one operator schema and the rest of
the operators are sent on demand. This
method can manage to balance the workload
among processors, but imposes some
overhead due to contention. However, this
overhead is negligible compared to the
speedup due to the balanced workload.

It is obvious from the previous
description that the number of operator
schemas limits the scalabili ty of PGRT and

therefore the current version is not suitable
for massive parallelism.

4.2 Parallel algor ithm

An outline of the algorithm running in
each processor is presented in Figure 1. In
this algorithm, SB stands for the current best
state in the global agenda.

The first step of the parallel algorithm
is used for synchronization between the
various processors. The value of SB will be
updated only when all the processors have
finished with the current iteration. This part
is crucial, since if a processor was allowed to
start a new iteration while the others are still
working with the current one, SB would be
linked to a local best state that probably
wouldn’ t be the global best one. The last one
would have resulted in greater CPU usage,
but also in larger number of examined states
and consequently larger execution time.

In order to achieve further increase in
the eff iciency of the parallelization, the
grounded applicable operators are
temporarily stored in another pool (action
pool) and the remaining tasks, i.e. creation of
successor states and evaluation using the
heuristic function, are done in an independent

1. While SB has not been defined, do
nothing.

2. While operator pool is not empty:
2a. Request an operator schema.
2b. Find all the grounded actions
 that can be applied to SB.
2c. Send the list of grounded actions
 to the action pool.

3. While action pool is not empty or there
 is at least one processor at step 2:

3a. Request new action.
3b. Apply it to SB to produce S'.
3c. Evaluate the distance of S' from
 the goal state using the
 heuristic function.
3d. Send (S',dist(S')) to the global
 agenda.

4. Return to 1.

Figure 1. The main algorithm of PGRT

phase (step 3). This technique can offer
further increase in CPU usage, since it
contributes to better load balancing.

No synchronization is needed to
control the transition from step 2 to step 3
and therefore a processor can proceed to step
3 while the others are still i n 2.

5 Performance results

We have implemented PGRT in C++,
using multithreading. Each thread contains
the code corresponding to the algorithm
presented in Figure 1 and communicates with
the others through the shared resources
(agenda, pools) and some global variables
(SB, flags). The various threads are controlled
by a process, which acts as a normal thread
(i.e. it contains the same code) but is also
responsible of starting and stopping the
threads and also of changing the value of SB

and making it available for use (step 1 of
parallel algorithm).

According to [16], GRT solved the
vast majority of the known planning
problems in a few seconds time. The actual
planning process needed considerable time
only for some hard logistics problems, used
in the AIPS-98, so in this paper we will focus
on the performance of PGRT on these
problems.

For the tests, we used two platforms,
one for the estimated speedup as the number
of processors increases and another one for
the actual speedup with two parallel
processors. The first one was a SUN ULTRA
1 workstation equipped with an 167 MHz
processor and 64 MB of memory and the
second one was a SUN ULTRA
ENTERPRISE 3000 workstation with two
processors at 167 MHz and 64 MB of
memory. The operating system in both
machines was SUN SOLARIS 2.51.

Table 2 ill ustrates the actual speedup
of PGRT over GRT in a variety of hard
logistics problems. The measurements were
taken using the ENTERPRISE 3000
workstation. Columns 2 and 3 present the
time (in seconds) spent by GRT and PGRT
respectively to find a solution. The speedup
presented in column 4 is calculated by the
formula TGRT/TPGRT and its value lies

between 1 and N (where N is the number of
processors used).

Problem TGRT TPGRT Speedup

Prob09 94 89 1.06
Prob13 185 149 1.24
Prob14 119 94 1.27
Prob18 662 393 1.68
Prob19 444 257 1.73
Prob20 521 288 1.81
Prob21 631 557 1.13
Prob24 245 175 1.4

Table 2. PGRT’s speedup with two
processors

Table 2 shows that for hard problems
(Probs 18,19,20), PGRT can achieve a
speedup of approximately 1.75 for two
processors. One of the reasons that the
speedup is less than two is that a portion of
the execution time is spent for the pre-
processing phase, which has not been
parallelized.

Table 3 presents some estimates for
the speedup of PGRT using more than two
processors. These estimates were computed
using statistical data acquired by a large
number of tests performed on ULTRA 1. To
be more specific, we ran many multithreaded
versions of PGRT (using various numbers of
threads) and measured the time spent for each
thread, the time spent because of mutex
locks, the time spent for unparallelized parts
of the algorithm e.t.c. As we have stated
earlier, the number of operators limits the
scalabili ty of our algorithm. Indeed in the
logistics problem PGRT can be eff iciently
scaled up to 4 processors (the number of
operators is 6).

Number of
Processors

2 3 4 5

Speedup 1.75 2.25 2.5 2.45

Table 3. Estimated speedup

6 Operator r eorder ing

Search methods, such as Iterative
Deepening, Iterative Deepening A* or

Breadth First, search the nodes at a specific
level from left to right. If the solution lies at
the right end of the search tree, a significant
increase at the speed of the search could have
been achieved if the nodes at a specific level
had a more convenient order. For example, a
variation of the previous methods which
search nodes from right to left could have
found the solution sooner. However, since
the exact location of a goal node is not
known a priori, a more sophisticated method
is necessary.

In [12], Powley and Korf propose two
methods of ordering the search space. These
two methods can be applied to IDA* search
and reorder the nodes in the agenda,
according to the h value of the heuristic
function in use. An alternative method has
been introduced by Cook et al. [5], according
to which the set of operators is reordered in
each iteration so as to guide the next IDA*
search to the most promising node. The
method proposed by Cook et al. can be easily
implemented and according to performance
results it can significantly increase the speed
of search.

Inspired by the previous methods we
studied the effect of operator reordering on
the eff iciency of PGRT. Our aim was not to
reorder the search space, since PGRT uses a
best first method which always expand the
most promising state. However, a convenient
order in the set of operator schemas could
increase the efficiency of the parallelization.
To be more specific, we claim that a specially
selected order in the set of operator schemas
would result in a more balanced distribution
of workload among the existing processors.

Suppose we have N processors, M
operators (O1,O2,..,OM) each of which
requires x seconds on average to be processed
and another operator, denoted as OM+1, which
requires y seconds. We also suppose that y is
greater than x and y is less than the time
needed by the N-1 processors to process the
operators O1,O2,..,OM in parallel (y>>x,
y<Mx/(N-1)).

In the worst case scenario, OM+1 is
placed last in the set of operators. After
approximately Mx/N seconds all the
processors will be idle and OM+1 will be the
only operator in the set. One processor will

undertake OM+1 and there will be a period of
y seconds, where only one processor will be
working and the rest N-1 will remain idle.

In the best case scenario OM+1 is
placed first in the operator’s set. After y
seconds there will be M-(N-1)y/x operators in
the set and the process will continue
normally. Even if we end up in a situation
similar to the one in the first scenario,
operator OM+1 will only require x seconds of
processing.

We ill ustrate the previous example
using concrete parameters: Suppose N=10,
M=100, x=5 and y=35. In scenario 1, the N
processors would have worked in parallel for
xM/N= 5*100/10= 50 seconds and one of
them for another 35, resulting in a total
execution time (for one iteration) of 85
seconds. In scenario 2, after 35 seconds the
processors would have processed OM+1 and
another 63 operators. After another 15
seconds, there would be only 7 operators in
the operator set. These 7 operators could be
processed in parallel using 7 processors (3
would remain idle) in 5 seconds. So the total
execution time would be 55 seconds.

 In the previous analysis, we made
some simpli fications and therefore the actual
difference between the two scenarios, in
execution time, would be smaller.
Furthermore, we didn’ t take into account step
3 of the parallel algorithm and thus the
results we have made are overestimated.
However, the total time spent for step 3 is
very small compared to the time spent for
step 2 and therefore the previous conclusions
are quite accurate.

The time spent in step 2 for a given
operator Oi is proportional to the number of
actions originating from it (denoted as A(Oi)),
therefore an ideal method would place the
operators in the set in a decreasing order of
A(O). However, for a given operator Oi the
value of A(Oi) depends on the state it has to
be applied and it cannot be known a priori.

A simpler and therefore less eff icient
method of operator reordering have been
applied to PGRT. According to this method,
the operator schemas are ordered once at the
beginning and retain this order for the rest of
the planning process. Since we cannot know
a priori the value of A(O), the ordering is

done using the maximum value of A(O)
instead.

For example, in a logistics problem
with 5 cities, 7 airplanes, 5 trucks, 3 places
per city and 2 cargoes, the maximum value of
A(O) for each operator is the following:

• Fly: 7 airplanes * 4 possible target
cities = 28.

• Load_plane: 7 airplanes * 2
cargoes = 14.

• Drive: 5 trucks * 2 possible target
places = 10.

• Load_truck: 2 cargoes * 5 trucks
= 10.

• Unload_plane, Unload_truck: 2
cargoes= 2.

We have tested the effect of the
operator reordering technique on a variety of
logistics problems and we ill ustrate the
results in Table 4. In the third column we
present the average speedup of PGRT over a
large number of random orders. The last
column presents PGRT’s speedup using the
best operators’ order according to our
convention. The default order in the second
column is the one used in bibliography and
AIPS-98 (it is the one also used in Table 2).

Problem Default
order

Random
order

Best
order

Prob09 1.06 1.04 1.10
Prob13 1.24 1.15 1.30
Prob14 1.27 1.15 1.37
Prob18 1.68 1.66 1.82
Prob19 1.73 1.70 1.81
Prob20 1.81 1.82 1.86
Prob21 1.13 1.20 1.27
Prob24 1.4 1.4 1.51

Table 4. Speedup of parallel algorithm

It is clear from Table 4 that the
reordered operator set improves the
eff iciency of PGRT in all the tested
problems. The difference from the default
order is not significant in some problems,
since the default order is quite close to the
best one.

7 Conclusions and Future Work

This paper reports on work performed
to find suitable parallelization methods for
Greedy Regression Tables, a Best-First
planner which was recently presented [16].
Many researchers, as Kumar, Cook and
Powley, have proposed several parallelization
methods that rely on the distribution of the
search tree. However, we have shown that the
heuristic function of GRT is quite accurate
and only a small portion of the state space is
expanded. Therefore the methods already
proposed are unsuitable for GRT and any
other accurate heuristic algorithm.

We proposed a different
parallelization method, which distributes the
process of f inding the applicable actions
among the available processors. Although the
number of operator schemas limits the
scalabili ty of our approach, the results from
various tests show that PGRT is quite
eff icient. We have also proposed an operator
reordering schema, which can be easily
incorporated in PGRT and offers a further
increase in the performance of the parallel
algorithm.

PGRT has been tested on a variety of
logistics problems, taken from the AIPS-98
planning contest. In the future, we plan to test
the eff iciency and scalabili ty of the algorithm
on more complex domains with more
operator schemas. Furthermore, we plan to
adapt the concurrent heap, described in [14],
for the global agenda in order to minimize
the time spent due to contention.

As we stated earlier, the number of
operators limits the scalabili ty of PGRT and
in the future we intend to li ft this bound
probably by using a cluster of processors for
each operator. We could then achieve to
increase the scalabili ty of PGRT to several
thousands (number of actions in a typical
logistics problem).

Finally, we plan to develop methods
for parallelizing the pre-processing phase of
PGRT, which is currently executed
sequentially. We expect to increase the
speedup of PGRT by approximately 10% by
parallelizing this phase, since it consumes a
considerable amount of resources.

8 References

[1] L. Blum & M. L. Furst, “Fast planning
through planning graph analysis” , 14th

International Joint Conference on
Artificial Intelli gence (IJCAI-95),
Montreal, Canada 636-1642, 1995

[2] Bonet, G. Loerincs & H. Geffner, “A
robust and fast action selection
mechanism for planning” , 14th

International Conference of the
American Association of Artificial
Intell igence (AAAI-97), Providence,
Rhode Island 714-719, 1997

[3] D.J. Cook and R.C. Varnell , “Adaptive
Parallel Iterative Deepening Search” ,
Journal of Artificial Intelli gence
Research, volume 9, pages 167--194,
1999.

[4] J. Cook, “A Hybrid Approach to
Improving the Performance of Parallel
Search” , in Parallel Processing for
Artificial Intelli gence, J. Geller (ed.),
Elsevier Science Publishers, 1997.

[5] J. Cook, L. Hall & W. Thomas,
“Parallel search using transformation-
ordering iterative-deepening A*” , The
international Journal of Intelli gent
Systems, 8(8), 1993

[6] R. E. Fikes & N. J. Nilsson, “Strips: A
new approach to the application of
theorem proving to problem solving” ,
Artificial Intelli gence 2, 189-208, 1971

[7] K. B. Irani and Y. F. Shih, “Parallel a*
and ao* algorithms: An optimali ty
criterion and performance evaluation” ,
Proceedings of international
Conference on Parallel Processing,
pages 274-277, 1986

[8] V. Kumar, V. N. Rao and K. Ramesh,
“Parallel Best-First Search of State-
Space Graphs: A Summary of Results
(1988)” , Proceedings of the 1988
National Conf. on Artificial
Intell igence (AAAI-88), 1988.

[9] V. Kumar, A. Y. Grama and V. N. Rao,
“Scalable Load Balancing Techniques
for Parallel Computers” , Journal of
Parallel and Distributed Computing,
Volume 22, Number 1, pp. 60-79,
1994.

[10] V. Kumar & V. N. Rao, “Scalable
parallel formulations of depth-first
search” , In Kumar, Kanal &
Gopalakrisham (Eds.), Parallel
Algorithms for Machine Intelli gence
and Vision, pp. 1-41 Springer-Verlag,
1990.

[11] C. Powley, C. ferguson and R. E. Korf.
“Parallel tree search on a simd
machine”, Proceedings of the Third
IEEE Symposium on Parallel and
Distributed Processing, pages 249-256,
1991

[12] C. Powley and R. E. Korf, “Single-
agent parallel window search” , IEEE
Transactions on Pattern Analysis and
Machine Intell igence, 13(5), 1991.

[13] V. N. Rao, V. Kumar & K. Ramesh, “A
parallel implementation of iterative
deepening-A* ” , Proceedings of the
National Conference on Artificial
Intell igence, pp. 178-182. Morgan
Kaufmann, 1987.

[14] V. N. Rao & V. Kumar, “Concurrent
Insertions and deletions in a priority
queue”, Proceedings of the 1988
Parallel Processing Conference, 1988.

[15] I. Refanidis, I. Vlahavas and L.
Tsoukalas, "On Determining and
Completing Incomplete States in
STRIPS Domains", IEEE International
Conference on Information,
Intell igence and Systems, Washington
D.C., 1999 (to be presented).

[16] I. Refanidis and I. Vlahavas, "GRT: A
Domain Independent Heuristic for
STRIPS Worlds based on Greedy
Regression Tables", 5th European
Conference on Planning (ECP-99),
Durham, UK, Springer-Verlag, 1999
(to be published).

