In the Proceedings of the

18" Workshop o the UK
Planning and Scheduling SIG
December, 1999

On the Parallelization of Greedy Regresson Tables

Dimitris Vrakas!, | oannis Refanidis!, Fabien Milcent? and | oannis Vlahavas

Department of Informatics,
Aristotle University of Thessaloniki
54006,Thessaloniki, Greece
[dvrakas,yrefanid,viahavas] @csd.auth.gr

Ireste Schod of Engineering,
University of Nantes
44306,Nantes, France
fmilcent@ireste.fr

Abstract

This paper presents PGRT, a parall e
version d a best first planner based on the
Grealy Regresson Tables approach. The
parallelization method d PGRT distributes
the task of extrading appliceble adions to a
given state anong the available processors.
Although the number of operators limits the
scdability of PGRT, it has proven to be quite
efficient for low scde pardléization. A
modified Operator Reordering method res
been used in order to achieve further increase
in the dficiency of the parallel agorithm. We
illustrate the speedup d PGRT on a variety
of hard logistics problems, adoped from the
AIPS98 danning competition.

1 Introduction

Heuristic functions are an important
comporent of many artificial intelligence
applicaions, espedally when a “quite good”
(not necessarily optimal) solution is required
and there is a tight time limit. Planners are
Artificial Intelligence gplicaions, which
given an initial state 1, a set of possble
adions and certain goals G, produce aplan of
adions, which if applied to | adieves G.

These programs are usually embedded in
systems that must exhibit red-time behavior,
so they are usualy equipped with heuristic
functions in oder to respond promptly.
Speed is the most desirable aspect of
planning systems and athough various
methods, like hierarchicd planning, case
based planning, transformation to ather
problem types et.c., have been adopted, the
absence of a good heuristic function makes a
planning system inefficient for pradica
domains.

Recently, Refanidis & Vlahavas [16]
introduced a new planner that is based on
Grealy Regresson Tables (GRT), a heuristic
function for planning. GRT's heuristic
functionis an enhancement of the simple and
yet powerful idea used in ASP [2]. ASP
cdculates the summation d steps needed to
achieve each goal independently, in arder to
estimate the distance between an intermediate
state and the goals. GRT seemsto ouperform
al the other known panners, such as
GRAPHPLAN [1] and its ancestor ASP at
least in some domains as the blocks world,
the logistics and the gripper.

A challenging feature of modern
artificia intelligence aplicaions is the
ability to dstribute the workload among

severa procesrs in order to increase the
exeaution speal. Although the techndogy of
parallel architedures is quite mature and a
large number of pardle systems are
available & a reasonable wst, there are not
many software products that can exploit these
possbiliti es. Many researchers have tried to
find peralelization tedniques for Al
appli caions and they have mainly focused on
ways to dstribute the seach tree anong the
existing procesors [3,4,10,12,1R These
techniques, which have been enriched with
load balancing [9] and operator reordering
[5,19, prodwce quite dficient paralée
algorithms.

In this paper, we show that GRT
examines only a small subpart of the seach
tree ad thus methods relying on tree
distribution canna be gplied efficiently to
this planner. We present a different approad,
which dstributes the task of finding the
grourded adions that can be gplied to a
given state. Each processor undertakes a
number of operators and finds al the adions
that are groundinstances of these operators.
The number of operators limits the scdabili ty
of PGRT, bu it is very efficient for low
scdability paralelization. Furthermore, we
present a modified Operator Reordering
method, which can adiieve further increase
in the dficiency of PGRT. This method
changes the order in which the operators are
processed, in arder to balance the workload
among the processors.

The rest of the paper is organized as
follows: Sedion 2 pesents previous work in
the aea of paralédlization methods for Al
problems. Sedion 3 briefly describes Grealy
Regresson Tables, while section 4 pesents
the modificaions to the initial algorithm and
outlines PGRT. Sedion 5 pesents PGRT's
performance results in comparison with the
sequential version and sedion 6 introduces
the modified Operator Reordering method
and its effect on PGRT. Findly, sedion 7
concludes the paper and poes future
diredions.

2 Related Work

In [8], Kumar et a. review a set of
strategies for paralel best-first search of

state-space graphs. The strategies they
present are dassfied to be ather distributed
or centralized, based onthe eistence or not
of locd agendas. In bah cases the heuristic
function is used to arder the states in the
agenda, i.e. the first state in the agenda is the
one with the small est estimated dstance from
agoal state.

In the centralized model, ead one of
the N procesors undertakes the best state of
the global agenda, which has nat yet been
assgned to any other processor. At the end o
eadh expansion the succesr states are
placed back to the global agenda. The main
advantage of this approach, as discussd in
[7], is that it does not result in much
reduncant search. However, the globd
agenda is accessed by all the processors very
frequently and since it has to be protected by
semaphares, the processors will stay idle for
quite along time.

On the other hand, in the distributed
model eat procesor maintains its own locd
agenda and thus there is no reed for
semaphaes. This model usually uses the
IDA* search agorithm initially presented by
Powley and Korf in [11]. IDA* is a version
of Iterative Deepening search, where the next
level of search is determined by the heuristic
function in use. The state-space is initialy
divided and dstributed to the eisting
procesors. The segmentation d the initial
state-space can be dore in severa ways. In
[12] Powley and Korf introduced PWS, atree
distribution method in which ead processor
seaches in a unique depth. Kumar et d., in
[10] and [13] describe adifferent approac
where the seach tree is segmented verticdly.
To be more specific, after a sufficient number
of states has been generated, ead processor
undertakes one of them, considering it to be
the root and searches the generated subtree
A large number of variations of these
techniques have been proposed ower time.
Moreover, Diane Cook in [3] and [4]
proposed a hybrid approach, which combines
IDA* and verticd segmentation tedhniques
and seems to ouperform al the other
methodk.

After the initial distribution d the
state-space, some intercommunication is
necessry, since some of the processors may

be working on promising parts of the seach
tree while the others contribute little or
nothing to the process of finding a solution.
Moreover, the communicaion is necessary
for load balancing, sincethe local agenda of a
procesor may become empty if many norn
expandable states have been examined [9].
Load balancing includes the transfer of states
from one locd agenda to ancther, in order to
equali ze the workload in al procesrs. This
transfer can be performed dredly or via a
global memory structure, cdled badboard.
In [9], Kumar et a. review a number of
recever and sender initiated load-balancing
techniques.

There ae two main problems related
with the kind d parallelization besed onthe
distribution d the seach space a) a grea
number of statesis examined more than once,
since the state-space is not aways 9lit in
digoined parts and b) these techniques result
in the epanson d more states than
necessary. The first argument does not apply
to IDA* since the seach tree is lit in
amost digoined perts, except for the states
that can be gproached by various ways of
different length. However, IDA* examines
al the states a a given level before
procealing to the next one (argument b). The
aternative gproach (vertical segmentation)
suffers from baoth problems a and b. The
subtrees can not be digoined, since astate
can wsually be gproached by different ways.
Furthermore, a subtree might be promising
(i.e. it contains a short solution), while the
others are not and yet the dgorithm will
examine dl of them. The latter problem
beomes more severe @& the heuristic
function produces better estimates, since the
set of promising states will become narrower
and rerrower.

For example, if the heuristic function
was perfed, a simple hill climbing technique
would have examined oy | states, wherel is
the length of the optimal solution. Any one of
the pardldization methods described
previously would have worked N (number of
procesrs) times more, since while one of
the processors will be eamining the
solution’'s dates the others will be wasted at
uselessparts of the seach space. Even if the
acaracy of the heuristic estimate is lessthan

100, bu still accetable, the overhead
imposed by the examination o redundant
states would na allow the parallé algorithm
to perform well .

Since GRT's heuristic is quite
acarate no ore of the previous methods
would have proven to be dficient. So in
order to perallelize GRT, we need a different
approad. In the next sedion we will present
GRT in more detail, in oder to show the
parts of the dgorithm that could be
paralelized efficiently. Of course, the
tedhniques described hereafter can be gplied
to any other planner equipped with a quite
acairate heuristic dgorithm.

3 Greedy Regression Tables

GRT (Greedy Regresson Tables) isa
new heuristic for planning popcsed by
Refanidis and Vlahavas [16], which improves
the older ASP [2]. According to [16], ASP
has two main inefficiencies. a) Eadh time a
new distance has to be etimated a
propasition graph smilar to the one
constructed by GRAPHPLAN [1] has to be
reconstructed from scratch and b) it assumes
that all fads can be achieved independently,
not taking into accourt the interactions
among them. GRT was initiated from the
need to overcome these two drawbadks.

3.1Estimating distances backwards

GRT works badkward in oder to
estimate the distances between ead fad in
the domain and the goal state. The estimates
are produced once d the preprocessng phase
and they are used latter in the planning one.
This feaure overcomes ASPs first
inefficiency, thus increasing the overall speed
of the dgorithm.

In order to compute the distances
badkwards the operators have to be inverted.
Suppce we have astate S and an adion a
that is applicable to S;. Suppese dso that S
isasuccessor state produced by applying a to
S (we note that as S=res(5,a)). The
inverted adion d a, denoted as ~a, is
applicable to S and S=res(S;,~a). Using
STRIPS [6] termindogy, ~a can be

constructed by a using the following
formulas:

P(~a)=A(a)+P(a)-D(a)

D(~a)=A(a)

A(~a)=D(a)
where P(X), D(X) and A(X) stand for
precondtion, celete and add list respectively.
The heuristic uses the set of inverted adions
and two algorithms presented in [16], in
order to produce the Grealy Regresson
Tables in the pre-processng phase.

However, there is a nsiderable
difficulty in the process of badkward
estimation kecause the set of goals in most
cases does naot form a mmplete state. For
example, in the logistics problem only the
final locdions of the packages are spedfied
and no information is avalable for the
locaion d planes and trucks. This difficulty
can be overcome if the set of gods is
enriched with al the domain’s fads that are
not in contradiction with the goas. This
process is dore manualy in the airrent
version d GRT and therefore PGRT, bu in
[15 Refanidis et a. introduce certain
methods, which can automatically enrich
incomplete goal states.

3.2Interactions among gods

As we stated earlier, ASP does not
take into acount the interadions among
goas, bu instead it assumes that the total
number of steps needed to achieve aset of
goas from a given state is the sum of the
number of steps needed to achieve eab god
separately. On the other hand, for ead
ground fad p, GRT kees a list, denoted
rel(p), containing all the other facts that may
also be ahieved when achieving p.

3.3PGRT’s phases

GRT works in two pheses: the pre-
processng phase and the planning phase. At
the preprocessng phase, the dgorithm
constructs the set of inverted actions and
computes the eriched goal state. Then, each
ground fad in the domain is assgned a
distance eual to o (dist=c), except for those
included in the eriched gad state, which are

initialized to 0 and their related lists to [J.
The dgorithm repeatedly applies the inverted
aaions to the ewriched goa state, trying to
adiieve dl the facts of the domain. At eadch
iteration, the heuristic dgorithms compute
estimates for the distances of the newly
adiieved fads and construct their lists of
related fads.

During the planning phase, GRT uses
a simple Best-first algorithm that uses the
distances and the related fads computed at
the pre-processng phase to estimate the
distances between any intermediate state and
the goals.

3.3N-Best first search

GRT has been emboded in a simple
best-first algorithm and it has behaved very
well in a variety of domains, including the
ones used in AIPS98. For the purpose of this
research, we dlightly modified the search
algorithm and espedally the agenda in order
to cope with more complex problems. The
agenda in the improved version hes a limited
size and the search algorithm is gmilar to the
N-best-first used in one of ASPs versiors.
Since the size of the agenda is kept under a
threshald, the memory requirements of the
modified GRT are quite low and thus GRT
can handle even more difficult problems.

4 The Algorithm of PGRT

We performed various tests with GRT
in dfferent domains and we came to certain
interesting conclusions:

i) The most resource @nsuming part of
the dgorithm is the detedion d the
adions that can be gplied in a given
state. Even with operator schemas, the
work that has to be dore is redly
hard, since there are thousands or
even millions of grourded
instantiations (adions) that have to be
cheded.

i) The heuristic produces quite accurate
estimates and as we present in Table
1, the number of examined states is
relatively close to the length o the
solution poduced.

Logistics Problem | Solution | Expanded
(AIPS-98) Length states
Prob09 98 252
Prob13 79 155
Prob14 104 149
Prob18 193 468
Prob19 174 413
Prob20 169 448
Prob21 120 318
Prob24 49 85

Table 1. Number of states expanded by GRT.

4.1 0Overview

The parale implementation d GRT
was based on the previous conclusions. In
PGRT the detedion d ground actions that
can be gplied to a given state Sis dore in
paralel. To be more specific, suppcse that we
have M operator schemas and N processors.
We distribute the operator schemas to the
avallable procesors and each ore will be
resporsible of finding the gplicable ground
aadions originating from the schemas
assgned toit.

The distribution can be dore statically
a the beginning; i.e. the first M /N[
schemas will be @a&dgned to the first
processor, the next [M / N[schemas to the

seand pocesor and so on. This approach is
easy to implement and the overheal due to
communicaion among processors is kept
quite low. However, the number of ground
aaions originating from different schemas
can vary from O to several hundeds (for a
typicd logistics problem) resulting in
unbalanced workload among the different
processors.

In the dynamic distribution method
the unexamined operator schemas are kept all
together in a global data structure, denoted as
operator pod. Initiadly each procesor is
assgned one operator schema and the rest of
the operators are sent on demand. This
method can manage to balance the workload
among processors, bu imposes me
overhead due to contention. However, this
overheal is negligible mpared to the
speedup die to the balanced workload.

It is obvious from the previous
description that the number of operator
schemas limits the scdability of PGRT and

therefore the airrent version is not suitable
for masgve paral elism.

4.2 Parallel algorithm

An ouline of the dgorithm runnngin
eah procesr is presented in Figure 1. In
this algorithm, S5 stands for the arrent best
state in the global agenda.

1. While S has not been defined, do
nothing.
2. While operator pod isnot empty:
2a. Request an operator schema.
2b.Find al the grounced adions
that can be gplied to .
2c¢. Sendthelist of grounded actions
to the adion poad.
3. While adion pod is not empty or there
isat least one procesor at step 2
3a. Request new adion.
3b.Apply it to Sg to produwce S.
3c. Evaluate the distanceof S from
the godl state using the
heuristic function.
3d. Send (S,dist(S)) to the global
agenda.
4. Returnto 1.

Figure 1. The main agorithm of PGRT

Thefirst step of the paralle agorithm
is used for synchronization bketween the
various processors. The value of S will be
updated oy when al the processors have
finished with the arrent iteration. This part
iscrucial, sinceif a processor was allowed to
start a new iteration whil e the others are till
working with the airrent one, S would be
linked to a locd best state that probably
wouldn't be the global best one. The last one
would have resulted in greater CPU usage,
but also in larger number of examined states
and consequently larger exeautiontime.

In order to achieve further increase in
the dficiency of the pardlélization, the
grourded applicable operators are
temporarily stored in ancther pod (adion
pod) and the remaining tasks, i.e. creation d
succesor states and evaluation wing the
heuristic function, are done in an independent

phase (step 3. This technique can offer
further incresse in CPU usage, since it
contributes to better load balancing.

No synchronization is neeled to
control the transition from step 2 to step 3
and therefore aprocesor can proceel to step
3 whilethe othersare still in 2.

5 Perfor mance results

We have implemented PGRT in C++,
using multithreading. Each thread contains
the @de rrespondng to the dgorithm
presented in Figure 1 and communicates with
the others through the shared resources
(agenda, pods) and some global variables
(S, flags). The various threads are cntroll ed
by a process which acts as a normal thread
(i.e. it contains the same de) but is also
resporsible of starting and stoppng the
threads and also of changing the value of S
and making it available for use (step 1 of
parall el algorithm).

According to [16], GRT solved the
vast maority of the known panning
problems in a few semnds time. The adud
planning process needed considerable time
only for some hard logistics problems, used
inthe AIPS98, so in this paper we will focus
on the performance of PGRT on these
problems.

For the tests, we used two platforms,
one for the estimated speeadup as the number
of processors increases and another one for
the adual speedup with two paralé
processors. The first one was a SUN ULTRA
1 workstation equipped with an 167 MHz
procesor and 64 MB of memory and the
seoond ore was a SUN ULTRA
ENTERPRISE 3000 workstation with two
procesors a 167 MHz and 64 MB of
memory. The operating system in bah
maadines was SUN SOLARIS 2.51.

Table 2 ill ustrates the adua speedup
of PGRT over GRT in a variety of hard
logistics problems. The measurements were
taken uwsing the ENTERPRISE 3000
workstation. Columns 2 and 3 pesent the
time (in seconds) spent by GRT and PGRT
respedively to find a solution. The speedup
presented in column 4 is cdculated by the
formula Tert/Tperr and its vaue lies

between 1 and N (where N is the number of
procesors used).

Problem | Terr | Teerr | Speedup

Prob09 |94 89 1.06
Prob13 | 185 |149 1.24
Prob1l4 [119 |94 1.27
Prob18 |662 | 393 1.68
Prob19 |444 | 257 1.73
Prob20 | 521 |288 1.81
Prob21 |631 |557 1.13
Prob24 | 245 | 175 1.4

Table 2. PGRT’s geedupwith two
processors

Table 2 shows that for hard problems
(Probs 18,19,20, PGRT can achieve a
speedup d approximately 1.75 for two
processors. One of the reasons that the
speadup is lessthan two is that a portion o
the eeaution time is gent for the pre-
processng phase, which has not been
parall €li zed.

Table 3 presents me estimates for
the speadup d PGRT using more than two
procesors. These estimates were @mputed
using statisticd data acquired by a large
number of tests performed onULTRA 1. To
be more specific, we ran many multit hreaded
versions of PGRT (using various numbers of
threads) and measured the time spent for eah
thread, the time spent because of mutex
locks, the time spent for unparalelized parts
of the dgorithm et.c. As we have stated
edlier, the number of operators limits the
scdability of our algorithm. Indeed in the
logistics problem PGRT can be dficiently
scded up to 4 pocesors (the number of
operatorsis 6).

Number of 2 3 4 5
Processrs

Spealup 1.75| 2.25| 2.5| 2.45
Table 3. Estimated speedup

6 Operator r eordering

Seach methods, such as lterative
Degeening, Iterative Deegening A* or

Breadth First, search the nodes at a specific
level from left to right. If the solution lies at
the right end of the search treg a significant
increase & the speed o the search could have
been achieved if the nodes at a speafic leve
had a more convenient order. For example, a
variation d the previous methods which
seach nades from right to left could have
found the solution soorer. However, since
the exad locaion d a goa node is not
known a priori, a more sophsticaed method
iSnecessry.

In[12], Powley and Korf propose two
methods of ordering the search space. These
two methods can be gplied to IDA* search
and reorder the nodes in the agenda,
acording to the h value of the heuristic
function in use. An dternative method hes
been introduced by Cook et al. [5], acwrding
to which the set of operators is reordered in
ead iteration so as to guide the next IDA*
seach to the most promising node. The
method poposed by Cook et a. can be easily
implemented and according to performance
results it can significantly increase the speed
of seach.

Inspired by the previous methods we
studied the dfect of operator reordering on
the dficiency of PGRT. Our aim was nat to
reorder the search space since PGRT uses a
best first method which aways expand the
most promising state. However, a onvenient
order in the set of operator schemas could
increase the dficiency of the paral elization.
To be more specific, we daim that a specially
seleded arder in the set of operator schemas
would result in a more balanced dstribution
of workload among the existing processors.

Suppese we have N procesors, M
operators (01,0,,..,0n) eadr o which
requires x seands on average to be processed
and another operator, denoted as Ow.1, Which
requires y seamnds. We dso suppceethat y is
greder than x and y is less than the time
nealed by the N-1 procesrs to processthe
operators 01,0,,..,.0y in pardle (y>>X,
y<Mx/(N-1)).

In the worst case scenario, Oy+1 IS
placal last in the set of operators. After
approximately Mx/N seconds al the
processors will be idle and Oy+1 will be the
only operator in the set. One processor will

undertake Oy+1 and there will be aperiod o
y sends, where only one procesor will be
working and the rest N-1 will remainidle.

In the best case scenario Ow.g IS
placal first in the operator's wt. After y
seoonds there will be M-(N-1)y/x operators in
the set and the process will continue
normally. Even if we end upin a situation
similar to the one in the first scenario,
operator Oy.1 Will only require x seconds of
processng.

We illustrate the previous example
using concrete parameters. Suppcse N=10,
M=100, x=5 and y=35. In scenario 1, the N
processors would have worked in paralle for
XM/N= 5*100/10= 50 seconds and ore of
them for ancother 35, resulting in a total
exeaution time (for one iteration) of 85
semnds. In scenario 2, after 35 sewnds the
procesors would have processed Oy, and
another 63 operators. After another 15
sends, there would be only 7 operators in
the operator set. These 7 operators could be
procesed in paralel using 7 pocesrs (3
would remain idle) in 5 secnds. So the total
exeaution time would be 55 se@mndk.

In the previous analysis, we made
some simplifications and therefore the actual
difference between the two scenarios, in
exeaution time, would be smaller.
Furthermore, we didn't take into accourt step
3 o the paralel agorithm and thus the
results we have made are overestimated.
However, the total time spent for step 3 is
very smal compared to the time spent for
step 2 and therefore the previous conclusions
are quite accurate.

The time spent in step 2 for a given
operator O; is propationa to the number of
adions originating from it (denoted as A(O))),
therefore an idea method would pace the
operators in the set in a decreasing order of
A(O). However, for a given operator O; the
value of A(O;) depends on the state it has to
be gplied and it canna be known a priori.

A smpler and therefore less efficient
method d operator reordering have been
applied to PGRT. According to this method,
the operator schemas are ordered orce d the
beginning and retain this order for the rest of
the planning process Since we cannd know
a priori the value of A(O), the ordering is

dore using the maximum vaue of A(O)
instead.

For example, in a logistics problem
with 5 cities, 7 airplanes, 5 trucks, 3 daces
per city and 2cargoes, the maximum value of
A(O) for each operator isthe foll owing:

* FHy: 7 airplanes* 4 possble target

cities = 28.

* Load dane: 7 arplanes * 2

cagoes=14.

* Drive: 5 trucks * 2 posgble target

places=10.

* Load truck: 2 cargoes * 5 trucks

=10.

* Unload_gdane, Unload_truck: 2

cargoes= 2.

We have tested the effect of the
operator reordering technique on a variety of
logistics problems and we illustrate the
results in Table 4. In the third column we
present the average speedup d PGRT over a
large number of randam orders. The last
column presents PGRT's gealup sing the
best operators order according to ou
convention. The default order in the second
column is the one used in hibliography and
AIPS98 (it isthe one dso used in Table 2).

Problem | Default | Random | Best
order order order
Prob09 1.06 1.04] 1.10
Prob13 1.24 1.15| 1.30
Prob14 1.27 1.15| 1.37
Prob18 1.68 1.66(1.82
Prob19 1.73 1.70| 1.81
Prob20 1.81 1.82| 1.86
Prob21 1.13 1.20| 1.27
Prob24 1.4 1.4 151

Table 4. Speedup d parallel algorithm

It is clear from Table 4 that the
reordered operator set improves the
efficiency of PGRT in al the tested
problems. The difference from the default
order is naot significant in some problems,
since the default order is quite dose to the
best ore.

7 Conclusions and Future Work

This paper reports on work performed
to find suitable paral€elization methods for
Gready Regresson Tables, a Best-First
planner which was recently presented [16)].
Many researchers, as Kumar, Cook and
Powley, have propased severa parall €li zation
methods that rely on the distribution d the
seach tree However, we have shown that the
heuristic function d GRT is quite acurate
and only a small portion d the state spaceis
expanded. Therefore the methods already
proposed are unsuitable for GRT and any
other accurate heuristic dgorithm.

We propaosed a different
parall eli zation method, which distributes the
process of finding the egplicable adions
among the avail able processors. Although the
number of operator schemas limits the
scdability of our approad, the results from
various tests dow that PGRT is quite
efficient. We have dso proposed an operator
reordering schema, which can be easly
incorporated in PGRT and dfers a further
increase in the performance of the paralé
algorithm.

PGRT has been tested ona variety of
logistics problems, taken from the AIPS98
planning contest. In the future, we plan to test
the dficiency and scdability of the dgorithm
on more @mplex domains with more
operator schemas. Furthermore, we plan to
adapt the wncurrent heg, described in [14],
for the global agenda in order to minimize
the time spent due to contention.

As we stated earlier, the number of
operators limits the scdability of PGRT and
in the future we intend to lift this bound
probably by using a duster of processors for
eah operator. We ould then acdieve to
increase the scdability of PGRT to severd
thousands (number of adions in a typicd
logistics problem).

Finaly, we plan to develop methods
for paralelizing the pre-processng phase of
PGRT, which is currently exeauted
sequentially. We eped to increase the
speedup d PGRT by approximately 10% by
parallelizing this phase, since it consumes a
considerable anourt of resources.

8 References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

L. Blum & M. L. Furst, “Fast planning
through planning gaph analysis’, 14"
International Joint Conferenceon
Artificial Intelli gence (1JCAI-95),
Montred, Canada 636-1642 1995
Bonret, G. Loerincs & H. Geffner, “A
robust and fast action selection
mechanism for planning”, 14"
International Conference of the
American Asociation d Artificia
Intelligence (AAAI-97), Providence,
Rhode Island 714719 1997

D.J. Cookand R.C. Varndll, “Adaptive
Parall el Iterative Deepening Seach”,
Journal of Artificia Intelli gence
Reseach, vdume 9, pages 167--194,
1999.

J. Cook, “A Hybrid Approach to
Improving the Performance of Parall el
Seach”, in Parallel Processng for
Artificia Intelligence, J. Geller (ed.),
Elsevier Science Publishers, 1997.

J. Cook, L. Hall & W. Thomeas,
“Parall el search using transformation-
ordering iterative-deegpening A*”, The
international Journal of Intelli gent
Systems, 8(8), 1993

R. E. Fikes& N. J. Nilson, “Strips: A
new approad to the gplication o
theorem proving to problem solving”,
Artificial Intelligence 2, 189208 1971
K.B. Irani andY. F. Shih, “Parallel a*
and ao* algorithms: An oggimality
criterion and performance evaluation”,
Procealings of international
Conference on Parall el Processng,
pages 274277, 1986

V. Kumar, V. N. Rao and K. Ramesh,
“Parall el Best-First Search of State-
SpaceGraphs: A Summary of Results
(1988", Proceddings of the 1988
National Conf. onArtificia
Intelligence (AAAI1-88), 1988.

V. Kumar, A. Y. GramaandV. N. Rao,
“Scdable Load Balancing Tedhniques
for Parallel Computers’, Journa of
Parall el and Distributed Computing,
Volume 22, Number 1, pp. 6079,
1994.

[10]

[11]

[12]

[13]

[14]

[19]

[16]

V. Kumar & V. N. Rao, “Scdable
parale formulations of depth-first
seach”, In Kumar, Kanal &
Gopalakrisham (Eds.), Parall el
Algorithms for Madine Intelli gence
andVision, pp. 41 Springer-Verlag,
1990.

C. Powley, C. ferguson and R. E. Korf.
“Parall el tree search onasimd
madhine”, Proceedings of the Third
|[EEE Sympaosium on Parallel and
Distributed Processng, pages 249256,
1991

C. Powley andR. E. Korf, “Single-
agent parallel window search”, IEEE
Transadions on Pattern Analysis and
Madine Intelligence 135), 1991.
V.N. Rao, V. Kumar & K. Ramesh, “A
parallel implementation o iterative
deepening-A*”, Proceedings of the
National Conferenceon Artificial
Intelligence, pp. 178182.Morgan
Kaufmann, 1987.

V.N. Rao & V. Kumar, “Concurrent
Insertions and celetionsin apriority
queue”, Proceealings of the 1988
Parallel Processng Conference, 1988.
I. Refanidis, I. Vlahavas and L.
Tsoukalas, "On Determining and
Completing Incomplete States in
STRIPS Domains’, IEEE International
Conference on Information,
Intelligence and Systems, Washington
D.C., 1999(to be presented).

I. Refanidisand |. Vlahavas, "GRT: A
Domain Independent Heuristic for
STRIPS Worlds based on Greedy
Regression Tables", 5th European
Conference on Planning (ECP-99),
Durham, UK, Springer-Verlag, 1999
(to be pubished).

