
A Knowledge-based Framework for Building Web
Service Domains1

Nick Bassiliades and Ioannis Vlahavas

Department of Informatics, Aristotle University of Thessaloniki, Greece
{nbassili|vlahavas}@csd.auth.gr

Abstract. This paper describes a knowledge-based framework, called SWIM,
for building Web Service Domains, which are collections or communities of re-
lated Web Services that are mediated and/or aggregated by a single Web Ser-
vice, called the Mediator Service that functions as a proxy for them. When a re-
questor sends a message to the Mediator Service our system will select one or
more of the Web Services to dispatch the message and will fuse the results re-
turned by the selected services. The selection of Web services and the algorithm
for fusing the results is defined by the administrator of the Service Domain us-
ing a declarative rule language, called X-DEVICE. SWIM system offers ser-
vices for registering new Web Services and Service Domains. The main advan-
tage of the SWIM system, compared to similar proposed approaches is that it
allows the easy definition of arbitrary service selection strategies using a logic-
based language. Furthermore, it goes beyond the mere conditional re-routing of
Web Service requests by allowing combination of results of multiple Web Ser-
vices leading to a simple logic-based form for Web Service composition.

1 Introduction

The Web is becoming more than just a collection of documents; applications and ser-
vices are coming to the forefront. Web services will play a crucial role in this trans-
formation as they will become the basic components of Web-based applications [15].
A Web service is a software system identified by a URI, whose public interfaces and
bindings are defined and described using XML. Its definition can be discovered by
other software systems. These systems may then interact with the Web service in a
manner prescribed by its definition, using XML based messages conveyed by internet
protocols [10].

The use of the Web services paradigm is expanding rapidly to provide a systematic
and extensible framework for application-to-application (A2A) interaction, built on
top of existing Web protocols and based on open XML standards. Web services aim
to simplify the process of distributed computing by defining a standardized mecha-
nism to describe, locate, and communicate with online software systems. Essentially,

1 Partially supported by the Greek R&D General Secretariat through a bilateral Greek-

Ukrainian project (EPAN-Μ.4.3, No. 2013555).

each application becomes an accessible Web service component that is described us-
ing open standards.

When individual Web Services are limited in their capabilities, they can be com-
posed to create new functionality in the form of Web Processes. Web Service compo-
sition is the ability to take existing services (or building blocks) and combine them to
form new services [16] and is emerging as a new model for automated interactions
among distributed and heterogeneous applications. To truly integrate application
components on the Web across organization and platform boundaries merely support-
ing simple interaction using standard messages and protocols is insufficient [1] and
Web services composition languages, such as WSFL [14], XLANG [19] and
BPEL4WS [12], are needed to specify the order in which WSDL services and opera-
tions [11] are executed.

Web Service Domain is a service composition model where a requestor needs a
collection of related services that he/she will use in a non-predefined manner [15].
Properties beyond the signature level of a concrete service are irrelevant to a re-
questor, i.e. individual ports providing the same service are indistinguishable from a
requestor's point of view. A service domain aggregates these services by providing a
single service that functions as a proxy for them [18]. When a requestor sends a mes-
sage to this proxy the environment will select one of the services and dispatch the
message to it. Another reason for building Service Domains is to increase system
scalability for large Web-based applications [7]. When the number of services to be
composed is large and continuously evolving, the most appropriate approach to fol-
low is divide-and-conquer; services providing similar capabilities are grouped to-
gether, and these groups take over some of the responsibilities of service composition.

Existing approaches for building Service Domains [18] or Service Communities
[7] just select a single service for re-routing the requestor message that arrives at the
proxy service. In this paper we go beyond this simple aggregation model for Service
Domains and we propose the SWIM system, which is a knowledge-based framework
for building Web Service Domains that have the capability of delegating a single re-
quest to multiple Web Services and fusing the results into a single response message.
The selection of Web services and the algorithm for fusing the results is defined by
the administrator of the Service Domain using a declarative rule language, called
X-DEVICE. SWIM system offers services for registering new Web Services and Ser-
vice Domains. The main advantage of the SWIM system, compared to similar pro-
posed approaches is that it allows the easy definition of arbitrary service selection
strategies using a logic-based language. Furthermore, it goes beyond the mere condi-
tional re-routing of Web Service requests by allowing combination of results of mul-
tiple Web Services leading to a simple logic-based form for Web Service composi-
tion.

The rest of the paper is organized as follows. Section 2 presents the architecture
and main functionality of the SWIM system. Section 2.3 presents an overview of X-
DEVICE, a deductive object-oriented XML database system [6] that is used for regis-
tering Web Service components and for defining logic-based algorithms for selecting
Web Services to delegate the requestor message and for fusing the results. Section 4
gives several examples of how the X-DEVICE rule language is used in SWIM to
manage the Service Domains. Finally, Section 5 concludes this work and poses future
research directions.

In the rest of the paper we will use the WebDisC system [20] as an example of a
Service Domain under the SWIM system. WebDisC is a knowledge-based Web in-
formation system for the fusion of syntactically heterogeneous classifiers induced at
geographically distributed databases. SWIM is actually a generalization of the fea-
tures firstly encountered during the development of the WebDisC system. In the paper
we show how the WebDisC system could be developed as a Service Domain of the
SWIM system.

2 SWIM System

SWIM is a knowledge-based framework for building Service Domains i.e. communi-
ties of related Web Services. Each Service Domain consists of one or more Mediator
Services. Each Mediator Service either fuses (or aggregates) the results of multiple
Web services or just reroutes Web Service requests to the appropriate Web Service(-
s). All Web services that are mediated by the same Mediator Service perform the
same functionality, although Web Services are not homogeneous, i.e. their signatures
(input and output messages) may structurally differ. The system's main functionality
includes: i) a declarative rule language for defining Web Service selection strategies
and result aggregation algorithms, ii) Web services for creating new mediators and
domains and for registering Web Services. The rest of this section describes the archi-
tecture, functionality, and methodologies of the system. The architecture of SWIM
comprises 5 basic components as depicted in Fig. 1: i) Clients, ii) Domain administra-
tors, iii) Web Service administrators, iv) the SWIM server, and v) the SWIM Nodes.

SWIM server

X-DEVICE

SWIM nodej

SWIM nodei

WebService
ADMIN

RegisterWebService

Service
Domain
ADMIN

RegisterMediatorService

RegisterServiceDomain

CLIENT
CallMediatorService1

CallMediatorService2

CallMediatorServicem

...

CallWebServicei1

CallWebServicei2

CallWebServicein

...

CLIENT

CallWebServicejm

CallWebServicej1

...
CLIENT

Fig. 1. The architecture of SWIM

2.1 SWIM Nodes

SWIM Nodes are Web sites that host one or more Web services that participate in the
Service Domain hosted by SWIM. The WSDL descriptions of all SWIM Node Web
services must follow the template (sample) that can be found at [17], along with the
common structure of the input and output messages. A sample input message that
conforms to this schema is shown in Fig. 4.

Web services need to register to the SWIM server through the RegisterWS ser-
vice ([17]). The input message of this service describes the names and types of input
and output attributes of the Web service, as well as additional data that characterize
the service and help the mediator service at selecting Web Services and processing the
results (see sample message in Fig. 2).

2.2 SWIM Server

The SWIM Server is the coordinating component of the system. It consists of the X-
DEVICE deductive XML database system and the RegisterServiceDomain, Reg-
isterMediatorService, and RegisterWS services for registering the correspond-
ing entities. Furthermore, for each mediator service that has been registered there is a
corresponding Web service. WSDL descriptions for the above services as well as for
a sample Mediator Service can be found at [17].

X-DEVICE's main purpose is the storage of meta-data regarding the Service Do-
mains, Mediator Services and Web Services that are registered with SWIM. These
meta-data include: service names, descriptions, and addresses, names and types of the
input and output attributes, plus additional data needed for Web service selection
and/or result fusion. The meta-data DTDs define the type of objects that are stored in
X-DEVICE for each entity type, according to the XML-to-object mapping scheme of
X-DEVICE. Notice that the actual XML Schema data types for attType and wSAd-
dress elements are xs:anyType and xs:anyURI, respectively. Sample metadata
for Service Domain, Mediator Service and Web Service can be found in [17].

2.3 Clients and Administrators

Clients are applications that exploit the functionality of SWIM by directly using the
SWIM server's Mediator Services either to combine results from multiple Web ser-
vices or to just use Web services without knowing details regarding their name and
location. In the latter case Mediator Services just re-route the incoming request to the
appropriate Web Service.

Service Domain administrators are users that register entities in the SWIM server.
Service Domain administrators first register a Service Domain and then can register
one or more mediator services within that Domain. Web service administrators regis-
ter Web services for a specific Mediator Service within SWIM.

3 X-DEVICE Rule Language

X-DEVICE is an OODB system that stores XML documents by automatically map-
ping the DTD to an object schema. Furthermore, X-DEVICE employs a powerful
rule-based query language for intelligently querying stored Web documents and data
and publishing the results. X-DEVICE is an extension of the active object-oriented
knowledge base system DEVICE [4]. DEVICE integrates deductive and production
rules into an active OODB with event-driven rules [13], on top of Prolog. This is
achieved by translating the condition of each declarative rule into a set of complex
events that is used as a discrimination network to incrementally match the condition
against the database.

The advantages of using a logic-based query language for XML data come from
the well-understood mathematical properties and the declarative character of such
languages, which both allow the use of advanced optimization techniques, such as
magic-sets. Furthermore, X-DEVICE compared to the XQuery [8] functional query
language has a more high-level, declarative syntax that allows users to express every-
thing that XQuery can express, in a more compact and comprehensible way, with the
powerful addition of general path expressions, which is due to fixpoint recursion and
second-order variables.

3.1 XML Object Model

The X-DEVICE system translates DTD definitions into an object database schema
that includes classes and attributes, while XML data are translated into objects. Gen-
erated classes and objects are stored within the underlying object-oriented database
ADAM [13]. The mapping of a DTD element to the object data model depends on the
following:

• If an element has PCDATA content (without any attributes), it is represented as a
string attribute of the class of its parent element node. The name of the attribute is
the same as the name of the element.

• If an element has either a) children elements, or b) attributes, then it is represented
as a class that is an instance of the xml_seq meta-class. The attributes of the class
include both the attributes of the element and the children elements. The types of
the attributes of the class are determined as follows:
− Simple character children elements and element attributes correspond to object

attributes of string type. Attributes are distinguished from children elements
through the att_lst meta-attribute.

− Children elements that are represented as objects correspond to object reference
attributes.

The order of children elements is handled outside the standard OODB model by
providing a meta-attribute (elem_ord) for the class of the element that specifies the
correct ordering of the children elements. This meta-attribute is used when (either
whole or a part of) the original XML document is reconstructed and returned to the
user. The query language also uses it.

Alternation is also handled outside the standard OODB model by creating a new
class for each alternation of elements, which is an instance of the xml_alt meta-class
and it is given a unique system-generated name. The attributes of this class are deter-
mined by the elements that participate in the alternation. The structure of an alterna-
tion class may seem similar to a normal element class; however the behaviour of al-
ternation objects is different, because they must have a value for exactly one of the
attributes specified in the class.

The mapping of the multiple occurrence operators, such as "star" (*), etc, are han-
dled through multi-valued and optional/mandatory attributes of the object data model.
The order of children element occurrences is important for XML documents, there-
fore the multi-valued attributes are implemented as lists and not as sets.

Examples of objects and OODB schemata that are generated using the mapping
scheme of X-DEVICE can be found in [21].

3.2 XML Deductive Query Language

X-DEVICE queries are transformed into the basic DEVICE rule language and are
executed using the system's basic inference engine. The query results are returned to
the user in the form of an XML document. The deductive rule language of X-
DEVICE supports generalized path and ordering expressions, which greatly facilitate
the querying of recursive, tree-structured XML data and the construction of XML
trees as query results. These advanced expressions are implemented using second-
order logic syntax (i.e. variables can range over class and attribute names) that have
also been used to integrate heterogeneous schemata [6]. These XML-aware constructs
are translated through the use of object meta-data into a combination of a) a set of
first-order logic deductive rules, and/or b) a set of production rules that their condi-
tions query the meta-classes of the OODB, they instantiate the second-order variables,
and they dynamically generate first-order deductive rules.

In this section we mainly focus on the use of the X-DEVICE first-order query lan-
guage to declaratively query the meta-data of the Web services that are represented as
XML documents. More details about DEVICE and X-DEVICE can be found in [5]
and [6]. The general algorithms for the translation of the various XML-aware con-
structs to first-order logic can be found in [6].

In X-DEVICE, deductive rules are composed of condition and conclusion, whereas
the condition defines a pattern of objects to be matched over the database and the
conclusion is a derived class template that defines the objects that should be in the da-
tabase when the condition is true. For example, rule R2 (in Section 4.2) defines that an
object with attribute serviceID with value WS and attribute serviceAddress with
value WSA exists in class selectedWS if several conditions are satisfied. For exam-
ple, one of the conditions states that the input SOAP message [9] must contain an
auxiliary attribute with name select and value 'At least one'. Furthermore, the
URL address MSA associated with the incoming SOAP message must coincide with
the mSAddress attribute of a registered Mediator Service MS.

Class selectedWS is a derived class, i.e. a class whose instances are derived from
deductive rules. Only one derived class template is allowed at the THEN-part (head)

of a deductive rule. However, many rules can exist with the same derived class at the
head. The final set of derived objects is a union of the objects derived by all the rules.

The syntax of such a rule language is first-order. Variables can appear in front of
class names (e.g. WS, MS), denoting OIDs of instances of the class, and inside the
brackets, denoting attribute values, i.e. object references (AIV) and simple values
(MSName), such as strings, integers, etc. Variables are instantiated through the ":" op-
erator when the corresponding attribute is single-valued, and the ∋ operator when the
corresponding attribute is multi-valued. Conditions can also contain comparisons be-
tween attribute values, constants and variables. Negation is also allowed if rules are
safe, i.e. variables that appear in the conclusion must also appear at least once inside a
non-negated condition.

Path expressions can be composed using dots between the "steps", which are at-
tributes of the interconnected objects, which represent XML document elements. For
example, in the second condition of rule R2 the names of the input attributes are re-
trieved by navigating from the top-level mediatorService object-element through
an inputVector object-element to the attName attribute of a pair object-element.
The innermost attribute should be an attribute of "departing" class, i.e. inputVector
is an attribute of class mediatorService. Moving to the left, attributes belong to
classes that represent their predecessor attributes. Notice the right-to-left order of at-
tributes, contrary to the common C-like dot notation, that stress out the functional data
model origins of the underlying ADAM OODB. Under this interpretation the chained
"dotted" attributes can be seen as function compositions.

A query is executed by submitting the set of stratified rules (or logic program) to
the system, which translates them into active rules and activates the basic events to
detect changes at base data. Data are forwarded to the rule processor through a dis-
crimination network (much alike in a production system fashion). Rules are executed
with fixpoint semantics (semi-naive evaluation), i.e. rule processing terminates when
no more new derivations can be made. Derived objects are materialized and are either
maintained after the query is over or discarded on user's demand. X-DEVICE also
supports production rules, which have at the THEN-part one or more actions ex-
pressed in the procedural language of the underlying OODB.

The main advantage of the X-DEVICE system is its extensibility; it allows the easy
integration of new rule types as well as transparent extensions and improvements of
the rule matching and execution phases. The current system implementation includes
deductive rules for maintaining derived and aggregate attributes. Among the optimi-
zations of the rule condition matching is the use of a RETE-like discrimination net-
work, extended with reordering of condition elements, for reducing time complexity
and virtual-hybrid memories, for reducing space complexity [4]. Furthermore, set-
oriented rule execution can be used for minimizing the number of inference cycles
(and time) for large data sets [5].

4 Managing Service Domains with X-DEVICE

In this section we describe in detail how X-DEVICE deductive rules are used to man-
age the Service Domains of the SWIM system.

4.1 Registration of Service Domains, Mediator Services and Web Services

The initial task that X-DEVICE performs within SWIM is to register the meta-data
for all SWIM entities, namely Service Domains, Mediator Services and Web Ser-
vices. The DTD of the Web Services' meta-data can be found in [17] along with the
WSDL descriptions for the registerServiceDomain, registerMediator-
Service and registerWS services. New SWIM nodes sent in a SOAP message that
contains their Web Service's meta-data. A sample SOAP message is shown in Fig. 2.
The schema of the incoming SOAP message is determined at the input message of the
corresponding port type of the WSDL description. Service Domains and Mediator
Services are registered by the Service Domain Administrator via similar SOAP mes-
sages. Here we will only consider registration of Web services, since registration of
other entities is almost identical.

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:m0="http://startrek.csd.auth.gr/registerWS.xsd">
 <SOAP-ENV:Body>
 <m:RegisterWS xmlns:m="http://startrek.csd.auth.gr/registerWS.wsdl">
 <wSName>Classifier1</wSName>
 <mediatorService>wsDistClassify</mediatorService>
 <wSDesc>A local classifier that uses a Decision Tree</wSDesc>
 <wSAddress>http://startrek.csd.auth.gr/Classifier1</wSAddress>
 <inputAtts>
 <attributePair>
 <m0:attName>income</m0:attName>
 <m0:attType>xs:integer</m0:attType>
 </attributePair>
 <attributePair>
 <m0:attName>loan</m0:attName>
 <m0:attType>xs:string</m0:attType>
 </attributePair>
 <attributePair>
 <m0:attName>card</m0:attName>
 <m0:attType>xs:string</m0:attType>
 </attributePair>
 </inputAtts>
 <outputAtts>
 <attributePair>
 <m0:attName>credit</m0:attName>
 <m0:attType>xs:string</m0:attType>
 </attributePair>
 </outputAtts>
 <additionalData>
 <dataPair>
 <m0:attName>classificationMethod</m0:attName>
 <m0:attVal>Decision Tree</m0:attVal>
 </dataPair>
 <dataPair>
 <m0:attName>acceptsMissingValues</m0:attName>
 <m0:attVal>true</m0:attVal>
 </dataPair>
 </additionalData>
 </m:RegisterWS>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Fig. 2. Sample SOAP message for registering a Web service

Input SOAP messages are stored within the X-DEVICE system using the schema
for the SOAP message found in the corresponding WSDL description. However, the
top-level element node of the input SOAP message is linked to an instance of the in-
put_soap_message class, through the OID of the object-element node and its at-
tribute content.

The following X-DEVICE rule R1 iterates over all incoming SOAP messages that
register a new Web service and generates a new webService object for each one of
them.

R1
if I@input_soap_message(content:R) and
 R@registerWS(wSName:Name,mediatorService:MS,wSDesc:Desc,
 wSAddress:Address,inputAtts:IA,outputAtts:OA,
 additionalData:AD)
then registeredWS(wSName:Name,mediatorService:MS,wSDesc:Desc,
 wSAddress:Address,inputAtts:IA,outputAtts:OA,
 additionalData:AD)

Actually, rule R1 transforms the XML data of SOAP messages (Fig. 2) into Web
service metadata stored as a set of objects.

4.2 Web Service Selection

One very important task of X-DEVICE is the selection of Web services that are rela-
tive to an incoming SOAP request for the Mediator Service. Fig. 3 shows an example
of such a SOAP message from the WebDisC system [20], where Web services are
remote classifiers. A classifier can be selected if its output attribute CAtt is the same
with the output attribute requested by the incoming SOAP message. Furthermore, if
the classifier can function when some of its input attributes are missing then the clas-
sifier can be selected if it has at least one input attribute Att common to the input
SOAP message. Rule R2 below performs this selection and creates a derived class
selectedWS whose instances are the selected Web Services. Notice that the ID of the
original input SOAP message is kept for correlation purposes.

R2
if I@input_soap_message(content:C) and
 C@mediatorService(url=MSA,auxiliaryInputVector:AIV,
 attName.pair.inputVector:Att) and
 AIV@auxiliaryInputVector(pair=[P1,P2]) and
 P1@pair(attName=classificationAtt,attVal=CAtt) and
 P2@pair(attName=select,attVal=’At least one’) and
 MS@registeredMS(mSName:MSName,mSAddress=MSA) and
 WS@registeredWS(mediatorService=MSName,wSAddress:WSA,
 attName.attributePair.inputAtts=Att,
 attName.attributePair.outputAtts=CAtt,
 dataPair.additionalData:AMV) and
 AMV@dataPair(attName=acceptsMissingValues,attVal=true)
then selectedWS(request:I,serviceID:WS,serviceAddress:WSA)

Furthermore, all the input attribute-value pairs of the input SOAP message that
match some of the registered Web services are also kept as instances of the candi-
date_atts class, using rule R3. This is done is order to construct later the SOAP mes-
sages to be send to the Web Services.

R3
if I@input_soap_message(content:C) and
 C@mediatorService(url=MSA,pair.inputVector:P) and
 P@pair(attName:Att) and
 MS@registeredMS(mSName:MSName,mSAddress=MSA) and
 WS@registeredWS(mediatorService=MSName,
 attName.attributePair.inputAtts=Att)
then candidate_atts(request:I,serviceID:WS,att_val_pair:P)

The addresses of the selected Web services are returned to the SWIM server along
with the corresponding SOAP messages that should be sent to the corresponding Web
services of the SWIM nodes. Fig. 4 shows such a message.

The result is returned as an XML document and is calculated by rules R4 to R7
show below. Rule R4 creates a webService object that points to a selected Web Ser-
vice object. Notice the use of the exclamation mark (!) in front of an attribute name to
denote a system attribute, i.e. an auxiliary attribute that will not be a part of the query
result. Rule R5 creates an inputVector object for each selected Web Service and

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:m0="http://startrek.csd.auth.gr/SWIM/mediatorService.xsd">
 <SOAP-ENV:Body>
 <m:MediatorService
 xmlns:m="http://startrek.csd.auth.gr/SWIM/wsDistClassify.wsdl">
 <m0:inputVector>
 <m0:pair>
 <m0:attName>income</m0:attName>
 <m0:attValue>14000</m0:attValue>
 </m0:pair>
 <m0:pair>
 <m0:attName>loan</m0:attName>
 <m0:attValue>good</m0:attValue>
 </m0:pair>
 <m0:pair>
 <m0:attName>card</m0:attName>
 <m0:attValue>bad</m0:attValue>
 </m0:pair>
 </m0:inputVector>
 <m0:auxiliaryInputVector>
 <m0:pair>
 <m0:attName>classificationAtt</m0:attName>
 <m0:attValue>credit</m0:attValue>
 </m0:pair>
 <m0:pair>
 <m0:attName>select</m0:attName>
 <m0:attValue>At least one</m0:attValue>
 </m0:pair>
 </m0:auxiliaryInputVector>
 </m:MediatorService>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Fig. 3. Sample input SOAP message for a Mediator Service

links it with the corresponding pair objects. The list(P) construct in the rule con-
clusion denotes that the attribute pair of the derived class inputVector is an attrib-
ute whose value is calculated by the aggregate function list. This function collects
all the instantiations of the variable P (since many input attributes can exist for each
Web service) and stores them under a strict order into the multi-valued attribute pair.
Notice that the values of the rest of the variables at the rule conclusion define a GROUP
BY operation. More details about the implementation of aggregate functions in X-
DEVICE can be found in [5] and [6].

Rule R6 links the inputVector object with the corresponding webService ob-

ject through a derived attribute rule, which defines a new attribute inputVector for
class webService. The values for this attribute are derived by this rule. Objects of
class webService that do not satisfy the condition of this class will have null value
for this attribute. More details on derived attribute rules can be found in [5].

Finally, rule R7 constructs the top-level XML element of the result which is the
SOAP message built for each Web Service, augmented with the address of the classi-
fier. The keyword xml_result is a directive that indicates to the query processor
that the encapsulated derived class (output_soap_message) is the answer to the
query. This is especially important when the query consists of multiple rules, as in
this case.

R4
if C@selectedWS(request:R,serviceID:WS)
then webService(!request:R,!serviceID:WS)

R5
if WS@webService(request:R, serviceID:WS1) and
 A@candidate_atts(request=R,serviceID=WS1,att_val_pair:P)
then inputVector(serviceID:WS1,pair:list(P))

R6
if WS@webService(serviceID:WS1) and

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:m0="http://startrek.csd.auth.gr/SWIM/webService.xsd">
 <SOAP-ENV:Body>
 <m:WebService

xmlns:m="http://startrek.csd.auth.gr/SWIM/wsClassify.wsdl">
 <m0:inputVector>
 <m0:pair>
 <m0:attName>income</m0:attName>
 <m0:attVal>14000</m0:attVal>
 </m0:pair>
 <m0:pair>
 <m0:attName>loan</m0:attName>
 <m0:attVal>good</m0:attVal>
 </m0:pair>
 </m0:inputVector>
 </m:WebService>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Fig. 4. Sample input SOAP message for a Web Service

 IV@inputVector(serviceID=WS1)
then WS@webService(inputVector:IV)

R7
if WS@webService(request:R, serviceID:WS1) and
 C@selectedWS(request=R,serviceID=WS1,address:URL)
then xml_result(output_soap_message(!request=R,!address:URL,
 content:WS))

4.3 Fusing Web Service Results

After the SOAP messages described in the previous subsection are sent to the selected
Web Services of the SWIM nodes, the SWIM server waits for the results to be re-
turned by all of them. X-DEVICE can be used for combining the results from the
Web Services and for constructing a single result to be returned by the Mediator Ser-
vice to the original requester. Again we use an example from the WebDisC system,
where the category that an instance belongs (according to the Mediator Service-
Classifier) is decided using Majority Voting, i.e. the category is the one that most
Web Services-Classifiers decide.

Rules R8 to R15 below implement the majority voting algorithm and construct the
SOAP message response. The first three rules implement the wait-for-all synchroniza-
tion construct for the distributed Web Services. More specifically, rule R8 counts the
number of selected Web Services using the count aggregation function in order to
compare it to the number of Web Services that responded, which are counted by rule
R9. Rule R10 performs the comparison and derives an all_web_services_ans-
wered object that is used by the final rule R15 to construct the outgoing SOAP mes-
sage only when all Web Services have responded.

Concerning the construction of the response, rule R11 counts all distinct attribute-
value pairs returned by the Web services using the count aggregate function. Rule
R12 finds the maximum vote count for each distinct attribute using the max aggregate
function. Rule R13 binds the maximum vote count with the actual most popular at-
tribute value. Rule R14 constructs the mediatorService object of the output SOAP
message by tracing back and re-using an outpuVector object that contains the se-
lected attribute-value combination. Furthermore, the rule traces the Mediator Service
that is connected to this case and returns its URL address as a system attribute !url.
Finally, rule R15 constructs the top-level element for the output SOAP message,
which is picked up by the SWIM server and is sent to the original requester of the
Mediator Service.

R8
if SWB@selectedWS(request:R,serviceID:WS)
then web_services_asked(request:R,questions:count(WS))

R9
if I@input_soap_message(content:C) and
 C@webService(url:WSA,request:R) and
 SWB@selectedWS(request=R,serviceID:WS,serviceAddress=WSA)
then web_services_answered(request:R,answers:count(WS))

R10
if W1@web_services_asked(request:R,questions:N) and
 W2@web_services_answered(request=R,answers=N)
then all_web_services_answered(request:R)

R11
if I@input_soap_message(content:C) and
 C@webService(request:R,pair.outputVector:P) and
 P@pair(attName:Att,attVal:Val)
then returned_value(request:R,attName:Att,attVal:Val,
 votes:count(C))

R12
if RV@returned_value(request:R,attName:Att,votes:V)
then max_votes(request:R,attName:Att,majority:max(V))

R13
if MV@max_votes(request:R,attName:Att,majority:MaxVotes) and
 RV@returned_value(request:R,attName=Att,attVal:Val,
 votes=MaxVotes)
then majority_decision(request:R,attName=Att,attVal:Val)

R14
if MD@majority_decision(request:R,attName=Att,attVal:Val) and
 P@pair(attName:Att,attVal:Val) and
 OV@outputVector(pair=P) and
 WS1@webService(request=R,url:WSA,outputVector=OV) and
 WS@registeredWS(wSAddress=WSA,mediatorService:MSName) and
 MS@registeredMS(mSName=MSName,mSAddress:MSA)
then mediatorService(!request:R,!url:MSA,outputVector:OV)

R15
if A@all_web_services_answered(request:R) and
 MS@mediatorService(request=R,url:URL)
then xml_result(output_soap_message(!request:R,!address:URL,
 content:MS))

4.4 Querying Registered Web Services

The Mediator Services of the SWIM server might query X-DEVICE about the stored
meta-data of the registered Web services. The following is an example from the
WebDisC system that retrieves the output attributes of the registered Web Services
and the input attributes that are relevant to each output attribute.

R16
if WS@registeredWS(attName.attributePair.outputAtts:CA) and
 not C1@corresponding_atts(outputAtt=CA)
then corresponding_atts(outputAtt:CA)

R17
if C1@corresponding_atts(outputAtt:CA) and
 WS@registeredWS(attName.attributePair.outputAtts=CA,
 attName.attributePair.inputAtt:IA)
then C1@corresponding_atts(inputAtt:set(IA))

R18
if WS@registeredWS(attName.attributePair.outputAtts:CA)
then all_output_atts(outAtt:set(CA))

Rule R16 creates an instance of corresponding_atts class for each distinct
output attribute and stores the name of the attribute in the attribute outputAtt. Rule
R17 iterates over all distinct output attributes, i.e. all instances of class correspond-
ing_atts, and then retrieves all the input attributes of all the Web services that have
the same output attribute. These input attributes are stored in the multi-valued attrib-
ute inputAtt, using the set aggregate function. This function is similar to list,
except that no duplicate values are stored inside the list. Finally, rule R18 creates a
single instance of the class all_output_atts that holds a list (set) of all the distinct
output attributes.

5 Conclusions and Future Work

This paper has presented the SWIM system, a knowledge-based framework for build-
ing Web Service Domains. A Service Domain is a Web Service composition model
where a requestor needs a collection of related services that he/she will use in a non-
predefined manner and the Service Domain aggregates these services by providing a
single service that functions as a proxy for them. When a requestor sends a message
to this proxy the environment will select one of the services and dispatch the message
to it. Service Domains offer increased scalability for large Web-based applications.

Existing approaches for building Service Domains just select a single service for
re-routing the requestor message that arrives at the proxy service. The main advantage
of the SWIM system is that it allows the easy definition of arbitrary service selection
strategies using a logic-based language. Furthermore, it goes beyond the mere condi-
tional re-routing of Web Service requests by allowing combination of results of mul-
tiple Web Services leading to a simple logic-based form for Web Service composi-
tion.

In the future we will explore the possibility of extending the framework for com-
posing not only Service Domains but for developing arbitrary Web Service composi-
tion models. We also intend to allow for user-defined selection and fusion algorithms
and to enrich the system with a user-profiling system. Its purpose will be to keep the
history of the user-defined selection and fusion strategies for each different user of
SWIM. This way, strategies that have been successfully used in the past by a user can
be retrieved and re-used in the future.

Finally, we plan to extend the current system for supporting richer Web Service
meta-data expressed in an ontology language like DAML-S [2], utilizing an RDF-
aware extension of our own X-DEVICE system [3]. Using domain-specific ontologies
will address syntactic and semantic heterogeneity problems that arise from the possi-
bly different data schemata that are used by the distinct Web Services. This is an im-
portant future trend in Web information systems development that is driven by the
Semantic Web vision.

6 References

[1] Aalst W. van der, "Don't Go with the Flow: Web Services Composition Standards Ex-
posed", IEEE Intelligent Systems, Vol. 18, No. 1, pp. 72-76, 2003.

[2] Ankolekar A. et al., "DAML-S: Web Service Description for the Semantic Web", Proc.
Int. Semantic Web Conf., LNCS 2342, Springer-Verlag, 2002, pp. 348–363.

[3] Bassiliades N., Vlahavas I., "Capturing RDF Descriptive Semantics in an Object Oriented
Knowledge Base System", 12th Int. WWW Conf. (WWW2003), Budapest, Hungary.

[4] Bassiliades N., Vlahavas I., "Processing production rules in DEVICE, an active knowl-
edge base system", Data and Knowledge Engineering, Vol. 24, No. 2, pp. 117–155, 1997.

[5] Bassiliades N., Vlahavas I., Elmagarmid A.K., "E-DEVICE: An extensible active knowl-
edge base system with multiple rule type support", IEEE Transactions on Knowledge and
Data Engineering, Vol. 12, No. 5, pp. 824-844, 2000.

[6] Bassiliades N., Vlahavas I., Sampson D., "Using logic for querying XML data", Web-
Powered Databases, D. Taniar, W. Rahayu (Eds.), pp. 1-35, Idea Publishing, 2003.

[7] Benatallah B., Dumas M., Maamar Z., "Definition and Execution of Composite Web Ser-
vices: The SELF-SERV Project", Bulletin of IEEE TC on Data Engineering, Vol. 25, No.
4, pp.47-52, 2002.

[8] Boag S., Chamberlin D., Fernandez M.F., Florescu D., Robie J., Simeon J., "XQuery 1.0:
An XML query language", November 2002. http://www.w3.org/TR/xquery/

[9] Box D., Ehnebuske D., Kakivaya G., Layman A., Mendelsohn N., Nielsen H.F., Thatte
S., Winer D., "Simple Object Access Protocol (SOAP) version 1.1", May 2000.
http://www.w3.org/TR/SOAP/

[10] Champion M., Ferris C., Newcomer E., Orchard D., "Web services architecture", No-
vember 2002. http://www.w3.org/TR/ws-arch/

[11] Chinnici R., Gudgin M., Moreau J., Weerawarana S., "Web Services Description Lan-
guage (WSDL) version 1.2", Working Draft, July 2002. http://www.w3.org/TR/wsdl12/

[12] Curbera F. et al., "Business Process Execution Language for Web Services (v. 1.0)",
IBM, July 2002. www-106.ibm.com/developerworks/webservices/library/ws-bpel

[13] Diaz O., Jaime A., "EXACT: An extensible approach to active object-oriented data-
bases", VLDB Journal, Vol. 6, No. 4, pp. 282–295, 1997.

[14] Leymann F., "Web Services Flow Language (WSFL 1.0)", IBM, May 2001. www-
3.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

[15] Leymann F., "Web Services: Distributed Applications without Limits - An Outline",
Proc. Database Systems for Business, Technology and Web (BTW 2003), Weikum G.,
Schöning H., Rahm E., (Eds.), GI-Edition - Lecture Notes in Informatics (LNI), P-26,
Bonner Köllen Verlag, 2003.

[16] Piccinelli G., "Service Provision and Composition in Virtual Business Communities",
Tech. Report, HP, 1999. www.hplhp.com/techreports/1999/HPL-1999-84.html

[17] SWIM. http://lpis.csd.auth.gr/systems/swim.html
[18] Tan Y.-S., Topol B., Vellanki V., J. Xing, "Implementing service Grids with the service

domain toolkit", IBM Corporation, 2002.
[19] Thatte S., "XLANG:Web Services for Business Process Design", Microsoft, Redmond,

Wash., 2001. www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm
[20] Tsoumakas G., Bassiliades N., Vlahavas I., "A Knowledge-based Web Information Sys-

tem for the Federation of Distributed Classifiers", to appear at Web Information Systems,
D. Taniar, W. Rahayu (eds.), Idea Publishing, 2004.

[21] X-DEVICE. http://lpis.csd.auth.gr/systems/x-device.html.

Nick

