
Pruning an Ensemble of Classifiers via

Reinforcement Learning

Ioannis Partalas ∗, Grigorios Tsoumakas and Ioannis Vlahavas

Department of Informatics, Aristotle University of Thessaloniki 54124

Thessaloniki, Greece

Abstract

This paper studies the problem of pruning an ensemble of classifiers from a Rein-
forcement Learning perspective. It contributes a new pruning approach that uses the
Q-learning algorithm in order to approximate an optimal policy of choosing whether
to include or exclude each classifier from the ensemble. Extensive experimental com-
parisons of the proposed approach against state-of-the-art pruning and combination
methods show very promising results. Additionally, we present an extension that
allows the improvement of the solutions returned by the proposed approach over
time, which is very useful in certain performance-critical domains.

1 Introduction

A very active research area during the recent years involves methodologies and
systems for the production and combination of multiple predictive models.
Within the Machine Learning community this area is commonly referred to
as Ensemble Methods [6].

Ensemble methods have traditionally been used for increasing the accuracy of
single classification and regression models. Ensembles achieve higher predictive
performance than individual models, mainly through the correction of their
uncorrelated errors. Today, ensemble methods continue to play an important
role in predictive analysis as they provide an appealing solution to several
other problems:

∗ Corresponding author.
Email addresses: partalas@csd.auth.gr (Ioannis Partalas),

greg@csd.auth.gr (Grigorios Tsoumakas), vlahavas@csd.auth.gr (Ioannis
Vlahavas).

Preprint submitted to Neurocomputing 26 June 2008

• Scale inductive algorithms to large databases [25]. Most inductive algorithms
are too computationally complex and suffer from memory problems when
applied to very large databases. A solution to this problem is to horizontally
partition the database into smaller parts, train a predictive model in each
of the smaller manageable part and combine the predictive models.
• Learn from multiple physically distributed data sets [23,32]. Often such data

can’t be collected to a single site due to privacy or size reasons. This problem
can be overcome through the combination of multiple predictive models,
each trained on a different distributed data set.
• Learn from concept-drifting data streams [27,33]. The main idea here is to

maintain an ensemble of classifiers that are trained from different batches
of the data stream. Combining these classifiers with a proper methodology
can solve the problem of data expiration that occurs whenever the learning
concept drifts.

Ensemble methods comprise two main phases. The first one concerns the pro-
duction of the different models. An ensemble can be composed of either homo-
geneous or heterogeneous models. Models that derive from different executions
of the same learning algorithm are called Homogeneous. Such models can be
produced by injecting randomness into the learning algorithm or through the
manipulation of the training instances, the input attributes and the model
outputs [7]. Models that derive from running different learning algorithms on
the same data set are called Heterogeneous. The second phase of an ensem-
ble method concerns the combination of the models. Common methods here
include Voting, Weighted Voting and Stacking [36].

Recent work [2,4,24,12,10,31,16–20,22,37], has considered an additional inter-
mediate phase, called ensemble pruning, that deals with the reduction of the
ensemble size prior to combination. Ensemble pruning is important for two
reasons: efficiency and predictive performance. Having a very large number of
models in an ensemble adds a lot of computational overhead. For example,
decision tree models may have large memory requirements [17] and lazy learn-
ing methods have a considerable computational cost during execution. The
minimization of run-time overhead is crucial in certain applications, such as
in stream mining. Equally important is the second reason, predictive perfor-
mance. An ensemble may consist of both high and low predictive performance
models. The latter may negatively affect the overall performance of the en-
semble. Pruning these models while maintaining a high diversity among the
remaining members of the ensemble is typically considered a proper recipe for
an effective ensemble.

The problem of pruning an ensemble of classifiers has been proved to be an
NP-complete problem [29]. Exhaustive search for the best subset of classifiers
is not tractable for ensembles that contain a large number of models. Greedy
approaches, such as [2,4,17,18,20], are fast, as they consider a very small part of

2

the space of all combinations. This however, may lead to suboptimal solutions
of the pruning problem.

This work studies the problem of pruning an ensemble of classifiers from a
Reinforcement Learning (RL) perspective. It uses the Q-learning algorithm
in order to approximate an optimal policy of choosing whether to include or
exclude each algorithm from the ensemble. The proposed algorithm visits a
larger part of the state space than greedy algorithms, at the expense of larger
execution time, but with the aim to discover a better solution.

The paper extends our previous work [22], with a new RL representation that
is more general and models more efficiently the ensemble pruning problem. It
also presents more extensive experiments and uses appropriate statistical tests
for the evaluation of the results. Finally, it introduces an extension that allows
the improvement of the solutions returned by the proposed approach over time,
which is very useful in certain performance-critical domains. Experimental
comparisons of the proposed approach against state-of-the-art pruning and
combination methods show very promising results.

The rest of this paper is structured as follows: Section 2 presents background
information on RL and Ensemble Methods. Section 3 reviews related work on
pruning ensembles of classifiers, as well as on using RL to model problems
related to pruning. Section 4 introduces the proposed approach. Section 5
presents the setup of the comparative experiments and Section 6 discusses
the results. Section 7 presents the extension of the proposed approach for
improving its performance over time, and finally Section 8 concludes this work.

2 Background

In this section we present background material on Reinforcement Learning
(RL) and Ensemble Methods.

2.1 Reinforcement Learning

RL addresses the problem of how an agent can learn a behavior through trial-
and-error interactions with a dynamic environment [28]. In an RL task the
agent, at each time step t, senses the environment’s state, st ∈ S, where S is
the finite set of possible states, and selects an action at ∈ A(st) to execute,
where A(st) is the finite set of possible actions in state st. The agent receives
a reward, rt+1 ∈ ℜ, and moves to a new state st+1. The general goal of the
agent is to maximize the expected return, where the return, Rt, is defined as

3

some specific function of the reward sequence.

The most widely-used model of optimal behavior for an RL agent is the
infinite-horizon discounted model [14], which takes the long-run reward of the
agent into account, but future rewards are geometrically discounted according
to discount factor γ, 0 ≤ γ < 1:

Rt = rt+1 + γrt+2 + γ2rt+3 + . . . =
∞
∑

k=0

γkrt+k+1

Some applications have a natural notion of a final time step [28] (e.g. end of
a game). In these applications, the agent-environment interaction breaks nat-
urally into subsequences, called episodes. Each episode ends in a special state
called the terminal state, followed by a reset to a standard starting state or to
a sample from a standard distribution of starting states. To accommodate the
use of the infinite horizon discounted model, a terminal state is modeled as an
absorbing state. An absorbing state has a single action that deterministically
leads back to itself with a reward of 0. When the agent is guaranteed to reach
a terminal state, then γ can be set to 1.

A policy π specifies that in state s the probability of taking action a is π(s, a).
For any policy π, the state-value function, V π(s), denotes the expected dis-
counted return, if the agent starts from s and follows policy π thereafter. The
value V π(s) of s under π is defined as:

V π(s) = Eπ {Rt | st = s} = Eπ

{

∞
∑

k=0

γkrt+k+1

∣

∣

∣

∣

st = s

}

,

where st and rt+1 denote the state at time t and the reward received after
acting at time t, respectively.

Similarly, the action-value function, Qπ(s, a), under a policy π can be defined
as the expected discounted return for executing a in state s and thereafter
following π:

Qπ(s, a) = Eπ {Rt | st = a, at = a} = Eπ

{

∞
∑

k=0

γkrt+k+1

∣

∣

∣

∣

st = a, at = a

}

.

The optimal policy, π∗, is the one that maximizes the value, V π(s), for all
states s, or the action-value, Qπ(s, a), for all state-action pairs.

In order to learn the optimal policy, the agent learns the optimal value func-

tion, V ∗, or the optimal action-value function, Q∗ which is defined as the ex-

4

pected return of taking action a in state s and thereafter following the optimal
policy π∗:

Q∗(s, a) = E

{

rt+1 + γ max
a′

Q∗(st+1, a
′)

∣

∣

∣

∣

st = s, at = a

}

The optimal policy can now be defined as:

π∗ = arg max
a

Q∗(s, a)

A widely used algorithm for finding the optimal policy is the Q-learning algo-
rithm [34] which approximates the Q function with the following form:

Q(st, at)← Q(st, at) + α(rt+1 + γ max
a′

Q(st+1, a
′)−Q(st, at)).

2.2 Ensemble Methods

2.2.1 Producing the Models

An ensemble can be composed of either homogeneous or heterogeneous models.
Homogeneous models derive from different executions of the same learning al-
gorithm by using different values for the parameters of the learning algorithm,
injecting randomness into the learning algorithm or through the manipulation
of the training instances, the input attributes and the model outputs [7]. Meth-
ods for producing homogeneous models are bagging [3] and boosting [26].

Heterogeneous models derive from running different learning algorithms on
the same dataset. Such models have different views about the data, as they
make different assumptions about it. For example, a neural network is robust
to noise in contrast to a k-nearest neighbor classifier.

2.2.2 Combining the Models

A lot of different ideas and methodologies have been proposed in the past
for the combination classification models. The main motivation behind this
research is the common observation that there is no single classifier that per-
forms significantly better in every classification problem. The necessity for
high classification performance in some critical domains (e.g. medical, finan-
cial, intrusion detection) have urged researchers to explore methods that com-
bine different classification algorithms in order to overcome the limitations of
individual learning paradigms.

Unweighted and Weighted Voting are two of the simplest methods for com-
bining not only Heterogeneous but also Homogeneous models. In Voting, each

5

model outputs a class value (or ranking, or probability distribution) and the
class with the most votes (or the highest average ranking, or average probabil-
ity) is the one proposed by the ensemble. In Weighted Voting, the classifica-
tion models are not treated equally. Each model is associated with a coefficient
(weight), usually proportional to its classification accuracy.

Let x be an instance and mi, i = 1..k a set of models that output a probability
distribution mi(x, cj) for each class cj, j = 1..n. The output of the (weighted)
voting method y(x) for instance x is given by the following mathematical
expression:

y(x) = arg max
cj

k
∑

i=1

wimi(x, cj),

where wi is the weight of model i. In the simple case of voting (unweighted),
the weights are all equal to one, that is, wi = 1, i = 1..k.

Stacked Generalization [36], also known as Stacking, is a method that combines
multiple classifiers by learning a meta-level (or level-1) model that predicts
the correct class based on the decisions of the base-level (or level-0) classifiers.
This model is induced on a set of meta-level training data that are typically
produced by applying a procedure similar to k-fold cross-validation on the
training data: Let D be the level-0 training data set. D is randomly split into
k disjoint parts D1 . . .Dk of equal size. For each fold i = 1 . . . k of the process,
the base-level classifiers are trained on the set D \Di and then applied to the
test set Di. The output of the classifiers for a test instance along with the true
class of that instance form a meta-instance. A meta-classifier is then trained
on the meta-instances and the base-level classifiers are trained on all training
data D. When a new instance appears for classification, the output of all
base-level classifiers is first calculated and then propagated to the meta-level
classifier, which outputs the final result.

In [9] Dzeroski and Zenko proposed a new method of stacking, where they
use multi-response model trees at the meta-level. Experimental comparisons
showed that stacking with mutli-response model trees performs better than
other stacking approaches.

3 Related Work

This section reviews related work on the ensemble pruning problem. Addi-
tionally, we present approaches that adopt the RL framework to solve related
problems to ensemble pruning.

6

3.1 Pruning ensembles of classifiers

Margineantu and Dietterich [17] introduce heuristics to calculate the benefit
of adding a classifier to an ensemble, using forward selection in a number of
them. These heuristics are based on the diversity and the performance of the
classifiers. The authors experiment with boosting ensembles and conclude that
pruning can help an ensemble to increase its predictive performance.

Fan et al. [10] prune an ensemble of classifiers using forward selection of the
classification models, like in [17]. As a heuristic, they use the benefit that
is obtained by evaluating the combination of the selected classifiers with the
method of voting. Their results show that pruning increases the predictive
performance and speeds up the run time of an ensemble of C4.5 decision trees
trained on disjoint parts of a large data set.

Zhou and Tang [38] perform stochastic search in the space of model subsets
using a standard genetic algorithm. The models in this case are decision trees
produced through bagging. The ensemble is represented as a bit string, using
one bit for each decision tree. Decision trees are included or excluded from the
ensemble depending on the value of the corresponding bit. Standard genetic
operations such as mutations and crossovers are used and default values are
used for the parameters of the genetic algorithm. The voted performance of
the ensemble is used as a function for evaluating the fitness of individuals in
the population.

Caruana et al. [4] produce an ensemble of 1000 classification models using
different algorithms and different sets of parameters for these algorithms. They
subsequently prune the ensemble following an approach that is similar to [17].
This way they manage to achieve very good predictive performance compared
to state-of-the-art ensemble methods.

Martinez-Munoz et al. [19,20] present two algorithms for pruning an ensemble
of classifiers. In [19] the authors define for each classifier a vector with dimen-
sionality equal to the size of the training set, where each element i corresponds
to the decision of the classifier for the instance i. The classifier is added to the
ensemble according to its impact in the difference between the vector of the
ensemble (average of individual vectors) with a predefined reference vector.
This reference vector indicates the desired direction towards which the vector
of the ensemble must align. In [20], the authors produce an initial ensemble
of bagging models. Then using a procedure based on boosting, they add to
the ensemble the classifier with the lowest error and adapt the weights for the
next classifier using the weights of the currently incorporated classifier. The
process ends when a predefined size for the final pruned ensemble is reached.

Giacinto and Roli [12] employ Hierarchical Agglomerative Clustering (HAC)

7

for classifier pruning. This type of clustering requires the definition of a dis-
tance metric between two data points (here classifiers). The authors defined
this metric as the probability that the classifiers do not make coincident errors
and estimate it from a validation set in order to avoid overfitting problems.
The authors also defined the distance between two clusters as the maximum
distance between two classifiers belonging to these clusters. This way they im-
plicitly used the complete link method for inter-cluster distance computation.
Pruning is accomplished by selecting a single representative classifier from
each cluster. The representative classifier is the one exhibiting the maximum
average distance from all other clusters.

Tsoumakas et al. [31,30] prune an ensemble of heterogeneous classifiers us-
ing statistical procedures that determine whether the differences in predictive
performance among the classifiers of the ensemble are significant. Only the
classifiers with significantly better performance than the rest are retained and
subsequently combined with the methods of (weighted) voting. The obtained
results are better than those of state-of-the-art ensemble methods.

Zhang et al. [37] formulate the ensemble pruning problem as a mathematical
problem and apply semi-definite programming (SDP) techniques. In specific,
the authors initially formulated the ensemble pruning problem as a quadratic
integer programming problem that looks for a fixed-size subset of k classifiers
with minimum misclassification and maximum divergence. They subsequently
found that this quadratic integer programming problem is similar to the “max
cut with size k” problem, which can be approximately solved using an algo-
rithm based on SDP. Their algorithm requires the number of classifiers to
retain as a parameter and runs in polynomial time.

3.2 RL approaches to related problems

Reinforcement Learning (RL) has not been used in the past for ensemble prun-
ing. However, we found two approaches that use RL for solving two different
yet related problems: classifier selection and algorithm (e.g. sorting) selection.
We believe that it is worth mentioning them, because they offer some inter-
esting alternative ideas on how can one use RL in order to model related
problems that are not directly suitable for RL.

Dimitrakakis and Bengio [8] use RL to adapt a policy for the combination
of multiple classifiers. Specifically, an architecture with n experts (classifiers),
implemented by multi-layer perceptrons (MLPs) and an additional MLP with
n outputs acting as the controlling agent are employed. The state space of
the controlling agent consists of the instance space (all the possible different
instances) of the particular classification problem and the action is the choice

8

of the expert who will take the classification decision. On top of that, the
expert who has been chosen uses the instance to train itself.

Lagoudakis and Littman [15], formulate the problem of algorithm selection as
a Markov Decision Process (MDP) and use an RL approach to solve it. Given a
set of algorithms that are equivalent in terms of the problem they solve, and a
set of instance features, such as problem size, an RL approach is used to select
the right algorithm for each instance based on the set of features. The state of
the MDP is represented by the features of the current instance and the actions
are the different algorithms that can be selected. Finally, the immediate cost
for choosing some algorithm on some problem is the real time taken for that
execution. The learning mechanism is a variation of the Q-learning algorithm.

4 Our Approach

We first formulate the problem of pruning an ensemble of classifiers C =
{c1, c2, . . . , cn} as a Reinforcement Learning (RL) task. We then present the
particular RL algorithm used to deal with the problem.

4.1 Ensemble pruning as an RL task

We define the following components of every RL task, in terms of the ensemble
pruning problem:

(1) A set of states, S.
(2) A set of actions, A.
(3) A reward function, r(s, a).

In our approach a state s is a pair (C ′, ci). C ′ is the current ensemble, a subset
of C containing the classifiers that have been so far selected for inclusion in the
final pruned ensemble, while ci is the classifier that is currently under evalua-
tion and will be included or excluded based on the next action. Consequently,
the set of states S is the Cartesian product of C and its powerset, P (C):

S = P (C)× C

In each state (C ′, ci) the agent can select between two actions. It can either
include algorithm ci into the current ensemble or not. Therefore A contains
the 2n actions of including and excluding each algorithm:

9

A =
n
⋃

i=1

{include(ci), exclude(ci)}

The task of selecting a subensemble of classifiers is modeled as an episodic
task, where each episode proceeds as follows: it starts with an empty set of
classifiers, s0 = (∅, c1), and lasts n time steps. At each time step, t = 1 . . . n,
the agent chooses to include or not classifier ct into the ensemble, A(st−1) =
{include(ct), exclude(ct)}. The episode ends when the decision to include or
exclude the nth algorithm is taken and the agent arrives at the final state
sn. The presentation order of the classifiers during the episode is fixed and it
does not change from one iteration to the next. Figure 1 graphically shows an
episode. Since the agent is guaranteed to visit the terminal state, we set γ to
1.

Fig. 1. The procedure of selecting a sequence of classifiers.

Rewards are equal to zero for all transitions, apart from the final one, where the
agent receives a reward equal to the predictive performance of the ensemble
of the final state. The reward definition is intentionally general in order to
stress the capability of using different instantiations of the performance metric,
the performance evaluation method and the classifier combination approach,
depending on the requirements of the domain or the preferences of the data
analyst.

For example, the performance evaluation metric could be instantiated to ac-
curacy, area under the ROC curve, precision/recall f-score, a cost-sensitive
metric and others. Similarly, cross-validation, repeated hold-out or some other
method could be used for performance evaluation. For the combination of the
classifiers, simple and fast approaches such as voting are suggested.

The above RL modeling of the pruning problem aims to maximize the per-
formance of the final pruned ensemble, by rewarding the agent only on the
final step. It restricts the actions to a small number (two for each state) and

10

consequently reduces the overall complexity of the proposed algorithm. This
offers the advantage of requiring less episodes to train the agent.

4.2 The proposed algorithm

We now continue with the particular RL algorithm that we propose in order
to deal with the above problem, which is based on Q-Learning.

During an episode, the agent must stochastically select actions in order to
explore the state space. One way to achieve this aim is to make use of the
ǫ− greedy action selection method, where an action a is selected according to
the following rule:

a =
{ a random action with probability ǫ

arg maxa′ Q(s, a′) with probability 1− ǫ

In this work we employ function approximation methods to tackle the prob-
lem of the large state space as well as the time needed to fill the values for
every state-action pair in a tabular policy format. A well-known method is the
combination of Q-learning with eligibility traces, Q(λ), and gradient descent
function approximation [28]. Eligibility traces can be considered as a measure
of the visiting frequency of a state and are used to speed up the training
process. Each state-action pair is associated with its eligibility trace, which is
updated in order to give credit to actions.

Additionally, linear methods are used to approximate and represent the value
function. In linear methods the value function Qt(s, a) is a linear function of

a parameter vector ~θt whose number of parameters is equal to the number of
features in a state. At the training phase, a linear network receives an input
vector which represents the features of the current state and its output is an
estimation of the action-value of the state. Gradient descent methods are used
to update the weights of the network. Further details about the algorithms
can be found in [28].

The feature vector of the state has length n + 1, where the first n coordinates
represent the presence or absence of the classifiers from the ensemble and the
last coordinate represents the classifier that is being tested.

Figure 2 presents the pseudocode of the proposed approach. At the end of the
training phase, the agent executes a final episode choosing the action with the
highest Q value at each time step. The resulting subset of classifiers is the
output of our approach.

11

(1) Initialize
−→
θ , −→e0 =

−→
0 , ǫ and feature vector

−→
φ =

−→
0

(2) Repeat (for each episode):
(a) s← (∅, c1)
(b) Estimate Q(s, include(c1)) and Q(s, exclude(c1))
(c) For each algorithm ci

(i) p← RandomReal(0, 1)
(ii) If p < ǫ then

(A) a← random action

(B) −→e0 =
−→
0

(iii) Else
(A) a← arg maxa′ Q(s, a′)
(B) −→e = λ−→e

(d) −→e = −→e + φs

(e) Estimate Q(s, a), ∀a ∈ A(s′)
- Q(s, a) =

∑n+1
i=1 θ(i)φs(i)

(f) a′ ← arg maxa Qa

(g) δ ← r + arg maxa′ Qa′ −Qa

(h)
−→
θ ←

−→
θ + αδ−→e

(i) Set s← s′

(3) Until
−→
θ converges.

Fig. 2. Pseudocode of the proposed approach.

5 Experimental Setup

The empirical comparison of EPRL against other combination and pruning
methods is based on 20 data sets from the UCI Machine Learning repository
[1]. Table 1 presents the details of these data sets (Folder in UCI server, number
of instances, classes, continuous and discrete attributes, percentage of missing
values).

Initially each dataset is randomly split into three disjunctive parts: a training
set DTr, an evaluation set DEv and a test set DTe, consisting of 60%, 20%
and 20% of the examples in the dataset respectively. Two different ensemble
production methods are used to create an ensemble of 100 models based on the
data of DTr: a) running different learning algorithms with different parameter
configurations (heterogeneous ensemble), and b) bootstrap sampling, as in
bagging (homogeneous ensemble).

The WEKA machine learning library is used as the source of the learning
algorithms [35] in both cases. In the second case we train 100 decision trees
using the C4.5 algorithm with default configuration (pruning with 0.25 con-
fidence factor). In the first case we train 2 naive Bayes classifiers, 4 decision
trees, 32 multilayer perceptrons, 32 k-Nearest Neighbors (k-NNs) and 30 sup-
port vector machines (SVMs). The different parameters that are used to train

12

Table 1
Details of the data sets: Folder in UCI server, number of instances, classes, contin-
uous and discrete attributes, percentage of missing values

UCI Folder Inst Cls Cnt Dsc MV(%)

audiology 226 24 0 69 2.03

breast-cancer 286 2 0 9 0.35

breast-cancer-winsonsin 699 2 9 0 0.25

chess (kr-vs-kp) 3196 2 0 36 0.00

cmc 1473 3 2 7 0.00

dermatology 366 6 1 33 0.01

ecoli 336 8 7 0 0.00

glass 214 7 9 0 0.00

heart-disease (hungary) 294 5 6 7 20.46

heart-disease (switzerland) 123 5 6 7 17.07

hepatitis 155 2 6 13 5.67

image 2310 7 19 0 0.00

ionosphere 351 2 34 0 0.00

iris 150 3 4 0 0.00

labor 57 2 8 8 35.75

lymphography 148 4 3 15 0.00

pima-indians-diabetes 768 2 9 0 0.00

statlog (australian) 690 2 6 9 0.65

statlog (german) 1000 2 7 13 0.00

statlog (heart) 270 2 13 0 0.00

the algorithms are the following (default values are used for the rest of the
parameters):

• Naive Bayes: we built one model with default parameters and one with
kernel estimation.
• Decision trees: we used 2 values for the confidence factor {0.25, 0.5}, and 2

values for Laplace smoothing {true, false}.
• Multilayer perceptrons: we used 4 values for the hidden nodes {1, 2, 4, 8}, 2

values for the learning rate {0.3, 0.6} and 4 values for the momentum term
{0.0, 0.2, 0.5, 0.9}.
• k-NNs: we used 16 values for k distributed evenly between 1 and the number

13

of training instances. We also used 2 weighting methods: {no-weighting,
inverse weighting}.
• SVMs: we used 3 values for the complexity parameter {10−5, 10−4, 10−3}

and 10 different kernels. We used 2 polynomial kernels (degree 2 and 3) and
8 radial kernels (gamma {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 2}).

We compare the performance of our approach, Ensemble Pruning via Rein-
forcement Learning (EPRL), against the classifier combination methods Vot-

ing (V) and Stacking with Multi-Response Model Trees (SMT) [9] and the
ensemble pruning methods Forward Selection (FS) [10,4] and Selective Fusion

(SF) [30]. SF is a method for pruning ensembles of heterogeneous classifiers
and does not participate in the experiments concerning homogeneous ensem-
bles.

EPRL is executed until the difference in the weights of the linear network
between two subsequent episodes becomes less than a small threshold, 10−4.
This eliminates the need to specify explicitly a number of episodes. The perfor-
mance of the pruned ensemble at the end of each episode is evaluated on DEv

based on its accuracy using voting. The models of the final subensemble are
combined using voting. The value of ǫ was set to 0.6, in order to have a high
degree of exploration, and reduced by a factor of 0.0001% at each episode. The
weighting factor λ is set to 0.9 to speed up the training process. Note that the
specific values of all these hyperparameters may be influencing the results of
the experiments, so conclusions should be generalized with caution. However,
we believe that changes to ǫ and λ parameters will mostly affect the training
time and not the overall performance of the method.

In SMT, DEv is used for the production of the required meta-level training
data. In the combination method V the set DTr ∪ DEv is used to build the
ensembles.

FS starts with an empty ensemble and at each step it greedily adds the clas-
sifier that leads to the highest accuracy of the ensemble on DE using the
voting method. From the sequence of subensembles generated, we select the
subensemble with the highest classification accuracy on SEv using voting, as
in [4], instead of using an arbitrary percentage or number of models. This
stopping procedure is the original that used in [4]. The models of the selected
subensemble are combined using voting.

SF has three tunable parameters: the multiple comparisons procedure, the
confidence interval of this procedure and the combination method for the
selected subensemble. We use Tukey’s test for the first parameter, as it has
been found to outperform two other procedures (Hsu’s test, Scott & Knott’s
procedure) in a past study [30]. We set the confidence interval to the standard
value used in most statistical procedures (95%), leading to a critical value

14

of 8.317. The critical value was calculated via regression, as we didn’t find a
table of precalculated critical values for 100 treatments. The set DTr ∪ DEv

is used to train the base models of the ensembles. The models of the selected
subensemble are combined using voting, similarly to EPRL and FS.

The performance of all methods is evaluated on DTe. Apart from the classifi-
cation accuracy, we also record the size of the final ensemble for the ensemble
pruning methods. The whole experiment is performed 10 times for each dataset
and the results are averaged.

6 Results and Discussion

In this section we discuss and analyze the results for both the heterogeneous
and the homogeneous case.

6.1 Heterogeneous case

Table 2 presents the accuracy along with the standard deviation of each algo-
rithm on each dataset, as well as the corresponding ranks. With bold typeface,
we highlight the winning algorithm in each dataset. We first notice, that the
proposed algorithm obtains the best performance in 7 cases followed by SF
and SMT, with 5 winning cases each, while FS and V have the best perfor-
mance in 4 and 2 cases respectively. This fact highlights the strength of the
proposed approach.

According to Demsar [5], the appropriate way to compare multiple algorithms
on multiple data sets is based on their average rank across all data sets. On
each data set, the algorithm with the highest accuracy gets rank 1.0, the one
with the second highest accuracy gets rank 2.0 and so on. In case two or more
algorithms tie, then they all receive the average of the ranks that correspond
to them.

We notice that the best performing algorithm is EPRL with average rank
2.475 while SF, FS, V and SMT follow up with average ranks 2.5, 2.625, 3.675
and 3.725 respectively. The fact that the proposed approach is on average
the best performing algorithm as well as that it is ranked in the first place
for 7 datasets out of 20, shows not only its strength but also its robustness.
In contrast, the method with the second best rank (SF) achieves the highest
accuracy (and rank) in only five datasets.

Next, we make use of Friedman’s test [11] that compares the average ranks of
the algorithms under the null-hypothesis, which states that all algorithms are

15

equivalent and so must be their performance. More specifically, we use the FF

test that was proposed by [13] and is based on Friedman’s χ2
F statistic. With

confidence level p < 0.05 the FF test shows critical differences among the
algorithms and so we reject the null hypothesis and proceed to the post-hoc
Nemenyi test [21].

Figure 3 graphically represents the results of the Nemenyi test with 90% con-
fidence, q0.10 = 2.459 and CD = 1.23. The best ranks are to the right and the
groups of algorithms that are not significantly different are connected with a
bold line. We notice that there are three groups of similar algorithms and that
EPRL is significantly better than SMT and V.

1234

EPRL

5

FSSMT

CD

V
SF

Fig. 3. Graphical representation of the Nemenyi test for the Heterogeneous case.

As far as concerns the performance of V, we observe in Table 2 that the use of
all the members of the ensemble, leads to low performance. On the other hand,
the pruning algorithms outperform the whole ensemble and in particular the
accuracy is increased fair enough in most cases. This fact justifies the pruning
procedure.

Another interesting observation is the bad performance of SMT. This behavior
can be explained if we take into account the fact that SMT can’t handle
problems with many base-level classifiers due to its inefficient to generalize
well from the meta-level training data for a large ensemble size.

Table 3 depicts the size of the pruned ensemble of each algorithm on each
dataset along with the average values across all datasets. FS and EPRL pro-
duce the smallest final ensembles with an average of 5.0 and 5.47 models
respectively, while SF keeps 73.55 models at average. Considering also the
performance of the algorithms, we conclude that EPRL achieves the best per-
formance and keeps the size of the final ensemble small.

Figures 4(a), 4(b) and 4(c) present the average type of models selected from
FS, EPRL and SF respectively. The results are averaged for all datasets. We
first notice that all the algorithms select mostly MLPs and k − NNs. More
specifically, SF selects a balanced mixture of MLPs (28.2) and k−NNs (24.9)
and interestingly in all cases it keeps the DT models (4.0). EPRL and FS
produce ensembles with 2.8 and 3.1 MLPs along with 1.5 and 1.2 k − NNs

respectively.

16

Table 2
Folder in UCI server, accuracy and rank of each method on each of the 20 datasets
for the heterogeneous case.

Accuracy Rank

UCI Folder FS EPRL SF V SMT FS EPRL SF V SMT

audiology 77.3±4.0 78.0±4.7 77.8±5.9 75.9±6.1 26.4±5.3 3.0 1.0 2.0 4.0 5.0

breast-cancer 74.4±4.8 73.3±4.6 71.6±4.2 71.6±4.2 66.5±4.7 1.0 2.0 3.5 3.5 5.0

breast-w 96.3±1.5 96.3±1.6 96.9±1.8 95.0±1.9 97.5±2.1 3.5 3.5 2.0 5.0 1.0

cmc 52.8±2.4 53.2±2.7 51.6±4.5 47.1±2.7 45.5±3.6 2.0 1.0 3.0 4.0 5.0

dermatology 96.6±1.5 96.7±1.5 96.5±1.0 96.4±1.3 65.3±2.2 2.0 1.0 3.0 4.0 5.0

ecoli 83.9±4.3 82.8±4.8 83.7±5.0 82.4±5.2 67.2±6.1 1.0 3.0 2.0 4.0 5.0

kr-vs-kp 99.3±0.3 99.2±0.2 99.4±0.2 98.8±0.5 97.6±0.5 2.0 3.0 1.0 4.0 5.0

glass 68.1±5.7 70.2±6.4 68.6±5.5 68.1±5.5 52.1±7.2 3.5 1.0 2.0 3.5 5.0

heart-h 79.5±5.4 79.0±5.7 79.9±5.6 79.9±5.6 80.7±6.3 4.0 5.0 2.5 2.5 1.0

hepatitis 81.3±5.9 81.3±5.9 78.1±4.0 78.1±4.0 81.9±5.9 2.5 2.5 4.5 4.5 1.0

image 96.6±0.6 96.8±0.6 97.0±0.5 96.2±0.8 64.0±1.0 3.0 2.0 1.0 4.0 5.0

ionosphere 91.6±3.0 91.6±3.0 90.7±3.3 83.4±3.2 85.3±3.1 1.5 1.5 3.0 5.0 4.0

iris 94.7±0.4 94.7±0.4 95.7±3.3 94.0±2.4 99.3±1.3 3.5 3.5 2.0 5.0 1.0

labor 89.1±8.9 89.1±8.9 94.5±4.5 94.5±4.5 83.6±7.8 3.5 3.5 1.5 1.5 5.0

lymph 82.4±4.4 80.3±4.3 85.5±4.8 85.5±4.8 78.3±6.1 3.0 4.0 1.5 1.5 5.0

diabetes 75.2±4.1 75.7±3.9 67.5±6.1 66.5±4.6 75.2±4.7 2.5 1.0 4.0 5.0 2.5

credit-a 85.1±1.5 85.5±2.4 85.7±2.2 83.8±2.3 83.6±3.5 3.0 2.0 1.0 4.0 5.0

credit-g 73.2±2.6 74.4±2.2 69.0±2.4 69.0±2.4 69.8±2.6 2.0 1.0 4.5 4.5 3.0

heart-statlog 82.2±5.6 81.9±6.2 81.5±4.3 81.5±3.5 79.1±4.2 1.0 2.0 3.5 3.5 5.0

heart-s 33.3±9.3 32.9±8.6 37.5±8.5 37.5±8.5 41.3±8.4 4.0 5.0 2.5 2.5 1.0

Average 80.64 80.64 80.43 79.31 72.01 2.575 2.425 2.5 3.775 3.725

6.2 Homogeneous case

Table 4 shows the accuracy, along with the standard deviation, and the corre-
sponding rank of each algorithm on each dataset for the homogeneous models.
We notice that the best performing algorithm is V, 1.225, and follows EPRL
and FS with 2.05 and 2.825 average rank respectively. EPRL is the best per-
forming algorithm in 5 cases while V in 17 cases. FS is the winning algorithm
in only one case, and SMT has no wins. Although EPRL holds the second
best rank, it has a satisfactory number of wins which shows its strength.

Figure 5 presents graphically the Nemenyi test with 90% confidence, q0.10 =
2.291 and CD = 0.935. We notice that there are two groups of similar algo-
rithms. More specifically, the V algorithm is significantly better than FS and
SMT, while both EPRL and FS have significantly better performance than
SMT.

Table 5 presents the size of the final pruned ensemble for each algorithm
on each dataset. Like in heterogeneous case, we notice that EPRL and FS

17

Table 3
Folder in UCI server and average size of the final ensemble for the heterogeneous
case.

UCI Folder FS EPRL SF

audiology 3.9 3.5 15.6

breast-cancer 3.4 6.7 100.0

breast-w 2.5 3.1 64.8

cmc 11.1 8.6 75.6

dermatology 2.9 1.0 45.5

ecoli 4.1 3.2 57.5

kr-vs-kp 4.2 3.7 42.8

glass 5.0 6.9 79.6

heart-h 2.1 5.2 96.9

hepatitis 1.5 1.9 100.0

image 14.6 9.8 37.0

ionosphere 1.9 3.4 51.0

iris 1.0 1.0 66.6

labor 1.0 1.0 100.0

lymph 2.1 3.8 97.0

diabetes 9.4 10.1 95.7

credit-a 7.1 10.6 71.1

credit-g 9.2 10.4 100.0

heart-statlog 9.3 6.2 74.4

heart-s 3.7 9.3 100.0

Average 5.0 5.47 73.55

produce ensembles with an average of 7.94 and 5.67 models and thus with low
computational cost. In general, EPRL manages to produce ensembles with
high predictive performance and to decrease substantially the size of the full
ensemble. This means that when the objective is to make an accurate decision
and keep the computational and memory cost low, EPRL attains a great
primacy against FS and the combination methods V and SMT.

18

xx

xx
xxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxx
���

 3

 4

 5

DTNBSVMk−NNMLP

M
e
a
n

 N
u

m
b

e
r

o
f

M
o

d
e
ls

(a) FS

xx

xxx

xxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxx
���

 3

 4

 5

DTNBSVMk−NNMLP

M
e
a
n

 N
u

m
b

e
r

o
f

M
o

d
e
ls

(b) EPRL

xx

xx

xx

xxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxx
������
���� 30

 35

DTNBSVMk−NNMLP

M
e
a
n

 N
u

m
b

e
r

o
f

M
o

d
e
ls

(c) SF

Fig. 4. Type of selected models for each algorithm.

1234

FS

SMT

EPRL

V

CD

Fig. 5. Graphical representation of the Nemenyi test for the Homogeneous case.

6.3 Running times

Table 6 presents the running times of the different algorithms for one indicative
dataset (image, 2310 instances and 7 classes). EPRL has the largest running
time, 5.35 minutes, and follows SMT, 0.48 minutes, while FS and SF need
only 0.21 and 0.16 minute respectively, to prune the ensemble.

7 Anytime Pruning

An interesting aspect of the proposed approach is its anytime property, which
means that it can output a solution at any given time point. As we show
from the experimental results the approach gradually improves by exploiting

19

Table 4
Folder in UCI server, accuracy and rank of each method on each of the 20 datasets
for the homogeneous case.

Accuracy Rank

UCI Folder FS EPRL V SMT FS EPRL V SMT

audiology 74.7±6.9 76.2±3.7 76.1±4.0 60.2±7.8 3.0 1.0 2.0 4.0

breast-cancer 73.9±4.3 73.9±4.8 76.0±4.1 62.6±4.5 2.5 2.5 1.0 4.0

breast-w 95.5±1.6 95.7±1.5 95.8±1.1 95.3±1.4 3.0 2.0 1.0 4.0

cmc 52.4±3.1 52.8±2.5 53.8±2.3 44.3±4.6 3.0 2.0 1.0 4.0

dermatology 94.2±2.1 94.4±2.8 96.3±3.3 91.9±2.7 3.0 2.0 1.0 4.0

ecoli 83.6±3.7 85.1±2.4 84.9±2.3 79.7±4.0 3.0 1.0 2.0 4.0

kr-vs-kp 99.2±0.3 99.2±0.3 99.2±0.3 98.8±0.3 2.0 2.0 2.0 4.0

glass 68.6±6.3 67.1±6.0 71.0±6.8 54.3±6.4 2.0 3.0 1.0 4.0

heart-h 77.6±3.7 78.4±3.2 77.9±3.1 75.5±4.2 3.0 1.0 2.0 4.0

hepatitis 78.4±5.5 78.4±7.9 79.4±5.2 77.4±5.7 2.5 2.5 1.0 4.0

image 96.4±0.6 96.8±0.8 96.8±0.7 94.1±1.1 3.0 1.5 1.5 4.0

ionosphere 90.6±2.2 90.6±2.6 93.0±2.4 86.1±3.2 2.5 2.5 1.0 4.0

iris 94.3±3.0 94.0±2.9 96.3±3.1 94.7±4.2 3.0 4.0 1.0 2.0

labor 72.7±1.1 74.5±1.2 79.1±1.0 54.5±1.1 3.0 2.0 1.0 4.0

lymph 75.2±7.0 77.6±9.0 78.3±9.0 65.9±8.2 3.0 2.0 1.0 4.0

diabetes 74.5±3.9 75.0±4.2 75.3±4.2 67.9±4.4 3.0 2.0 1.0 4.0

credit-a 86.7±2.1 86.9±2.2 87.3±2.3 83.8±3.1 3.0 2.0 1.0 4.0

credit-g 73.3±2.2 73.6±2.4 75.2±2.3 67.7±3.1 3.0 2.0 1.0 4.0

heart-statlog 77.2±5.9 80.0±5.4 81.5±3.7 71.9±4.3 3.0 2.0 1.0 4.0

heart-s 35.8±7.7 41.3±8.0 42.9±4.9 35.0±8.5 3.0 2.0 1.0 4.0

Average 78.7 79.6 80.8 73.1 2.825 2.05 1.225 3.9

the knowledge it acquired. However, as the ǫ parameter of the ǫ-greedy action
selection method becomes very small, the exploration practically ceases and
the agent fully exploits the acquired knowledge. As a consequence the per-
formance converges with no further improvement. It would be very useful if
the proposed approach continued improving with time, as the are many do-
mains where predictive performance is critical and the data analyst is willing
to sacrifice extra learning time in order to improve performance.

20

Table 5
Folder in UCI server and average size of the final ensemble for the homogeneous
case.

UCI Folder FS EPRL

audiology 4.8 5.5

breast-cancer 4.4 7.6

breast-w 4.5 9.1

cmc 13.1 19.7

dermatology 2.4 4.9

ecoli 5.5 10.9

kr-vs-kp 2.5 3.6

glass 5.9 8.2

heart-h 4.9 4.1

hepatitis 2.5 3.7

image 9.7 8.0

ionosphere 3.4 5.3

iris 1.1 4.1

labor 1.5 1.7

lymph 3.5 5.8

diabetes 10.1 11.4

credit-a 5.7 8.7

credit-g 14.7 14.7

heart-statlog 6.7 9.5

heart-s 6.5 12.3

Average 5.67 7.94

Table 6
Running times of the algorithms for one indicative dataset.

FS EPRL SF SMT

0.21 m 5.35 m 0.16 m 0.48 m

To accommodate this, we introduce the notion of learning periods, where
a learning period consists of a number of learning episodes. When a learning
period starts, the ǫ parameter is set to a high value, in order to explore the state
space, and is decayed over episodes. A learning period ends when ǫ is less than

21

a small threshold which indicates that the agent does not choose exploratory
actions. At the same time, the weights of the network that approximates the
action-value function are retained for the next learning period, so that the
acquired knowledge is not forgotten.

To evaluate this extension of the proposed approach, we setup an experiment
for both heterogeneous and homogeneous models. More specifically, the value
of ǫ is set to 0.6 when a period finishes, and decays by a factor of 10−4. A
learning period ends when ǫ < 0.05.

Table 7 depicts the average rank of the competing algorithms across all datasets
for the 4 first periods in the heterogeneous case. Note that only the absolute
performance of EPRL changes with respect to the periods, leading to a change
of its average rank whenever its performance exceeds that of a previously bet-
ter method. However, as ranks are a relative measure of performance, the rank
of all methods changes as a result of the change in the absolute performance
of EPRL. We notice that EPRL gradually improves its performance per pe-
riod and it finally outperforms the other algorithms and especially FS and
SF. This evidence indicates that the anytime pruning extension improves the
performance of EPRL over time.

Table 7
Average rank of all algorithms for the heterogeneous case.

Period FS EPRL SF V SMT

1 2.775 2.625 2.5 3.8 3.725

2 2.725 2.225 2.55 3.8 3.775

3 2.8 1.95 2.7 3.85 3.775

4 2.85 1.8 2.75 3.85 3.825

Table 8 shows the average rank of the algorithms for the different number of
periods. As it can be seen, only in the second period EPRL improves slightly
its overall performance while in the next two periods there are no changes in
the average ranks.

8 Conclusions

This paper has presented a method for pruning an ensemble of classifiers
based on Reinforcement Learning. The proposed method evaluated on a large
number of datasets and compared with other pruning methods, as well as
with a state-of-the-art combination method. The experiment carried out on

22

Table 8
Average rank of all algorithms for the homogeneous case.

Period FS EPRL V SMT

1 2.7 2.025 1.15 3.9

2 2.8 1.875 1.3 3.95

3 2.8 1.875 1.3 3.95

4 2.8 1.875 1.3 3.95

both Heterogeneous and Homogeneous ensembles using an initial pool of 100
models.

The results have shown that the proposed approach obtains high predictive
performance, especially in the Heterogeneous case. Additionally, EPRL pro-
duces small sized ensembles and thus reduces the needed computational and
memory resources. The proposed approach is general and can be used for op-
timizing any specific performance evaluation metric and with any ensemble
combination method. In addition it can output a solution anytime and it has
the ability of improving over time, which makes it suitable for domains where
time can be sacrificed in order to improve performance.

Another interesting property is that the computational complexity of the
method is linear with respect to the ensemble size, as each training episode
lasts as many time steps as the number of classifiers in the ensemble. How-
ever, the state space that the agent has to explore grows exponentially with
the number of classifiers, and so does the complexity of the learning problem.
This of course is a problem for any search-based pruning method.

References

[1] D. N. A. Asuncion, UCI machine learning repository (2007).
URL http://www.ics.uci.edu/∼mlearn/MLRepository.html

[2] R. E. Banfield, L. O. Hall, K. W. Bowyer, W. P. Kegelmeyer, Ensemble diversity
measures and their application to thinning., Information Fusion 6 (1) (2005)
49–62.

[3] L. Breiman, Bagging predictors, Machine Learning 24 (2) (1996) 123–140.

[4] R. Caruana, A. Niculescu-Mizil, G. Crew, A. Ksikes, Ensemble selection from
libraries of models, in: Proceedings of the 21st International Conference on
Machine learning, ICML’ 04, Banff, Alberta, Canada, 2004.

23

[5] J. Demsar, Statistical comparisons of classifiers over multiple data sets, Journal
of Machine Learning Research 7 (2006) 1–30.

[6] T. G. Dietterich, Machine-learning research: Four current directions, The AI
Magazine 18 (4) (1998) 97–136.

[7] T. G. Dietterich, Ensemble methods in machine learning, in: Proceedings of the
1st International Workshop on Multiple Classifier Systems, MCS ’00, 2000.

[8] C. Dimitrakakis, S. Bengio, Online adaptive policies for ensemble classifiers,
Trends in Neurocomputing 64 (2005) 211–221.

[9] S. Dzeroski, B. Zenko, Is combining classifiers with stacking better than
selecting the best one?, Machine Learning 54 (3) (2004) 255–273.

[10] W. Fan, F. Chu, H. Wang, P. S. Yu, Pruning and dynamic scheduling of
cost-sensitive ensembles, in: Proceedings of the 19th National Conference on
Artificial intelligence, Edmonton, Alberta, Canada, 2002.

[11] M. Friedman, A comparison of alternative tests of significance for the problem
of m rankings, Annals of Mathematical Statistics 11 (1940) 86–92.

[12] G. Giacinto, F. Roli, An approach to the automatic design of multiple classifier
systems, Pattern Recognition Letters 22 (1) (2001) 25–33.

[13] R. L. Iman, J. M. Davenport, Approximations of the critical region of the
friedman statistic, Communications in Statistics (1980) 571–595.

[14] L. P. Kaelbling, M. L. Littman, A. P. Moore, Reinforcement learning: A survey,
Journal of Artificial Intelligence Research 4 (1996) 237–285.

[15] M. G. Lagoudakis, M. L. Littman, Algorithm selection using reinforcement
learning, in: Proceedings of the 17th International Conference on Machine
Learning, 2000.

[16] A. Lazarevic, Z. Obradovic, Effective pruning of neural network classifiers, in:
2001 IEEE/INNS International Conference on Neural Networks, IJCNN 2001,
2001.

[17] D. Margineantu, T. Dietterich, Pruning adaptive boosting, in: Proceedings of
the 14th International Conference on Machine Learning, 1997.

[18] G. Martinez-Munoz, A. Suarez, Aggregation ordering in bagging, in:
International Conference on Artificial Intelligence and Applications (IASTED),
Acta Press, 2004.

[19] G. Martinez-Munoz, A. Suarez, Pruning in ordered bagging ensembles, in: 23rd
International Conference in Machine Learning (ICML-2006), ACM Press, 2006.

[20] G. Martinez-Munoz, A. Suarez, Using boosting to prune bagging ensembles,
Pattern Recognition Letters 28 (1) (2007) 156–165.

[21] P. B. Nemenyi, Distribution-free multiple comparisons, Ph.D. thesis, Princeton
University (1963).

24

[22] I. Partalas, G. Tsoumakas, I. Katakis, I. Vlahavas, Ensemble pruning using
reinforcement learning, in: Proceedings of the 4th Hellenic Conference on
Artificial Intelligence (SETN 2006), Heraklion, Greece, 2006.

[23] A. Prodromidis, P. Chan, Meta-learning in distributed data mining systems:
Issues and approaches, in: H. Kargupta, P. Chan (eds.), Advances of Distributed
Data Mining, MIT/AAAI Press, 2000.

[24] A. Prodromidis, S. J. Stolfo, Cost complexity-based pruning of ensemble
classifiers, Knowledge and Information Systems 3 (4) (2001) 449–469.

[25] F. Provost, V. Kolluri, A survey of methods for scaling up inductive algorithms,
Data Mining and Knowledge Discovery 3 (2) (1999) 131–169.

[26] R. E. Schapire, The strength of weak learnability, Machine Learning 5 (1990)
197–227.

[27] W. N. Street, Y. Kim, A streaming ensemble algorithm (sea) for large-scale
classification, in: 7th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2001.

[28] R. S. Sutton, A. G. Barto, Reinforcement Learning, An Introduction, MIT
Press, 1999.

[29] C. Tamon, J. Xiang, On the boosting pruning problem, in: 11th European
Conference on Machine Learning (ECML 2000), Springer-Verlag, 2000.

[30] G. Tsoumakas, L. Angelis, I. Vlahavas, Selective fusion of heterogeneous
classifiers, Intelligent Data Analysis 9 (6) (2005) 511–525.

[31] G. Tsoumakas, I. Katakis, I. Vlahavas, Effective voting of heterogeneous
classifiers, in: Proceedings of the 15th European Conference on Machine
Learning (ECML 2004), Pisa, Italy, 2004.

[32] G. Tsoumakas, I. Vlahavas, Distributed data mining of large classifier
ensembles, in: 2nd Hellenic Conference on Artificial Intelligence, 2002.

[33] H. Wang, W. Fan, P. S. Yu, J. Han, Mining concept-drifting data streams
using ensemble classifiers, in: 9th ACM SIGKDD international conference on
Knowledge discovery and data mining, ACM, New York, NY, USA, 2003.

[34] C. Watkins, P. Dayan, Q-learning, Machine Learning 8 (1992) 279–292.

[35] I. H. Witten, E. Frank, Data Mining: Practical machine learning tools and
techniques, 2nd Edition, Morgan Kaufmann, 2005.

[36] D. H. Wolpert, Stacked generalization, Neural Networks 5 (1992) 241–259.

[37] Y. Zhang, S. Burer, W. N. Street, Ensemble pruning via semi-definite
programming, Journal of Machine Learning Research 7 (2006) 1315–1338.

[38] Z. Zhou, W. Tang, Selective ensemble of decision trees, in: Proceedings of the
9th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and
Granular Computing, RSFDGrC 2003, Chongqing, China, 2003.

25

