
Ensemble Pruning using Reinforcement Learning

Ioannis Partalas, Grigorios Tsoumakas, Ioannis Katakis and Ioannis Vlahavas

Department of Informatics,
Aristotle University of Thessaloniki,

54124 Thessaloniki, Greece
{partalas,greg,katak,vlahavas}@csd.auth.gr

Abstract. Multiple Classifier systems have been developed in order to
improve classification accuracy using methodologies for effective classi-
fier combination. Classical approaches use heuristics, statistical tests, or
a meta-learning level in order to find out the optimal combination func-
tion. We study this problem from a Reinforcement Learning perspective.
In our modeling, an agent tries to learn the best policy for selecting clas-
sifiers by exploring a state space and considering a future cumulative
reward from the environment. We evaluate our approach by comparing
with state-of-the-art combination methods and obtain very promising
results.

1 Introduction

A very active research area during the recent years involves methodologies and
systems for the production and combination of multiple predictive models. Within
the Machine Learning community this area is commonly referred to as Ensem-
ble Methods [1]. The success of this area is due to the fact that ensembles of
predictive models offer higher predictive accuracy than individual models.

The first phase of an Ensemble Method is the production of the different
models. An ensemble can be composed of either homogeneous or heterogeneous
models. Models that derive from different executions of the same learning algo-
rithm are called Homogeneous. Such models can be produced by injecting ran-
domness into the learning algorithm or through the manipulation of the training
instances, the input attributes and the model outputs [2]. Models that derive
from running different learning algorithms on the same data set are called Het-
erogeneous. The second phase of an Ensemble Method is the combination of the
models. Common methods here include Selection, Voting, Weighted Voting and
Stacking. Recent work [3], [4] has shown that an additional intermediate phase
of pruning an ensemble of heterogeneous classifiers (and combining the selected
classifiers with Voting) leads to increased predictive performance.

This paper presents a Reinforcement Learning approach to the problem of
pruning an ensemble of heterogeneous classifiers. We use the Q-learning algo-
rithm in order to approximate an optimal policy of choosing whether to include
or exclude each algorithm from the ensemble. We compare our approach against
other pruning methods and state-of-the-art Ensemble methods and obtain very

promising results. Additionaly, the proposed approach is an anytime algorithm,
meaning that we can obtain a solution at any point.

The rest of this paper is structured as follows: Section 2 presents background
information on reinforcement learning and heterogeneous classifier combination,
focusing on material that will be later on reffered in the paper. Section 3 reviews
related work on pruning ensembles of heterogeneous models, as well as on us-
ing reinforcement learning for the combination of different algorithms. Section
4 presents our approach and Section 5 the setup of the experiments for its eval-
uation. Section 6 discusses the results of the experiments and finally Section 7
concludes this work and points to future research directions.

2 Background

2.1 Reinforcement Learning

Reinforcement Learning (RL) addresses the problem of how an agent can learn a
behavior through trial-and-error interactions with a dynamic environment [5]. In
an RL task the agent, at each time step, senses the environment’s state, st ∈ S,
where S is the finite set of possible states, and selects an action at ∈ A(st) to
execute, where A(st) is the finite set of possible actions in state st. The agent
receives a reward, rt+1 ∈ <, and moves to a new state st+1. The objective of the
agent is to maximize the cumulative reward received over time. More specifically,
the agent selects actions that maximize the expected discounted return:

Rt = rt+1 + γrt+2 + γ2rt+3 + . . . =
∞
∑

k=0

γkrt+k+1, (1)

where γ, 0 ≤ γ < 1, is the discount factor and expresses the importance of future
rewards.

A policy π specifies that in state s the probability of taking action a is π(s, a).
For any policy π, the value of state s, V π(s), denotes the expected discounted
return, if the agent starts from s and follows policy π thereafter. The value V π(s)
of s under π is defined as:

V π(s) = Eπ {Rt | st = s} = Eπ

{

∞
∑

k=0

γkrt+k+1

∣

∣

∣
st = s

}

, (2)

where st and rt+1 denote the state at time t and the reward received after acting
at time t, respectively.

Similarly, the action-value function, Qπ(s, a), under a policy π can be de-
fined as the expected discounted return for executing a in state s and thereafter
following π:

Qπ(s, a) = Eπ {Rt | st = a, at = a} = Eπ

{

∞
∑

k=0

γkrt+k+1

∣

∣

∣
st = a, at = a

}

. (3)

The optimal policy, π∗, is the one that maximizes the value, V π(s), for all states
s, or the action-value, Qπ(s, a), for all state-action pairs.

In order to learn the optimal policy, the agent learns the optimal value func-

tion, V ∗, or the optimal action-value function, Q∗ which is defined as the ex-
pected return of taking action a in state s and thereafter following the optimal
policy π∗:

Q∗(s, a) = E
{

rt+1 + γ max
a′

Q∗(st+1, a
′)
∣

∣

∣
st = s, at = a

}

(4)

The optimal policy can now be defined as:

π∗ = arg max
a

Q∗(s, a) (5)

The most widely used algorithm for finding the optimal policy is the Q-
learning algorithm [6] which approximates the Q function with the following
form:

Q(st, at) = rt+1 + γ max
a′

Q(st+1, a
′). (6)

2.2 Combining Heterogeneous Classification Models

A lot of different ideas and methodologies have been proposed in the past for the
combination of heterogeneous classification models. The main motivation behind
this research is the common observation that there is no independent classifier
that performs significantly better in every classification problem. The neces-
sity for high classification performance in some critical domains (e.g. medical,
financial, intrusion detection) have urged researchers to explore methods that
combine different classification algorithms in order to overcome the limitations
of individual learning paradigms.

Unweighted and Weighted Voting are two of the simplest methods for com-
bining not only Heterogeneous but also Homogeneous models. In Voting, each
model outputs a class value (or ranking, or probability distribution) and the class
with the most votes (or the highest average ranking, or average probability) is
the one proposed by the ensemble. In Weighted Voting, the classification models
are not treated equally. Each model is associated with a coefficient (weight),
usually proportional to its classification accuracy.

Another simple method is Evaluation and Selection. This method evaluates
each of the models (typically using 10-fold cross-validation) on the training set
and selects the best one for application to the test set.

Stacked Generalization [7], also known as Stacking, is a method that combines
multiple classifiers by learning a meta-level (or level-1) model that predicts the
correct class based on the decisions of the base-level (or level-0) classifiers. This
model is induced on a set of meta-level training data that are typically produced
by applying a procedure similar to k-fold cross-validation on the training data:

Let D be the level-0 training data set. D is randomly split into k disjoint
parts D1 . . . Dk of equal size. For each fold i = 1 . . . k of the process, the base-

level classifiers are trained on the set D \Di and then applied to the test set Di.
The output of the classifiers for a test instance along with the true class of that
instance form a meta-instance.

A meta-classifier is then trained on the meta-instances and the base-level
classifiers are trained on all training data D. When a new instance appears for
classification, the output of all base-level classifiers is first calculated and then
propagated to the meta-level classifier, which outputs the final result.

3 Related Work

3.1 Pruning Ensembles of Classifiers

Most of the Ensemble Methods in the literature deal either with the production
or the combination of multiple classifiers. However, recent work has shown that
pruning an ensemble of classifiers (and combining the selected classifiers with
Voting) leads to increased predictive performance.

Caruana et al. [4], produce an ensemble of 1000 classification models using
different algorithms and different sets of parameters for these algorithms. They
subsequently prune the ensemble via forward stepwise selection of the classifi-
cation models. As a heuristic, they use the accuracy of combining the selected
classifiers with the method of voting. This way they manage to achieve very
good predictive performance compared to state-of-the-art ensemble methods.

In [3], pruning is performed using statistical procedures that determine whether
the differences in predictive performance among the classifiers of the ensemble
are significant. Using such procedures only the classifiers with significantly bet-
ter performance than the rest are retained and subsequently combined with the
methods of (weighted) voting. The obtained results are better than those of
state-of-the-art ensemble methods.

3.2 Reinforcement Learning for Algorithm Combination

Research work on utilizing Reinforcement Learning (RL) for algorithm combi-
nation is limited. We found two past approaches on this subject, one applied
to the problem of selecting a single classification algorithm and one of applying
the most suitable algorithms on different segments of the dataset. The latest
approach applied on two computational problems: order statistic selection and
sorting.

In [8], RL is used to adapt a policy for the combination of multiple classifiers.
Specifically, an architecture with n experts (classifiers), implemented by multi-
layer perceptrons (MLPs) and an additional MLP with n-outputs acting as the
controlling agent are employed. The state space of the controlling agent consists
of the instance space (all the possible different instances) of the particular clas-
sification problem and the action is the choice of the expert who will take the
classification decision. On top of that, the expert who has been chosen uses the
instance to train itself.

In [9], the problem of algorithm selection is formulated as a Markov Deci-
sion Process (MDP) and an RL approach is used to solve it. Given a set of
algorithms that are equivalent in terms of the problem they solve, and a set of
instance features, such as problem size, an RL approach is used to select the
right algorithm for each instance based on the set of features. The state of the
MDP is represented by the current instantiation of the instance features and the
actions are the different algorithms that can be selected. Finally, the immediate
cost for choosing some algorithm on some problem is the real time taken for that
execution. The learning mechanism is a variation of the Q-learning algorithm.

4 Ensemble Pruning via Reinforcement Learning

First we must formulate the problem of pruning an ensemble of classifiers as an
RL task. To do that, we must define the following components:

1. A set of states, S.
2. A set of actions, A.
3. A reward function, r(s, a).

In our approach, a state represents the set of classifiers that have been
selected so far and thus S is the powerset of Sc, S = P (Sc), where Sc =
{C1, . . . , Cn} is the set of classifiers. S has 2n different states, where n is the
number of classifiers available for selection. In each state the agent can select
between two actions. It can either include an algorithm into the ensemble or not
and thus A = {include(Ci)|i = 1 . . . n} ∪ {exclude(Ci)|i = 1 . . . n}. Finally, the
reward is the accuracy that we obtain if we combine the selected classifiers with
the method of voting.

The training phase consists of running a number of episodes, where an episode

is defined as a sequence of agent-environment interactions. In our approach, each
episode starts with an empty set of classifiers and lasts n time steps. At each
time step, t = 1 . . . n, of the episode, the agent chooses to include or not a
specific classifier into the ensemble, A(st−1) = {include(Ct), exclude(Ct)}. Sub-
sequently, the agent receives an immediate reward which equals to the accuracy
of the current subset of classifiers combined with voting. The update equation
of Q-learning is:

Q(st, at) = Accuracy(st+1) + γ max
a′

Q(st+1, a
′) (7)

The episode ends when the decision to include or exclude the nth algorithm
is taken. Figure 1 graphically shows a training episode.

During the training phase the agent must stochastically select actions in order
to explore the state space. One way to achieve this aim is to make use of the
softmax action selection method, where an action a is selected with probability:

P (a) =
expQ(s,a)/T

∑

a′ expQ(s,a′)/T
, (8)

Fig. 1. The procedure of selecting a sequence of classifiers.

where T is a positive parameter, called temperature, which starts from a high
value and gradually is reduced until it becomes zero. High temperature values
assign equal probabilities to all actions so the agent explores the state space,
while in other case low temperatures cause high probabilities for action with
high value estimates and so the agent exploits his knowledge.

At the end of the training phase, the agent executes a final episode choosing
the action with the highest Q value at each time step. The resulting subset of
classifiers is the output of our approach. This way, the problem of pruning an
ensemble of n classifiers has been transformed into the reinforcement learning
task of letting an agent learn an optimal policy of taking n actions to maximize
the cumulative reward.

5 Experimental Setup

We compare the performance of our approach, Ensemble Pruning via Reinforce-
ment Learning (EPRL), against the following state-of-the-art classifier combi-
nation methods: Stacking with Multi-Response Model Trees (SMT), Evaluation
and Selection (ES) and Effective Voting (EV).

The methods are applied on top of a heterogeneous ensemble produced us-
ing the WEKA [10] implementations of the following 9 different classification
algorithms:

– DT: the decision table algorithm of Kohavi [11].
– JRip: the RIPPER rule learning algorithm [12].
– PART: the PART rule learning algorithm [13].
– J48: the decision tree learning algorithm C4.5 [14], using Laplace smoothing

for predicted probabilities.
– IBk: the k nearest neighbor algorithm [15].
– K∗: an instance based learning algorithm with entropic distance measure

[16].

– NB: the Naive Bayes algorithm using the kernel density estimator rather
than assume normal distributions for numeric attributes [17].

– RBF: WEKA implemenation of an algorithm for training a radial basis func-
tion network [18].

– MLP: WEKA implementation of an algorithm for training a multilayer per-
ceptron [18].

We compare the methods on 11 data sets from the UCI Machine Learning
repository [19]. Table 1 presents the details of these data sets (Folder in UCI
server, number of instances, classes, continuous and discrete attributes, (%) per-
centage of missing values).

Table 1. Details of the data sets: Folder in UCI server, number of instances, classes,
continuous and discrete attributes, percentage of missing values

UCI Folder Inst Cls Cnt Dsc MV

hepatitis 155 2 6 13 5.67

heart-disease (cleveland) 303 5 6 7 0.18

horse-colic 368 2 7 15 23.80

iris 150 3 4 0 0.0

labor 57 2 8 8 35.75

ionosphere 351 2 34 0 0.0

prima-indians-diabetes 768 2 8 0 0.00

soybean 683 19 0 35 9.78

voting-records 435 2 0 16 5.63

wine 178 7 1 16 0.00

zoo 101 7 1 16 0.00

For the evaluation of the methods we perform a 10-fold stratified cross-
validation experiment. In each of the 10 repetitions, the same 9 folds are used
for training the different methods and 1 fold for evaluating their performance.
The accuracy rates are averaged over the 10 folds in order to obtain the average
accuracy accm(di) of each method m in each data set di.

Our approach is run using a fixed number of 2000 episodes. For the repre-
sentation of the value function Q we used a tabular approach, where each value
Q(s, a) is stored in a table. The value of T was set to 1000 and decreased by a
factor of 2% at each episode. The decisions of the classifiers in the final pruned
ensemble are combined using Voting.

6 Results and Discussion

Table 2 presents the accuracy of each classifier combination method on each of
the 11 data sets. The last row presents the geometric mean of the accuracy over
all data sets. The highest accuracy for each data set is emphasized using bold
typeface.

Table 2. Folder in UCI server, average accuracy of each combining method on each of
the 11 data sets and geometric mean of each combining method over all data sets

UCI Folder SMT ES EV EPRL

hepatitis 0.8379 0.8383 0.8383 0.8614

heart-disease (cleveland) 0.8300 0.8442 0.8172 0.8170
horse-colic 0.8290 0.8452 0.8535 0.8481
iris 0.9533 0.9533 0.9467 0.9533

labor 0.9100 0.9433 0.9267 0.9667

ionosphere 0.9402 0.9147 0.9232 0.9203
prima-indians-diabetes 0.7603 0.7720 0.7681 0.7759

soybean 0.9254 0.9254 0.9444 0.9415
voting-records 0.9586 0.9518 0.9563 0.9542
wine 0.9663 0.9722 0.9889 0.9722
zoo 0.9509 0.9409 0.9609 0.9609

geometric mean 0.8940 0.8979 0.8996 0.9040

We first notice that our approach has the highest mean accuracy than the rest
of the methods. In addition, it has the highest accuracy in 5 data sets, one more
than Effective Voting and two more than Stacking with Multi-Response Model
Trees that are considered to be state-of-the-art methods for the combination of
heterogeneous classifiers. Figure 2 shows the average accuracy of our approach
over all datasets using a varying number of episodes, starting from 250 up to
2000 with a step of 250 episdoes. It also shows the accuracy of the other classifier
combination methods for comparison purposes. As it can be seen, our approach
obtains good performance for a small number of episodes and finally outperforms
the other methods. In approximately 500 episodes T has acquired a significantly
low value and the agent exploits its knowledge. As a result, the accuracy of our
approach increases rapidly.

7 Conclusions and Future Work

This paper has presented a method for pruning an ensemble of heterogeneous
classifiers based on Reinforcement Learning. The results of combining the subset
of classifiers with Voting are very promising as they compare favorably against
the results of state-of-the-art methods for heterogeneous classifier combination.

 0.82

 0.83

 0.84

 0.85

 0.86

 0.87

 0.88

 0.89

 0.9

 0.91

 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

A
cc

ur
ac

y

Episodes

EPRL
SMT

ES
EV

Fig. 2. Average accuracy on all data sets with respect to the episodes.

An interesting aspect of the proposed approach is its anytime property, which
means that it can output a solution at any given time point. As we show from
the experimental results, after an initial period of exploration, the approach
starts improving by exploiting the knowledge it acquired. Therefore the more
the training episodes, the higher the predictive performance of the resulting
pruned ensemble, until the approach converges around some good performance.

Another interesting property is that the computational complexity of the
method is linear with respect to the ensemble size, as each training episode lasts
as many time steps as the number of classifiers in the ensemble. However, the
state space that the agent has to explore grows exponentially with the number
of classifiers, and so does the complexity of the learning problem.

In the future, we intend to investigate the applicability of the proposed ideas
in libraries of thousands of models [4]. In such a case we need to alter the
representation of the states, in order to tackle the explosion of the state space.
In addition, we plan to explore other methods of action selection, in order to
improve not only the exploration of the state space but also the time needed for
the algorithm to converge.

Acknowledgements

This work was partially supported by the Greek R&D General Secretariat through
a PENED program (EPAN M.8.3.1, No. 03E∆73).

References

1. Dietterich, T.G.: Machine-learning research: Four current directions. The AI Mag-
azine 18(4) (1998) 97–136

2. Dietterich, T.G.: Ensemble methods in machine learning. Lecture Notes in Com-
puter Science 1857 (2000) 1–15

3. Tsoumakas, G., Katakis, I., Vlahavas, I.P.: Effective voting of heterogeneous clas-
sifiers. In: Proceedings of the 15th European Conference on Machine Learning,
ECML 04. (2004) 465–476

4. Caruana, R., Niculescu-Mizil, A., Crew, G., Ksikes, A.: Ensemble selection from
libraries of models. In: ICML ’04: Proceedings of the twenty-first international
conference on Machine learning, New York, NY, USA, ACM Press (2004) 18

5. Sutton, R.S., Barto, A.G.: Reinforcmement Learning, An Introduction. MIT Press
(1999)

6. Watkins, C., Dayan, P.: Q-learning. Machine Learning 8 (1992) 279–292
7. Wolpert, D.H.: Stacked generalization. Technical Report LA-UR-90-3460, Los

Alamos, NM (1990)
8. Christos Dimitrakakis, S.B.: Online adaptive policies for ensemble classifiers.

Trends in Neurocomputing 64 (2005) 211–221
9. Lagoudakis, M.G., Littman, M.L.: Algorithm selection using reinforcement learn-

ing. In: Proc. 17th International Conf. on Machine Learning, Morgan Kaufmann,
San Francisco, CA (2000) 511–518

10. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and tech-
niques, 2nd Edition. Morgan Kaufmann (2005)

11. Kohavi, R.: The power of decision tables. In Lavrac, N., Wrobel, S., eds.: Proceed-
ings of the European Conference on Machine Learning. Lecture Notes in Artificial
Intelligence 914, Berlin, Heidelberg, New York, Springer Verlag (1995) 174–189

12. Cohen, W.W.: Fast effective rule induction. In Prieditis, A., Russell, S., eds.:
Proc. of the 12th International Conference on Machine Learning, Tahoe City, CA,
Morgan Kaufmann (1995) 115–123

13. Frank, E., Witten, I.H.: Generating accurate rule sets without global optimization.
In: Proc. 15th International Conf. on Machine Learning, Morgan Kaufmann, San
Francisco, CA (1998) 144–151

14. Quinlan, J.R.: C4.5: programs for machine learning. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA (1993)

15. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Mach.
Learn. 6(1) (1991) 37–66

16. Cleary, J.G., Trigg, L.E.: K*: an instance-based learner using an entropic distance
measure. In: Proc. 12th International Conference on Machine Learning, Morgan
Kaufmann (1995) 108–114

17. John, G.H., Langley, P.: Estimating continuous distributions in Bayesian classifiers.
In: Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence.
(1995) 338–345

18. Bishop, C.M.: Neural networks for pattern recognition. Oxford University Press,
Oxford, UK (1996)

19. D.J. Newman, S. Hettich, C.B., Merz, C.: UCI repository of machine learning
databases (1998)

