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Abstract.
semble of predictive models in order to improve its efficieand
predictive performance. A number of ensemble selectiornaukst
that are based on greedy search of the space of all possiaenéie
subsets have recently been proposed. This paper congiautevel
method, based on a new diversity measure that takes intoiaicte
strength of the decision of the current ensemble. Experiaheom-

Ensemble selection deals with the reduction of an en-consider a very small part of the space of all combinatioresé

methods, start with an initial ensemble (empty or full) aedrsh in
the space of the different ensembles, by iteratively exipanal con-
tracting the initial ensemble by a single model. The seascuided
by either the predictive performance or the diversity ofalernative
ensembles.

This paper contributes a novel method for greedy ensemlgde-se

parison of the proposed method, dubbed Focused Ensemlde-Sel tion, based on a new diversity measure that takes into atdhan

tion (FES), against state-of-the-art greedy ensemblet@temeth-
ods shows that it leads to small ensembles with high predigter-
formance.

1 Introduction

strength of the decision of the current ensemble. Experiaheom-
parison of the proposed method, dubbed Focused Ensemige-Sel
tion (FES), against state-of-the-art greedy ensembleti@temeth-
ods shows that it leads to small ensembles with high predigter-
formance.

The remainder of this paper is structured as follows: Sec#io

Ensemble methods [6] has been a very popular research topic d presents background information on ensemble methods arbSe

ing the last decade. Their success arises from the facthegtiffer
an appealing solution to several interesting learning lerob of the
past and the present, such as: improving predictive pegoce over
a single model, scaling inductive algorithms to large dasals, learn-
ing from multiple physically distributed data sets and féag from
concept-drifting data streams.

Typically, ensemble methods comprise two phasesptbeuction
of multiple predictive models and theiombination Recent work
[9, 8, 7, 15, 4, 10, 11, 2], has considered an additional nméeli-
ate phase that deals with the reduction of the ensemble setp
combination. This phase is commonly nangtemble pruningse-
lective ensemblensemble thinningndensemble selectiothe last
one of which is used within this paper.

Ensemble selection is important for two reasoefficiencyand

predictive performanceHaving a very large number of models in an

ensemble adds a lot of computational overhead. For examebs,
sion tree models may have large memory requirements [9]and |
learning methods have a considerable computational coistgdex-
ecution. The minimization of run-time overhead is cruciatertain
applications, such as stream mining. Equally importartiéssecond
reason, predictive performance. An ensemble may condisintyof
high performance models, but also of models with lower tda
performance. Intuitively, combining good and bad modetgetber
will not have the expected result. Pruning the low-perforgninod-
els while maintaining a good diversity of the ensemble isdsiy
considered as a proper recipe for a successful ensemble.

The problem of pruning an ensemble of classifiers has beaegro

to be NP-complete [14]. Exhaustive search for the best solbstas-
sifiers isn't tractable for ensembles that contain a largmber of
models. Greedy approaches, such as [2, 4, 9, 10, 11], arasastey
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3 reviews previous work on ensemble selection. Sectiorrddoces
the proposed method. Section 5 presents the setup of theraepe
tal study and Section 6 discusses the results. Finallyj@eg¢tcon-
cludes this work.

2 Ensemble Methods
2.1 Producingthe Models

An ensemble can be composed of either homogeneous or heterog
neous models. Homogeneous models derive from differerduexe
tions of the same learning algorithm by using different ealdor
the parameters of the learning algorithm, injecting randess into
the learning algorithm or through the manipulation of therting
instances, the input attributes and the model outputs {8d. fopu-
lar methods for producing homogeneous models are baggjrm{B
boosting [13].

Heterogeneous models derive from running different lewyail-
gorithms on the same dataset. Such models have differewsvie
about the data, as they make different assumptions about fher
example, a neural network is robust to noise in contrasktmearest
neighbor classifier.

2.2 Combining the Models

A lot of different ideas and methods have been proposed ipaise
for the combination of classification models. The main naiton
underlying this research is the observation that there g@mgle clas-
sifier that performs significantly better in every classifima prob-
lem [18]. The necessity for high classification performaimcsome
critical domains (e.g. medical, financial, intrusion détat) have



urged researchers to explore methods that combine diffelassifi-
cation algorithms in order to overcome the limitations afiudual
learning paradigms.

Unweighted and Weighted Voting are two of the simplest meésho
for combining not only Heterogeneous but also Homogenead m
els. In Voting, each model outputs a class value (or ranlangyob-
ability distribution) and the class with the most votes (e high-
est average ranking, or average probability) is the oneqzeg by
the ensemble. In Weighted Voting, the classification modedsnot
treated equally. Each model is associated with a coeffi¢vesight),
usually proportional to its classification accuracy.

Let z be an instance anab;, ¢ = 1..k a set of models that output
a probability distributionn; (z, ¢;) for each clasg;, j = 1..n. The
output of the (weighted) voting methadx) for instancer is given
by the following mathematical expression:

k
y(z) = arg max Z wimi(z, ¢5),

€i i=1
wherew; is the weight of model. In the simple case of voting (un-
weighted), the weights are all equal to one, thatvis= 1,7 = 1..k.

3 Ensemble Selection
3.1 Greedy Approaches

Margineantu and Dietterich [9] introduce heuristics tocodédte the
benefit of adding a classifier to an ensemble, using forwaletse
tion in a number of them. These heuristics are based on tleesity
and the performance of the classifiers. The authors expetimieh
boosting ensembles and conclude that pruning can help amdxhes
to increase its predictive performance.

Fan et al. [7] prune an ensemble of classifiers using forward s
lection of the classification models, like in [9]. As a hetidsthey
use the benefit that is obtained by evaluating the combimatidhe
selected classifiers with the method of voting. Their ressiiow that
pruning increases the predictive performance and speettgeupn
time of an ensemble of C4.5 decision trees trained on disjrns
of a large data set.

3.2 Other Approaches

Giacinto and Roli [8] employ Hierarchical AgglomerativeuSter-
ing (HAC) for ensemble selection. This way they implicitlyad the
complete linkmethod for inter-cluster distance computation. Pruning
is accomplished by selecting a single representative itilersBom
each cluster. The representative classifier is the one igixigiithe
maximum average distance from all other clusters.

Zhou and Tang [20] perform stochastic search in the space of
model subsets using a standard genetic algorithm. Staigeaetic
operations such as mutations and crossovers are used adt gaf-
ues are used for the parameters of the genetic algorithmydteel
performance of the ensemble is used as a function for evadyite
fithess of individuals in the population.

Tsoumakas et al. [15] prune an ensemble of heterogenedss cla
sifiers using statistical procedures that determine whetteediffer-
ences in predictive performance among the classifiers aénsem-
ble are significant. Only the classifiers with significantitter per-
formance than the rest are retained and subsequently cechbiith
the methods of (weighted) voting.

Zhang et al. [19], formulate the ensemble pruning problema as
mathematical problem and apply semi-definite programm8igR)
techniques. Their algorithm requires the number of classifio re-
tain as a parameter and runs in polynomial time.

Partalas et al. [12], present an ensemble selection methaer u
the framework of Reinforcement Learning, where the leaymiod-
ule finds an optimal policy for including or excluding a clifies
from the ensemble.

4 Focused Ensemble Selection

LetH = {h¢,t = 1,2,...,T} be the set of classifiers (or hypothe-
ses) of an ensemble, where each classffiemaps an instance to
a class labey, h:(x) = y. Greedy ensemble selection approaches
start either with an empty set of classifiefs £ J) or the complete
ensemble § = H). For simplicity of presentation we focus on the
former initial conditions only, yet our argumentation hefdr both.

At each step the current subsgtis expanded by a modél, €
H \ S, based on either the predictive performance [9, 7, 4] or the
diversity [9, 11, 10, 2] of the expanded ensemblgJ{h:}. Meth-

Caruana et al. [4] produce an ensemble of 1000 classifiers usds that are based on diversity have been shown to be more effe

ing different algorithms and sets of parameters for thegerghms.
They subsequently prune the ensemble following an appribeathis
similar to [9]. This way they manage to achieve very good iotac
performance compared to state-of-the-art ensemble method

tive than those that are based on accuracy. The methods ,i2]10
measure the diversity of candidate ensemisiég{h.} by compar-
ing the decision of the current ensemifliewith the decision of
candidate classifiers; € H \ S on a set of evaluation examples

Banfield et al. [2], propose a method that selects a subereemb(a;, ;),i = 1,2,..., N. Each example consists of a feature vector

in a backward manner. The authors reward each classifierdiogo
to its decision with regard to the ensemble decision. Théatete-
moves the classifier with the lowest accumulated reward.
Martinez-Munoz et al. [11, 10] present two algorithms fanming
an ensemble of classifiers. In [11] the authors define for ebadsi-
fier a vector with dimensionality equal to the size of thertirag set,

where each elementorresponds to the decision of the classifier for
the instanceé. The classifier is added to the ensemble according to its

impact in the difference between the vector of the ensenabierége
of individual vectors) with a predefined reference vectdnisTefer-
ence vector indicates the desired direction towards whiehvector
of the ensemble must align. In [10], the authors produce #ialin
ensemble of bagging models. Then using a forward selectincep
dure, they add to the ensemble the classifier that disagneesast
with the current ensemble. The process ends when a predsfireed
for the final pruned ensemble is reached.

x; and a class label;. We can distinguish 4 events concerning both
of these decisions:

esf y = he(xi) Ay # S(a:)
efe y # he(xi) Ay = S(a:)
ett y:ht(w'L)/\y:S(w’L)
eff y # hie(xs) Ny # S(xi)

whereS(x;) is the classification of instance; by ensembleS.
This classification is derived from the application of aneanble
combination method of, which usually is voting.

The diversity measure in [10] is based @3 only, while the one
in [2] neglectse ;. We argue that all events should contribute to the
calculation of an appropriate diversity measure. Egpffor exam-
ple, corresponds to the case where the candidate classiiewile



the ensemble is correct. Although, the ensemble is comextio not
know how many votes lead to its correct decision. If the déffece in
votes between the correct and wrong decision is margina this
candidate classifier might lead to a misclassification ofrgxda x;
by the ensembl& | J{h:}.

The above example concerning evept, brings up another disad-

vantage of the methods in [10, 2]. The decisions of individoadels
within the current ensemble are not separately considestthe cur-
rent ensemble is treated as a whole. We hypothesize that bettilts
can be obtained from a measure that takes into accourstrregth
of the current ensemble’s decision. We argue that an exathpte
is incorrectly (correctly) classified by most of the membefghe
current ensemble, should not affect strongly the ensendiéetson
method, as this is probably a very hard (easy) example. Oathe
hand, examples that are misclassified by about half of thenelnle’s
members, are near to change status (correct/incorrectfatation)
and should strongly affect the method.

In order to deal with the above issues, we propose a diversat-
sure that considers all events and takes into account teegstr of
the current ensemble’s decision. We define the followingntjties:

Another important issue that concerns ensemble selecti&th-m
ods, is when to stop adding classifiers in the ensemble, athier

words, how many models should the final ensemble include. One

solution is to perform the search until all models have bedoed
into (removed from) the ensemble and select the ensembietingt
highest accuracy on the evaluation set. This approach lasused
in [4]. Others prefer to select a predefined number of modsls,
pressed as a percentage of the original ensemble [9, 7, 1EEZ]
supports both of these approaches, but follows the formeefsult,
because it is more flexible and automated, since it doegytiire the
specification of a percentage.

Algorithm 1 presents the proposed method in pseudocodimigs
complexity isO(T?2|S|N), which can be optimized t®(T>N) if
the predictions of the current ensemble are updated incriihe
each time a classifier is removed from it.

Algorithm 1 The proposed method in pseudocode
Require: Ensemble of classifierd

1. S=H

2. B=§0

NT;, which denotes the proportion of models in the current easem 3: gec = 0

ble S that classify exampléx;, y;) correctly, andVF; =1 — NT;,
which denotes the number of modelsSrthat classify it incorrectly.

The proposed method, dubbed Focused Ensemble Selection

(FES), starts with the full ensembl§ & H) and iteratively removes
the classifief; € S that minimizes the following quantity:

festh) =Y (NTZ- s I(ecs) — NFs % I(ege) +

i=1

YNF; + I(en) — NT; * I(eff)),

wherel (true) = 1 andI(false) = 0.

Note that events, ; ande;; increase the metric, because the can-

didate classifier is correct, while events, andey; decrease it, as

the candidate classifier is incorrect. The strength of exeélecrease

depends on the strength of the ensemble’s decision. If threrten-

sembleS is incorrect, then the reward/penalty is multiplied by the

proportion of correct models ifi. On the other hand, i is correct,
then the reward/penalty is multiplied by the proportion mfarrect

4: while S # () do

5: h = argminfes(h:)
hi€S

5 =5\ {n}
acciemp = Accuracy(S)
8: if accremp > acc then
9: acc = acCCtemp
10: B=S
11: end if
12: end while
13: return B

5 Experimental Setup
5.1 Datasets

We experimented on 12 data sets from the UCI Machine Learning

repository [1]. Table 1 presents the details of these dasa(Belder

gorithm to examples that are near to change status, whilertaoks
examples whose correct classification is either very eaggrgrhard.

attributes, percentage of missing values). We avoidedjugdtasets

with less than 650 examples, so that an adequate amountaofsdat

In evente, s for example, the addition of a correct classifier when gyajlable for training, evaluation and testing.

the ensemble is wrong contributes a gain of 1 multiplied lygto-
portion of classifiers in that ensemble that are correct.rakienale
is that if the number of classifiers is small, then correctsifica-
tion of this example is hard to achieve and thus the conichus
penalized, while if the number of classifiers is large, tHea ¢tor-
rect classification of this example is easier to achieve and the
contribution is rewarded.

An issue that is worth mentioning here concerns the dataset u

for calculating the diversity (or predictive performancegasures in
greedy ensemble selection methods. One approach is toausaiti

ing set for evaluation, as in [11]. This offers the benefit filanty of

data will be available for evaluation and training, but iseptible to
overfitting. Another approach is to withhold a part of thertiag set

for evaluation, as in [4, 2] and the REPwB method in [9]. Thitess
prone to overfitting, but reduces the amount of data thatvaiedle

for training and evaluation compared to the previous apgroBES
supports both of these approaches.

Table1l. Details of data sets: Folder in UCI server, number of instanc
classes, continuous and discrete attributes, percenfagessing values

id UCI Folder Inst CIs Cnt Dsc MV(%)
dl car 1728 4 0 6 0.00
d2 cmc 1473 3 2 7 0.00
d3  creditg 1000 2 7 13 0.00
d4  kr-vs-kp 3196 2 0 36 0.00
d5  hypothyroid 3772 4 7 23 5.40
d6  segment 2310 7 19 0 0.00
d7  sick 3772 2 7 23 5.40
d8  soybean 683 19 0 35 0.00
do tic-tac-toe 958 2 0 9 0.00
d10 vehicle 946 4 18 0 0.00
di1  vowel 990 11 3 10 0.00
dl2  waveform-5000 5000 3 21 0 0.00




5.2 Methodology

The methodology of the experiments proceeds as followsiallyi
the whole dataset is split into three disjunctive partsaming set,
an evaluation set and a test set with 40%, 40% and 20% of tti&l ini
dataset respectively.

In this paper, we focus on ensembles of heterogeneous mudels
therefore run different learning algorithms with diffetgrmrameters
on the training set, in order to produce 200 models that datesthe
initial ensemble. The WEKA machine learning library [17]swssed
as the source of learning algorithms. We trained 24 mukilger-
ceptrons (MLPs), 6@&:NNs, 110 support vector machines (SVMs),
2 naive Bayes classifiers and 4 decision trees. The diffgraram-
eters used to train the algorithms were the following (trst o the
parameters were left unchanged in their default values):

e MLPs: we used 6 values for the nodes in the hidden Igjter2,

4, 8, 32, 128 and 4 values for the momentum tef®.0, 0.2, 0.5,
0.8}.

kNNs: we used 20 values fdr distributed evenly between 1 and
the plurality of the training instances. We also used 3 weigh
ing methods: no-weighting, inverse-weighting and sinitjar
weighting.

SVMs: we used 11 values for the complexity parametsy—",
1075, 1075, 107%, 1073, 1072, 0.1, 1, 10, 100, 100Q and 10
different kernels. We used 2 polynomial kernels (of degrem@
3) and 8 radial kernels (gamn&{0.001, 0.005, 0.01, 0.05, 0.1,
05,1, 2).

Naive Bayes: we built one model with default parameters ared o
with kernel estimation.

Decision trees: we used 2 values for the confidence fa¢®g5,
0.5}), and 2 values for Laplace smoothingr(e, falsg).

highlighted with bold typeface. A first observation is thiaeé tpro-
posed approach achieves the best performance in most aitiwsets
(6), followed by BSM (3), CT (2), MDM and FS (1) and finally COM
and ALL (0).

Table2. Classification accuracy for each algorithm on each dataset.

id FES FS COM CT MDM BSM ALL
dl 983 981 982 984 974 994 827
d2 527 524 512 523 51.5 428 47.6
d3 744 742 732 740 73.4 69.5 70.8
d4 99.0 991 99.0 99.0 97.9 954 956
d5 993 99.2 992 993 97.8 90.7 919
dé6 969 969 969 96.8 96.5 985 97.8
d7 981 980 980 982 974 95.2 954
d8 915 911 910 916 917 90.1 89.8
d9 987 985 986 98.6 98.4 95.8 63.9
dio 811 80.1 80.8 80.9 79.1 644 753
dil 903 905 89.8 903 87.8 989 90.7
di2 860 857 857 859 84.4 72.7  80.7

According to [5], the appropriate way to compare two or more
algorithms on multiple datasets is based on their averadeaeross
all datasets. On each dataset, the algorithm with the higloesracy
gets rank 1.0, the one with the second highest accuracy aygt2r0
and so on. In case two or more algorithms tie, they all rectriee
average of the ranks that correspond to them.

Table 3 presents the rank of each algorithm on each datdseg, a
with the average ranks. The proposed approach has the lezagav
rank (2.17), followed by CT (2.71), FS (3.29), COMP (4.0), MD
(4.92), BSM (5.33) and ALL (5.58). Although the differencktbe
average ranks between t& best algorithm (CT) and FES is small,
CT achieves the highest accuracy (and rank) in only two digag/e
therefore argue that FES should be preferred over CT anc:#tef

We compare the performance of our approach, Focused Enserits rivals for ensemble selection.

ble Selection (FES), against the following greedy ensersdliection
methods: Forward Selection (FS) [4], ComplementarinesSMT
[10], Margin Distance Minimization (MDM) [11] and Concuney
Thining (CT) [2].

The evaluation set is used for the calculation of diversitst per-
formance measure for all competing algorithms, becauderpnary
experiments have shown that it leads to significantly betesults
than using the training set in ensembles of heterogeneoaglmo

Voting was used for model combination in FES, FS, COM and CT.

Similarly to FES, all rival algorithms follow the approacl [d],
which selects the ensemble with the highest accuracy onviiaae
tion set, instead of using an arbitrary percentage of detedn ad-
dition, the following section discuses comparative reswith alter-
native versions of the algorithms that select a fixed peaggn20%)
of models. The resulting ensemble is evaluated on the tesisiag
voting for model combination.

We also calculate the performance of the best single mod&iAB
in the ensemble, and the performance of the complete ensewhibl
200 models (ALL), using voting for model combination, based
the performance of the models on the evaluation datasetwhbée
experiment is performed 10 times for each dataset and thésese
averaged.

6 Resultsand Discussion

Table 2 presents the classification accuracy of each ahgoon each
dataset. The accuracy of the winning algorithm at each daias

Table3. Corresponding rank for each algorithm on each dataset.

id FES FS COM CT MDM BSM ALL

d1 3.0 5.0 4.0 2.0 6.0 1.0 7.0
d2 1.0 2.0 5.0 3.0 4.0 7.0 6.0
d3 1.0 2.0 5.0 3.0 4.0 7.0 6.0
d4 3.0 1.0 3.0 3.0 5.0 7.0 6.0
d5 15 3.5 3.5 15 5.0 7.0 6.0
dé 4.0 4.0 4.0 6.0 7.0 1.0 2.0
d7 2.0 3.5 3.5 1.0 5.0 7.0 6.0
ds 3.0 4.0 5.0 2.0 1.0 6.0 7.0
d9 1.0 4.0 2.5 2.5 5.0 6.0 7.0
dio0 1.0 4.0 3.0 2.0 5.0 7.0 6.0
di1 4.5 3.0 6.0 4.5 7.0 1.0 2.0
di2 1.0 3.5 3.5 2.0 5.0 7.0 6.0

Av.Rank 2.17 3.29 4.0 2.71 4.92 533 558

We next turn to statistical procedures, in order to inveség
whether the performance differences between FES and thefres
the algorithms are significant. According to [5], the appiaie sta-
tistical test for the comparison of two algorithms on muéigatasets
is the Wilcoxon signed rank test [16]. Note that the majootyast
approaches have used the paired t-test, which is inapptegar this
task. We performed 6 tests, one for each paired compariséik 6f
with each of the other algorithms, at a confidence level56t. The
test found that FES is significantly better than all otheogthms,
apart from CT.



Table 4 shows the average size of the final ensembles tha¢are s7 Conclusions

lected by the algorithms on each dataset. A general rematiats

the number of selected models is small compared to the sitteeof 1 hiS paper contributed a new method for greedy ensembletseie

original ensemble. Onl$.05% to 14.95% of the 200 classifiers are
finally selected by the algorithms. Furthermore, the nunabenod-
els selected based on the maximum accuracy in the evalistpis

named Focused Ensemble Selection (FES). The main idea of the
method is to overlook examples that are either very easyrgragd,
and focus on those that are near to change status (corcectéat

smaller than using a fixed size, such as 20% [10, 11] or 10%f[2] o classification).

the models, leading to further reduction of the computati@ost of
the final ensemble.

We performed experiments comparing FES with state-ofatthe-
methods from the related bibliography. Although FES wasownd

significantly better than all competitors that were consden this

Table4. Average size of selected ensembles for each algorithm.

paper, it still was found consistently better based on Hotreverage
rank and the number of datasets, where it achieved the higbes-

racy. We consider that the main novel idea of this paperrftakito

id FES FS COMP CT MDM consideration the strength of the ensemble’s classificptioa posi-
di 116 6.1 51 6.5 20.9 tive contribution that could be valuable to other researcherking
d2 183 159 134 16.7 261 in ensemble selection and ensemble methods in general.
d3 157 144 20.9 12.7 33.7
d4 134 111 11.8 11.2 27.9
d5 11.7 5.8 5.0 7.2 6.7
dé 205 172 178 153 296 REFERENCES
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