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Abstract—We consider the problem of managing
Electric Vehicle (EV) charging at charging points in
a city to ensure that the load on the charging points
remains within the desired limits while minimizing the
inconvenience to EV owners. We develop solutions that
treat charging points and EV users as self-interested
agents that aim to maximize their profit and minimize
the impact on their schedule. In particular, we propose
variants of a decentralised and dynamic approach as
well as an optimal centralised static approach. We
evaluated these solutions in a real setting based on the
road network and the location of parking garages of
a UK city and show that the optimal centralised (non-
dynamic) solution manages the congestion the best but
does not scale well, while the decentralised solutions
scale to thousands of agents.

I. Introduction

With dwindling fossil fuels, and the increasingly nega-
tive impact of climate change on society, several countries
have instigated national plans to reduce carbon emissions
[1]. In particular, the electrification of transport is one
of the main pathways to achieve significant reductions in
CO2 emissions. However, the ageing grid infrastructure in
most countries stands in the way of the wider deployment
of EVs as they may result in unpredictable, and significant
loads on the grid, that may, in turn, cause imbalances,
leading to blackouts or brownouts.

In this paper we study an urban EV charging setting
where EVs drive across a city converge to parking sta-
tions in the centre and need to charge. The EVs are
self-interested agents that want to charge their vehicle
achieving the maximum wellfare, while from a system’s
perspective, the balanced distribution of the EVs accross
the charging points is the objective. Hence, it is crucial to
leverage advances in decentralised control and mechanism
design to coordinate demand and supply to mitigate the
impact on the grid.

In order to allocate the EVs to charging points we
propose two solutions, a decentralized and a centralized.
In the decentralized solution the EVs arrive dynamically
at the system over time, and the decision on the charging

point to charge needs to be taken in real time and locally.
In this case, we have used three different strategies for
online allocation of time slots at the charging points
namely Naive, Random and Smart. In the centralized
static optimal solution we have full knowledge of the
arrival time and the preferences of the EVs in advance and
is being used for benchmarking reasons. In both solutions,
dynamic pricing techniques are used in order to manage
the traffic while, in all cases, the cost function of the EVs
is the same and all charging points follow the same pricing
strategy.

In this field, limited related work exists. Gerding et al
[2] present a similar setting, where EVs want to charge
in charging points fullfilling their objectives, but the pre-
sented solution is abstract and is tested on a simple and
unrealistic setting where the charging points are located
in houses and they have only one charging slot each.

Research undertaken in the area of load management
regarding EVs charging, includes Gerding et al. [3] who
have designed an online auction protocol, in which EV
drivers are using agents in order to bid for power. Stein et
al. [4] improve this protocol as they introduce the notion
of pre-commitment keeping though a flexibility regarding
when the charging takes place and at what rate. However,
they study a one-sided setting with a single, fixed charging
point. In addition, Caramanis et al. [5] have studied the
management of EV load within a market based Electric
Power System Control Area and suggest a hierarchical
decision making methodology. Finally, Eisner et al. [6] and
Storandt et al. [7] have addressed the problem of routing of
EVs in an energy efficient way, but they do not consider
the allocation of EVs to charging points nor the cost in
terms of comfort to the driver.

Our contributions to the state of the art are:

• We propose an optimal centralized solution to solve
the problem of matching EVs to charging points, while
managing congestion in the optimal way, assuming
we could have full knowledge of arrival time and
preferences of agents in advance.



• We propose a decentralized solution with a charg-
ing point selection algorithm which matches EVs to
charging points trying to maximize utility of each
agent.

• Regarding the decentralized solution, we propose
three different time point allocation strategies, con-
sidering when each EV will charge in the available
time window, which combined with the also proposed
dynamic pricing function, minimize the cost for the
agents while congestion in charging points (number
of EVs charging together) is kept balanced.

• In order to test our setting, we have set a simulation
based on the road network of the city of Southampton
in the UK as taken by Google maps1 and we locate
the charging points in real parking garages around
the city using data from Southampton Romanse2.
We have run a number of simulations with multiple
charging points and charging slots within, as well as
a fleet of EVs starting from 10 and going up to 2000.

The rest of this paper is structured as follows. Section
2 presents our model of the system, the agents that are
being used and the decision making algorithm. Section 3
analyzes the different slot allocation mechanisms as well
as the pricing function. Moreover, section 4 details our
optimal centralized solution and section 5 describes the
experiments that we made in order to test the system’s
behaviour. Finally, section 6 concludes.

II. Problem Definition
EVs arrive dynamically in the system over time and

need to charge at the charging points. We assume that
each EV driver has her own agent that evaluates the
different available options and suggests a charging point
to go to, based on the preferences given as input by the
driver. This agent could, in a real scenario, reside on the
navigation system of the car. Each EV has its own location
and properties as described in the following paragraph.
On the other hand, the charging points, that each one of
them is owned by a different company, want to serve as
many clients as possible in order to maximize their profit.
Whereas the mechanism’s objective is to keep a balance
in the traffic of the system while the objectives of the two
types of agents are met. In this section we present our
model of the agents and the algorithm to compute the
best charging point to go to.

A. Agents
In our model, we define a set of locations l1, l2, .., ln ∈ L,

L = Lp
⋃
Lp̄ that can either be charging points or not.

Based on this, we define a transport network as a graph
G = (E,L) with nodes L and edges E, where e ∈ E
represents the roads and l ∈ L represents the junctions
of the road network. We define discrete time points t ∈ T ,

1http://maps.google.co.uk/
2http://www.southampton.romanse.org.uk

T ⊆ N , while the time is global for the system and
the same for all agents. We denote the set of EVs as
i1, i2, ..., in ∈ I, where an EV i has a discharge rate
di ∈ <+

0 , a battery capacity b̄i ∈ <+
0 (KWh), and a battery

level at time t, bit ∈ <+
0 , t ∈ T . ∀l ∈ Lp there is a

number of charging slots s1, s2, ..., sn ∈ Sl and each slot is
available at a certain time, t ∈ T . We define an allocation
matrix njti ∈ {0, 1} to represent whether a charging slot
at charging point lj is occupied or not at time point t ∈ T
by an agent i.

Each EV i departs from the source lstarti at time
tstarti ∈ T and wants to travel to destination lendi where
it needs to park for time τparkingi ∈ N where τ ∈ Z
is a number of time points t. Every EV is available to
charge between tarrivalij = tstarti + τdrivingij and tdepartureij =
tstarti +τdrivingij +tparkingi . Each vehicle, also needs to charge
a specific amount of energy bchargeij at the charging point lj .
Each charging point lj has a charging rate, cj ∈ <+

0 which
depends on the charging power assigned by the charging
point to the EV.

Given a pair of locations (lstarti , lendi ) and the transport
network G, the shortest route, rij ∈ Rij from the source
to the destination is calculated using Dijsktra’s algorithm.
Similarly, the shortest routes rij ∈ Rij from the sources
to all charging points lp ∈ L are calculated as well. Every
route rij has a distance δ : Rij → < measured in miles,
a time to travel τdrivingij : Rij → Z, and an amount of
energy needed, Eneeded(rij , di). Based on this information,
the charging points with free slots within the time window
the EV will be available to charge, are calculated using
function B(Sj , tarrivalij , tdepartureij ).

Based on slot availability and on the ability of an EV
to reach a charging point with its initial battery level, a
set of valid charging points Γ ⊆ Lp is defined.

In order to measure the total cost for an EV, we consider
two types of cost. The first is the price that the agent will
pay at the charging point in order to charge. The second
is a set of time-based costs. In particular, we consider the
time to drive to the charging point, τdrivingij ∈ Z, the time
to walk from the charging point to the final destination,
τwalkingij ∈ Z, and the time it will need to charge in order
to get the battery level needed, τ chargingij ∈ Z. It has to
be mentioned that we differentiate between charging time
and parking time since the EV will not necessarily charge
for all the time that it is parked. Moreover, as discussed in
Section III, the driver pays for every time slot during which
her car is charging, so the fewer the number time points
she uses the lower the monetary cost incurred. We assume
that each time point spent by the car agent worths one
monetary unit. Then, using the function ωi,j : Rij→<+

0
the cost for each route is calculated. This cost function
that balances time against money is defined for agent i as:

ωi(rij) = k × ωTi (rij) + (1− k)× pij(rij) (1)

where k ∈ [0, 1] is a parameter that is used to trade-off



between time and money and wTi (rij) is the time cost
computed as follows:

ωTi (rij) = w1×τ chargingij +w2×τdrivingij +w3×τwalkingij (2)

where
∑3
i=1 wi = 1. Weights w1, w2, w3 depend on the

preferences of the agent.
B. Charging Point Selection Algorithm
In this section, we present the algorithm run by each EV

agent to compute the best charging point to go to based
on the estimated travel time (using the shortest-path) to
all charging points, its current battery level, and the cost
to charge at each charging point. While the source and the
destination of the journey, as well as the current battery
level are provided by the user, the cost of the electricity
is provided by the charging points. Different cost policies
are presented in the next section.

Algorithm 1 EV Decision making.
Require: lstarti , lendi , bstarti , bchargei and tdeparturei

1: for all lj ∈ Lp do
2: Calculate route r < lstart, lpj >
3: Calculate distance δ(rlstart,lpj )
4: Calculate time to travel τdrivingij (rlstart,lpj )
5: Calculate arrival tarrivalij and charge τ chargeij times.
6: Calculate energy needed to travel E(rij , di)
7: Γi ← ∅
8: if (bstart − E(rij , di) ≥ 0)

AND (T stayi

⋂
B(Sj , tarrivalij , tdeparturei ) 6= ∅)

AND (τparkingi × cai) ≥ (bchargei ) then
9: Γi ← Γi ∪ lj
10: end if
11: end for
12: for ∀lj ∈ Γ do
13: Calculate cost ωi(rij)
14: end for
15: rminij ← argmin(ωi(rij)), rij ∈ R

return lp, si, ri,j

The algorithm takes as input the start and end point
of the journey, the battery level before the start of the
journey, the amount of energy the EV wants to charge and
the desired time of departure. The algorithm calculates the
shortest route, distance, time, and energy needed to drive
to every charging point (lines 2-6). Then, if the battery
level at the beginning of the journey is enough to reach a
given charging point, a slot is available for the time period
the driver needs to charge, and the charging rate is enough
to meet the charging time deadlines, (line 8) the charging
point is added to the set of feasible charging points (line 9).
Following this, the cost of every option is calculated and
added in a set (lines 12-14). After that, the route and,
therefore, the charging point, that minimizes the cost is
selected (line 15). Finally, the route, the charging point
and the slot that the EV is going to charge at, are returned
as output by the algorithm.

It has to be mentioned, that if we knew every car’s
properties that will arrive in the future, and could control
all the charging points, we could find the optimal solution
(see Section V). However, as we show later, even if this
was possible, the solution would not scale to more than
a few tens of agents because of high complexity of the
optimization algorithm. Rather, we adopt a more realistic
scenario that charging points will be individually run
by a company that will aim to maximize profit while
minimizing congestions, without knowledge of the cars’
individual properties a priori. Hence, to develop a scalable
online scheduling approach to the management of EVs
in an urban environment, in the next secton, we present
pricing and charge allocation policies to achieve this.

III. Calculating Electricity Price

Now, assuming each EV uses the algorithm presented in
the previous section, we turn to the problem of controlling
a population of EVs in terms of the charging points
they will choose by using a pricing strategy to minimize
congestion and maximize profit by increasing or decreasing
the price with the number of EVs charging at each time
point. Specifically, three pricing strategies have been used
namely, Naive, Random and Smart. Crucially, these three
strategies present trade-offs in terms of complexity of im-
plementation, congestion generated, and profit generated.
Following these, in the next section we present the optimal
solution that aims to maximize social welfare (i.e., not
only the charging points’ profits but also minimize the cost
to the EVs and balance congestion). This is the solution
against which we will benchmark our pricing heuristics.
All strategies use the same price function (3). This is a
linear function that is measured as the amount of EVs
that charge at each charging point all time points the EV
will use to charge. Moreover, all strategies calculate a set
of time points Tc ∈ T that the EV will charge at.

A. Naive
The simplest way to define the set T chargeij , is to find the

first τ chargingij time points where free charging slots exist,∑
t(nitj) ≤ sj , between the time of arrival, tarrivalij and

time of departure tdepartureij . If charging point j is selected,
the time points t ∈ T chargeij are booked for agent i and the
price is calculated using the folowing equation.

pij = ∀t ∈ T chargeij

∑
t

∑
i

(njti) (3)

B. Random
This strategy defines the set T chargeij by randomly se-

lecting τ chargingij time points with free charging slots,∑
t(nitj) ≤ sj , between the time of arrival, tarrivalij and

time of departure tdepartureij . If charging point j is selected,
the time points t ∈ T chargeij are booked for agent i and the
price is calculated using Equation 3.



C. Smart
This strategy finds, for every charging point j, the

feasible (
∑

(nitj) < sj) time point t ≥ tarrivalij that is
the least congested, and therefore is assigned the lowest,
and adds to the set T chargeij this time point and the
next τ chargingij − 1 feasible charging points. It has to be
mentioned that when selecting the best time point to
start, the strategy checks if the EV will manage to get
the battery needed in the remaining feasible time points
before the time of departure, tdepartureij . If charging point
j is selected, the time points t ∈ T chargeij are booked for
agent i and the price is calculated using Equation 3.

IV. Optimal Solution
In this section we present a centralized, static, optimal

Mixed Integer Quadratic Programming (MIQP) formula-
tion of the problem (solved using IBM ILOG CPLEX),
which is compared to the decentralized solution. The aim
is to find the optimal charging location and charging times
for the EVs, taking into consideration the objectives of
the agents regarding battery level after charging and the
arrival and departure times, in order to have the minimum
overall cost, as described in Equation (4), and the best
congestion management.

This solution tries to minimize the objective function
(4), which contains the time to charge tchargeij at charging
point j, the time to drive τdrivingij to charging point j, the
time to walk twalkingij to the final destination and the price
to pay pij in order the agent to have the maximum utility.
Notice that, in contrast to the decentralized solution where
the price is calculated at the time of arrival of each EV
to the system, in the offline optimal solution, the price is
calculated after the allocation of all EVs as we have full
knowledge of the traffic and the objectives of the drivers
in advance. Moreover, this price is the same for all vehicles
charging at a particular time point t (e.g. If at a particular
charging point 4 charging slots exist, and at one time
point 3 of them are in use, each EV will pay price 3, so
alltogether will pay 3 ∗ 3 = 32).
In our formulation we define two decision variables. The

first one is yij ∈ {0, 1} and indicates whether an agent i
charges at charging point j and the second one is njti ∈
{0, 1} and indicates whether agent i is charging at time
point t at charging point j.

Objective function:∑
i∈I

∑
rij∈Rαij

(yij × ωTi (rij)) +
∑
j

∑
t

(
∑
i

njti)2 (4)

Constraints: ∑
rij∈Rαij

(yαij ≤ 1), yij ∈ {0, 1} (5)

∀i∀j , bendij = bchargeij × yij (6)
∀i∀j , bendij ≤ cj × τ

parking
ij × yij (7)

∀j∀t,
∑
i

(njti) ≤ sj (8)

∀j∀i∀t, t ≥ tarrivalij and t ≤ tdepartureij ,
∑
t

njti = τ chargingij ×yij

(9)
Explaining the above formulation, EV i will charge at,

at most one charging point j (Constraint 5). The main
objective of each agent is, after charging at the selected
charging point, to get the amount of energy needed. The
battery for agent i when it leaves from charging point j
(bendij ) must be greater than or equal to the required energy
bchargeij (Constraint 6). Moreover, each charging point has
a charging rate with which it charges the EVs. The energy
that agent i charges at charging point j must be less or
equal to the charging rate cj of the charging point times
the time that it charges τparkingij (Constraint 7).
Every charging point j has a maximum capacity sj

which must not be exceeded. Therefore, constraint (8)
guarantees that for every charging point j the sum of EVs
i that charge at each time point t does not exceed the total
capacity of the charging point. Moreover, as constraint (9)
guarantees, the sum of all time points that a charging point
j is occupied by an agent i must be equal to the time that
agent will be charging at the charging point.

V. Evaluation
The performance of our pricing strategies depends on

the number of EVs, the time they need to charge, and
the number of charging points and charging slots. Hence,
it is crucial to evaluate them on realistic scenarios and
compare them against the optimal (though not scalable,
as we show) approach. In order to do so, we run a number
of experiments. In this section we present only two of
them due to space limitations.. The first is a setting
with 10 - 60 electric vehicles where we test the online
pricing strategies against the static optimal mechanism.
The second experiment is a setting with 200 - 2000 EVs
where we test the scalability of our decentralized solution.

In order to evaluate our strategies, three metrics were
used. The first is the total monetary cost the EVs need to
pay. The second is the sum of squares of the number of
EVs that are served at each charging point. This metric
(referred to as Parking Balance (PB)) is important as it
portrays how balanced the charging point selection is and
how equally distributed the EVs are, as this plays a crucial
role in avoiding long waiting queues in certain charging
points.

Finally, the third metric is the sum of squares of the
number of EVs that charge at each time point at each
charging point. This metric (referred to as Charging Bal-
ance (CB)) portrays how well balanced the EVs are within
each charging point in terms of how many EVs charge
simultaneously. Managing the number of EVs charging
simultaneously at a charging point is very important in
order to avoid peeks in energy demand. This is important
for both the consumers of the energy (the charging points)
and the producers of the energy, as demand can be leveled
and unexpected needs for high volumes of energy avoided.



Figure 1. Average Cost of All EVs

Figure 2. Parking Balance Dynamic - Optimal

It has to be mentioned that, as described in Section 2, a
number of battery and charger types exist [8], but in this
evaluation, without loss of generality, we assume all EVs
are using the same battery type and all charging points
the same charger type.

A. Decentralized Solution VS Centralized Solution
In order to test the pricing strategies of the decentralized

solution against the centralized solution we set a simula-
tion experiment where a number of EVs 10 ≤ n ≤ 60 ar-
riving in the system have an arrival time tstarti drawn from
a normal distribution N(65,65) , parking time τparkingij

drawn from a normal distribution N(48,8), battery needed
bchargeij drawn from a normal distribution N(64,8) and
range bstarti drawn from a normal distribution N(20,12).
Totaly 6 charging points exist with 3 charging slots each.

In terms of PB (Table I and Figure 2), the Naive
and Random strategies of the decentralized mechanism are
very close to the optimal mechanism, whereas the smart
strategy is relatively worse. The poorer performance of
the Smart strategy can be attributed to the fact that it
searches for the best price. Because of this, it can serve
more EVs in a specific charging point without increasing
the cost, and therefore, the charging points that are in the
centre of the graph, therefore closer to more destinations,
get more congested than others.

Figure 3. Charging Balance Dynamic - Optimal

In terms of CB (Table I and Figure 3), the optimal solu-
tion is, as expected, the best. The Naive strategy achieves
better performance compared to both Random and Smart
strategies, whereas Smart is better than Random. As
it will become clear in the next experiment though, in
terms of PB and CB, the relative performance of dynamic
EV charging management mechanism variations change
significantly when the number of cars scales up to the
thousands.

A straight comparison between the three variants of
the decentralized mechanism and the optimal - centralized
one in terms of cost cannot be done. This is because
the decentralized mechanism calculates the price that
each EV will pay based on the EVs that already exist
in the system (i.e. incrementally), while the centralized
mechanism calculates the price based on the total amount
of EVs. So, the dynamic mechanism favors the EVs as they
pay less, while the static one favors the charging points as
they charge having full knowledge of the future traffic and
, therefore, can have an increased revenue. Figure 1 shows
how total cost changes on the number of EVs.

Table I
Relative performance of dynamic solutions vs optimal

Number of EVs
30 60

Naive Vs Optimal 9.42% -10.96%
Cost Random Vs Optimal 8.71% -13.17%

Smart Vs Optimal 0.59% -26.17%
Naive Vs Optimal 3.36% 4.21%

PB Random Vs Optimal 2.1% 3.05%
Smart Vs Optimal 6.3% 4.74%
Naive Vs Optimal 22.9% 16.31%

CB Random Vs Optimal 29.29% 18.45%
Smart Vs Optimal 27.9% 15.4%

B. Scaling up the Decentralized Solution
In order to evaluate the scalability of the decentralized

mechanism and to compare the three pricing strategies we
used a more realistic scenario with a large number of EVs.
In particular, 200 ≤ n ≤ 2000 arrive in the system at
random times t drawn from N(200,200). We draw parking
time, battery needed and range from normal distributions
as defined in the previous subsection. Moreover, in total 11
charging points exist and each one has 12 charging slots.



Figure 4. Average Cost of All Serviced EVs

Figure 5. Parking Balance
Table II

Smart and Random Strategies Compared Against Naive
Number of EVs

200 1000 2000
Cost Random Vs Naive 1.6% -4.35% -15.19%

Smart Vs Naive -13.13% -29.45% -26.43%
PB Random Vs Naive -0.38% -0.36% -2.33%

Smart Vs Naive 1.36% 1.24% -11.94%
CB Random Vs Naive 11.39% 1.06% -1.66%

Smart Vs Naive 8.2% 2.12% -10.09%
In terms of Monetary Cost, the Smart strategy is supe-

rior for all numbers of EVs (Table II) and (Figure 4).
Moreover, the difference between the Smart strategy and
the others increases as the number of EVs grows. On the
other hand, Random strategy is worse than Naive when
the number of cars is small, around 200, but as the number
of cars increases it quickly gets better than the naive.

In terms of PB, the three strategies are close to each
other for numbers of EVs below 1400 (Table II). Beyond
this point, the congestion in the system increases and the
Smart strategy is able to better manage this (see Figure
5), while Naive and Random have similar performance. In
terms of charging balance, the image that we get is similar
to the parking balance.

Notice that due the large number of EVs, beyond 1600
EVs some of them are not serviced. In more detail, for 2000
EVs the Naive strategy leaves the 26.4% of EVs unserviced,
the random leaves the 13.63% of the EVs unserviced,
whereas the smart leaves only the 5.86% unserviced. Be-
yond 1800EVs, where the charging points reach the limits

in terms of capacity, the Smart and Random strategies
tend to level, while the Naive gets even worse as it services
even fewer EVs and at a higher price.

VI. Conclusions
We propose a decentralized allocation mechanism for

the problem of EV charging management in smart city
environment that provides load balancing and cost sav-
ings even for a large number of EVs. In particular, we
developed three different online pricing strategies where
the Smart is the best in all the metrics we used, when the
number of EVs is large, a situation that is closer to the
future reality. Moreover, we present the first optimal offline
benchmark for the allocation of EVs to charging points
which is optimal in terms of charging management and
energy demand peek leveling. This centralized mechanism
is ideal for benchmarking reasons, but it scales purely, its
requirement that full knowledge of car charging demands
will be available is unrealistic and, thus, it cannot be used
in practice.

Future work will look at predictive models to forecast
demand from electric vehicles according to daily usage
patterns and ongoing activities in a city. Moreover, we will
investigate auction-based mechanisms to allocate charging
slots, similar to Gerding et al. [2] to take into account
incentive compatibility issues.
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