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Abstract
This paper presents the Operator Distribution Method for
Parallel Planning (ODMP), a parallelization method
especially suitable for heuristic planners. ODMP distributes
the process of finding and applying the ground applicable
actions to a given state, to the set of the available
processors. The operator schemas of the domain are
distributed to the available processors in a dynamic manner.
In order to utili ze a larger number of processors and to
achieve better load balancing, the set of the domain’s
operators is initially expanded by considering all the
possible instantiations of their first argument. The proposed
method, ODMP, is an effective parallelization method for
heuristic planners, but it can also be applied to planners that
embody other search strategies as well . We implemented
ODMP in a best first planner that uses a domain specific
heuristic for logistics problems and tested its efficiency on a
variety of problems, adopted from the AIPS-98 planning
competition.

1 Introduction
Heuristic functions are an important component of many
artificial intelligence applications, especiall y when a “quite
good” (not necessarily optimal) solution is required and
there is a tight time limit. Planners are Artificial
Intell igence applications, which given an initial state I, a
set of possible actions A and certain goals G, produce a
plan of actions, which if applied to I achieves G. These
programs are in many cases embedded in systems that
must exhibit real-time behavior, so they are usually
equipped with heuristic functions in order to respond
promptly. Speed is one of the most desirable aspect of
planning systems and although various methods, like
hierarchical planning, case based planning, transformation
to other problem types e.t.c., have been adopted, the
absence of good heuristic functions makes planning
systems inefficient for practical domains.

A challenging feature of modern artificial intell igence
applications is the abili ty to distribute the workload among
several processors in order to increase the execution speed.
Although the technology of parallel architectures is quite
mature and a lot of parallel systems are available at a
reasonable cost, there are not many software products that
can utilize these possibiliti es. Many researchers have tried
to find parallelization techniques for AI applications and
they have mainly focused on ways to distribute the search
tree among the existing processors (Cook and Varnell
1999, Cook 1997, Kumar and Rao 1990, Powley and Korf
1991, Rao, Kumar and Ramesh 1987). These techniques,
enriched with load balancing (Kumar, Grama and Rao

1994) and operator reordering methods (Cook, Hall and
Thomas 1993, Powley and Korf 1991), produce quite
efficient parallel algorithms. However the efficiency of
these methods depends on the amount of redundant search
that will be inevitably performed and therefore are not
suited for heuristic planning.

This paper presents the Operator Distribution Method
for Parallel Planning (ODMP), a parallelization method
especially suitable for efficient heuristic planners in the
STRIPS framework (Fikes and Nilson 1971). In ODMP,
which is based on our previous work on the parallelization
of GRT (Vrakas et al. 1999), the task of finding and
applying the applicable ground actions to the current state
is done in parallel. Furthermore, in order to utili ze a larger
number of processors and to achieve better load balancing,
the set of operators is initially expanded by considering all
the semi-grounded operators that can be generated by the
possible instantiations of the operators’ f irst arguments.
The expanded set is then distributed, in a dynamic manner,
to the available processors.

ODMP is an effective parallelization method for
heuristic planning, since any other parallelization method
introduces redundant search, which is so more severe, as
the heuristic becomes more precise. However it can co-
operate with other optimization techniques and it can offer
additional speedup to other kinds of planning.

In order to measure the efficiency of ODMP, we
developed a simple best-first planner with a domain-
dependent heuristic for the logistics world (Veloso 1992).
We measured the performance of a sequential version of
the planner against a parallel version that uses the ODMP
approach, obtaining very promising results.

The rest of the paper is organized as follows: Section 2
gives a brief synopsis of the work related to planning and
parallel search algorithms. Section 3 introduces a method
that expands the operator set by considering the semi-
grounded operators. This approach enables our
parallelization method to utili ze a large number of
processors. Section 4 describes ODMP, our proposed
parallelization method, while section 5 describes the
heuristic for logistic problems we implemented for our
experiments. Section 6 presents some experimental results
on a variety of logistics problems and finally section 7
concludes the paper and poses future directions.

2 Related Work
In (Kumar, Rao and Ramesh 1988), the authors review a
set of strategies for parallel best-first search of state-space
graphs. The strategies they present are classified to be



either distributed or centralized, based on the existence or
not of local agendas. In both cases the heuristic function is
used to order the states in the agenda, i.e. the first state in
the agenda is the one with the smallest estimated distance
from a goal state.

In the centralized model, each one of the N processors
undertakes the best state of the global agenda, which has
not yet been assigned to any other processor. At the end of
each expansion the successor states are placed back to the
global agenda. The main advantage of this approach, as
discussed in (Irani and Shih 1986), is that it does not result
in much redundant search. However, the global agenda is
accessed by all the processors very frequently causing the
processors to remain idle for quite a long time, due to
contention.

On the other hand, in the distributed model each
processor maintains its own local agenda and thus there is
no need for semaphores. This model usuall y uses the IDA*
search algorithm initially presented by Powley and Korf
(Powley, Ferguson and Korf 1991). IDA* is a version of
Iterative Deepening search, where the next level of search
is determined by the heuristic function in use. The state-
space is initially divided and distributed to the existing
processors. The segmentation of the initial state-space can
be done in several ways. Powley and Korf (Powley and
Korf 1991) introduced PWS, a tree distribution method in
which each processor searches in a unique depth. Kumar et
al. (Kumar and Rao 1990, Rao, Kumar and Ramesh 1987)
describe a different approach where the search tree is
segmented vertically. To be more specific, after a
sufficient number of states has been generated, each
processor undertakes one of them, considering it to be the
root and searches the generated subtree. A large number of
variations of these techniques have been proposed over
time. Moreover, Diane Cook proposed a hybrid approach
(Cook and Varnell 1999, Cook 1997), which combines
IDA* with vertical segmentation techniques and seems to
outperform all the other methods.

In the above method, after the initial distribution of the
state-space, some intercommunication is necessary, since
some of the processors may be working on promising parts
of the search tree while the others contribute little or
nothing to the process of finding a solution. Moreover, the
communication is necessary for load balancing, since the
local agenda of a processor may become empty if many
non-expandable states have been examined (Kumar,
Grama and Rao 1994). Load balancing includes the
transfer of states from one local agenda to another, in order
to equalize the workload in all processors. This transfer
can be performed directly or via a global memory
structure, called blackboard.

There are two main problems related with the kind of
parallelization based on the distribution of the search
space: a) a great number of states is examined more than
once, since the state-space is not always split i n disjoined
parts and b) these techniques result in the expansion of
more states than necessary. The first argument does not
apply to IDA* since the search tree is split in almost

disjoined parts, except for the states that can be
approached by various ways of different length. However,
IDA* examines all the states at a given level before
proceeding to the next one (argument b). The alternative
approach (vertical segmentation) suffers from both
problems. The subtrees can not be disjoined, since a state
can usuall y be approached by different ways. Furthermore,
a subtree might be promising (i.e. it contains a short
solution), while the others are not and yet the algorithm
will examine all of them.

The latter problem becomes more severe as the
heuristic function produces better estimates, since the set
of promising states will become narrower and narrower.
For example, if the heuristic function is perfect, a simple
hill climbing technique will examine only l states, where l
is the length of the optimal solution. Any one of the
parallelization methods described previously will work N
(number of processors) times more, since while one of the
processors will be examining the solution’s states the
others will be wasted at useless parts of the search space.
Even if the accuracy of the heuristic estimate is less than
100%, but still acceptable, the overhead imposed by the
examination of redundant states would not allow the
parallel algorithm to perform well .

These inefficiencies were partly tackled by PGRT
(Vrakas et al. 1999), a parallelization method for planning
especially crafted for Greedy Regression Tables (Refanidis
and Vlahavas 1999, Refanidis and Vlahavas 2000), a
domain independent heuristic for planning. In PGRT the
operators are dynamically distributed to the available
processors and the task of formatting the successor states is
done in parallel. PGRT manages to achieve significant
speedup for a small number of processors (3 or 4 for the
logistics domain) while preserving the quali ty of the
resulting plans. The main disadvantage of PGRT concerns
its scalabili ty, since the number of operators in most
domains is relatively small .

3 Expanding the Operator Set
ODMP distributes the task of finding and applying the
applicable grounded actions to a given state. It is therefore
obvious that the number of operators limits its scalabili ty.
Furthermore, there are great differences among the amount
of work needed to examine these operators and inevitably
the workload among the processors will not be balanced.
PGRT managed to cope, partially, with the latter problem
through the use of an Operator Reordering  method as a
means of load-balancing. ODMP has adopted a more
sophisticated method, which can cope eff iciently with both
of the problems stated above.

The set of operators is initially expanded through the
consideration of all the possible instantiations of the
operators’ f irst argument. We call the resultant operators
semi-grounded operators and the expanded set semi-
grounded operator set.

Consider for example, a logistics domain with 3 cities
(city1, city2 and city3), 1 plane (A321), 2 places per
city (center, airport), 3 trucks (truck1, truck2 and



truck3) and 4 cargoes (cargo1, cargo2, cargo3 and
cargo4). The initial operator set includes the following
six operators:
[Fly(A,S,D), Drive(T,S,D), Load_plane(C,A,L),
Unload_plane(C,A,L), Load_truck(C,T,L), Unload_truck(C,T,L) ]

where A,C,D,L,S and T are variable names representing
airplanes, cargoes e.t.c. The semi-grounded operator set
will contain one instantiation of the fly operator, three of
the drive operator and four of each one of the other
operators. So the size of the expanded set will be twenty.
For example, the three semi-grounded Drive operators will
be the following:

[Drive(truck1,S,D), Drive(truck2,S,D), Drive(truck3,S,D)]

The semi-grounded operator set contains a larger
number of operators than the initial set, but the amount of
work needed to process these sets is the same, since the
number of actions that will eventually be generated by
these sets will be equal. So, the method is capable of
generating a relatively large number of disjoined segments
of operators, which is equivalent to the initial operator set.

The eff iciency of the parallel algorithm can benefit
from this method in several ways:
a) The algorithm can utili ze the computational power of

more processors (the bound in the scalabili ty is li fted).
b) Since the workload is split into a larger number of

portions, it’s distribution will be more balanced.

The choice of the argument, which will be used to
generate the semi-grounded operators can significantly
affect the efficiency of ODMP. In the current
implementation we always choose the first argument
appearing in the definition of the operator.

4 Overview of ODMP
ODMP is a method for parallel planning, in which the task
of finding and applying the applicable actions to a given
state is done in parallel. To be more specific, suppose that
we have M operators and N processors. We distribute the
operators to the available processors and then each
processor is responsible of finding the applicable ground
actions originating from the operators assigned to it and
applying them to the current state to produce the successor
states. At the beginning of the planning process ODMP
expands the operator set using the method described in
section 3. The rest of the planning process uses the set of
the semi-grounded operators instead.

The distribution could be done statically at the
beginning; i.e. the first  NM /  operators will be assigned

to the first processor, the next  NM /  operators to the

second processor and so on. This approach is easy to
implement and the overhead due to the communication
among processors is kept quite low. However, the number
of ground actions originating from different operators can
vary from 0 to several hundreds (for a typical logistics
problem) resulting in unbalanced workload among the
different processors.

In the dynamic distribution method the unexamined
operators are kept all together in a global data structure,
denoted as operator pool. Initially each processor is
assigned one operator and the rest of the operators are
distributed on demand. This method succeeds to balance
the workload among processors, but imposes some
overhead due to contention. However, this overhead is
negligible compared to the speedup due to the balanced
workload.

As it was previously stated, ODMP is a parallelization
method that can be adopted by any state-space planner.
However, it was motivated by the need for an effective
parallelization method for heuristic planning. Figure 1
presents the algorithm of ODMP for best-first planning. It
is obvious that the steps presented in Figure 1 do not form
a complete description of the algorithm. This is just the
part of the parallel algorithm running on the different
threads, which will generate and apply the applicable
actions to the current best state SB. There must also exist a
controlli ng process that will be responsible for
starting/stopping the threads and for assigning SB to the
current most promising state.

1. While SB has not been defined, do nothing.
2. While operator pool is not empty:

2a. Request an operator
2b. Find all the grounded actions that can be

applied to SB.
2c. Send the list of grounded actions to the action

pool.
3. While action pool is not empty or there is at least one

processor at step 2:
3a. Request new action.
3b. Apply it to SB to produce S'.
3c. Evaluate the distance of S' from the goal state

using the heuristic function.
3d. Send (S',dist(S')) to the global agenda.

4. Return to 1.

Figure 1. ODMP for heuristic planning

The first step of the parallel algorithm is used for
synchronization between the various processors. The value
of SB will be updated only when all the processors have
finished with the previous iteration. This part is crucial,
since if a processor was allowed to start a new iteration
while the others are still working with the previous one, SB

would be linked to a local best state that probably wouldn’ t
be the globally best one according to the heuristic in use.
The last one would have resulted in greater CPU usage, but
also in larger number of examined states and consequently
larger execution time.

In order to achieve further increase in the efficiency of
the parallelization, the grounded applicable operators are
temporarily stored in another pool, denoted as action pool
and the remaining tasks, i.e. creation of successor states
and evaluation using the heuristic function, are done in an
independent phase (step 3). This technique can offer
further increase in CPU usage, since it contributes to better
load balancing.



In order to apply ODMP to a non-heuristic planner, the
algorithm in Figure 1 has to be modified. Step 3c is
unnecessary since there is no heuristic algorithm in use.
Furthermore, the global agenda will not contain tuples of
the form (S,dist(S)), since the estimated distances are not
available. Finally, there is no need to have a separate step
for the creation of successor states, since without the use of
a heuristic algorithm this task is trivial.

5 The Cargo Location Heuristic
In order to test the eff iciency of ODMP, we embodied it in
a simple best-first planner that uses a domain-dependent
heuristic algorithm for Logistics worlds. We call this
heuristic the Cargo Location (CL) heuristic. CL estimates
the distances between each intermediate state and the
goals, taking into consideration the current locations and
the destinations of the cargoes that have to be transferred.

To be more specific, for each cargo c, CL assigns an
integer varying from 0 to 12, which represents the
estimated number of steps for this cargo to reach its
destination (dc). Then, the sum of these distances is the
estimate for the distance of each intermediate state from
the goals. Initially each dc is set to 0. Then the dcs are
computed by repeatedly applying for each cargo the
following rules:

1. If c is not in its destination city, increase dc by 4.
2. If c is not in its destination city and it is not in an

airport, increase dc by 4.
3. If c is not in its destination city and its destination

place is not an airport, increase dc by 4.
4. If c is in its destination city but it is not in the

destination place, increase dc by 4.

Consider, for example, the following case:
Goals≡ [at(c1,dc-ctr), at(c2,la-air),

          at(c3,la-ctr)]
StateA≡ [at(c1,dc-air), at(c2,dc-air),

          at(c3,dc-ctr)]

The distance between StateA and the Goals is
estimated as follows:

Estimated distance between StateA and Goals
cargo1: 4 (4th rule)
cargo2: 4 (1st rule)
cargo3: 12 (1st, 2nd and 3rd rule)
Total = 20

6 Performance Results
For evaluation reasons, we developed a planning system
that embodies ODMP. Our planner searches the state-
space in a best-first manner and uses the CL heuristic to
guide its search. The implementation language was C++
with multi threading capabiliti es (we used the POSIX
threads library). The platform used for the tests was a SGI
Power Challenge XL parallel machine with 14 R8000
CPUs (75 MHz) and 16 GB of shared memory. The
underlying operating system was IRIX 6.2.

We tested the efficiency of ODMP on the thirty
Logistics problems used in the AIPS–98 planning
competition (prob01 – prob30). However in the following
Tables we only consider a subset of them, which required a
reasonable amount of processing time. The ten selected
logistics problems were thoroughly used as inputs for
various versions of our planner, utili zing each time a
different number of processors in the range between 1 and
12.

Table 1 presents the time needed by our planer to solve
a variety of hard logistics problems for different values of
N (the number of utilized processors). The time was
measured using the Unix’s time command (User time +
Sys time) and it is presented in seconds.

Problem N=1 N=2 N=3 N=5 N=8 N=12

Prob09 254 144 110 70 52 55

Prob10 512 275 207 150 120.5 108

Prob12 2100 1200 900 600 450 370

Prob13 2660 1385 946 630 420 320

Prob14 265 152 120 80 57 49

Prob16 224 128 101 67 49 44.2

Prob17 118 72 50 33 28.1 33.7

Prob18 3900 2046 1415 855 570 450

Prob19 1350 800 523 366 270 220

Prob23 55 33 24 20 17 18

Table 1. Time needed by ODMP for different values of N

In order to ill ustrate the efficiency and the scalabili ty of
our method in more clarity, we computed the speedup
(Tsequential/Tparallel) of ODMP from the values of Table 1.
The, quite interesting, results are presented in Table 2.

Problem N=1 N=2 N=3 N=5 N=8 N=12

Prob09 1 1.76 2.31 3.63 4.88 4.62

Prob10 1 1.86 2.47 3.41 4.49 4.74

Prob12 1 1.75 2.33 3.5 4.67 5.68

Prob13 1 1.92 2.81 4.22 6.33 8.31

Prob14 1 1.74 2.21 3.31 4.65 5.41

Prob16 1 1.75 2.22 3.34 4.57 5.07

Prob17 1 1.64 2.36 3.58 4.2 3.5

Prob18 1 1.91 2.76 4.56 6.84 8.67

Prob19 1 1.69 2.58 3.69 5 6.14

Prob23 1 1.67 2.29 2.75 3.24 3.06

Table 2. Speedup of ODMP

By analyzing the results presented in the preceding Tables
we can draw certain important conclusions:
• Under certain circumstances ODMP can achieve

almost-linear speedup (e.g. speedup for Prob13 and
N=3 is 2.81)

• It can effectively scale up to a significant number of
processors (approximately 10 in the case of Prob18).

• The eff iciency of our method seems to depend
strongly on the nature of the problem, since for certain
problems (Prob17 and Prob23) the speedup and the
scalabili ty of ODMP are moderate.



In order to justify the behavior of our method, we
performed an analysis on the set of the logistics problems
regarding their inner structure and its impact on our
method. For each problem we computed the size of the
semi-grounded operator set (denoted as SGOS) and the
upper limit of the number of grounded actions that can be
applied to a given state (Amax). Table 3 presents the results
of our analysis.

Problem SGOS Amax

Prob09 80 204

Prob10 95 145

Prob12 84 409

Prob13 130 385

Prob14 171 185

Prob16 93 248

Prob17 110 135

Prob18 120 390

Prob19 117 318

Prob23 116 98

Table 3. Number of semi-grounded operators and applicable
actions

Comparing the values of Amax (Table 3) and the
speedup (Table 2), we can conclude that the efficiency of
ODMP depends strongly on Amax. This sounds quite
reasonable, since the most resource-consuming part of the
planning process is the detection of the applicable actions
and the formation of the successor states. The scalabili ty of
ODMP and therefore its overall efficiency, is also affected
by the number of semi grounded operators (SGOS), since a
low value for SGOS, means that there are not many work
packages and the workload is not equally distributed. For
example, although Amax for Prob12 is very high (409), the
quite low value of SGOS (84), prevents ODMP from
performing well .

7 Conclusion and Future Work
This paper reported on work performed to find an adaptive
parallelization method for planning. We proposed a
method that distributes the process of finding and applying
the grounded applicable actions to a given state. The
Operator Distribution Method for parallel Planning
(ODMP) was inspired by the parallelization method of
PGRT [15]. The main disadvantage of PGRT was the
limitation in its scalabili ty, which was tackled successfully
by ODMP, through the creation of the Semi-Grounded
Operator Set. This expanded set is created through the
consideration of all the grounded instantiations of the
operators’ f irst argument.

ODMP is a parallelization method that can be adopted
by any planner, whether it embodies a heuristic function or
not. For the purpose of this research we implemented a
best first planner using a simple heuristic for logistics
problems (CL). We tested this program thoroughly on a
large variety of logistics problems and the results
presented in this paper ill ustrate the efficiency of ODMP.

In the future we plan to apply ODMP to other heuristic
planners and test the efficiency of our approach,
thoroughly, on other, probably more complicated domains.

We also plan to study the possibili ty of applying
ODMP to parallel machines with distributed memory and
afterwards in a network of computers. This will require a
static work distribution method in order to minimize the
intercommunication, which could be probably done
through a heuristic function capable of estimating, a priori,
the workload imposed by an operator.
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