An Operator Distribution M ethod for Parallel Planning

Dimitris Vrakas, loannis Refanidis & loannis Vlahavas

Department of Informatics,
Aristotle University of Thessloniki
54006, Thessloniki Greece
[dvrakas,yrefanid,vlahavas] @csd.auth.gr

Abstract

This paper presents the Operator Distribution Method for
Parallel Planning (ODMP), a paraléizaion method
espedally suitable for heuristic planners. ODMP distributes
the process of finding and applying the ground applicable
adions to a given dtate, to the set of the available
procesors. The operator schemas of the domain are
distributed to the avail able procesors in a dynamic manner.
In order to utilize alarger number of processors and to
adhieve better load belancing, the set of the domain’s
operators is initidly expanded by considering al the
possble instantiations of their first argument. The proposed
method ODMP, is an effedive parall €lizaion method for
heuristic planners, but it can aso be applied to planners that
embody other seach strategies as well. We implemented
ODMP in a best first planner that uses a domain spedfic
heuristic for logistics problems and tested its efficiency ona
variety of problems, adopted from the AIPS-98 planning
competition.

1 Introduction

Heuristic functions are an important component of many
artificial intelligence gplications, espedaly when a“quite
good’ (not necessarily optimal) solution is required and
there is a tight time limit. Planners are Artificia
Intelligence gplicdions, which gven an initial state |, a
set of possble adions A and certain goals G, produce a
plan of adions, which if applied to | acieves G. These
programs are in many cases embedded in systems that
must exhibit red-time behavior, so they are usualy
equipped with heuristic functions in order to respond
promptly. Spedl is one of the most desirable aped of
planning systems and athough various methods, like
hierarchicd planning, case based planning, transformation
to aher problem types et.c., have been adoped, the
absence of good heurigtic functions makes planning
systems inefficient for pradicd domains.

A challenging feature of modern artificial intelligence
applicaionsis the aility to distribute the workload among
several processorsin order to increase the exeaution speed.
Although the technology of paralel architedures is quite
mature and a lot of parallel systems are available & a
ressonable w4, there ae not many software products that
can uilize these posshiliti es. Many reseachers have tried
to find perall€elizaion techniques for Al applicaions and
they have mainly focused on ways to distribute the search
tree among the existing processors (Cook and Varnell
1999 Cook 1997, Kumar and Rao 199Q Powley and Korf
1991, Rao, Kumar and Ramesh 1987). These techniques,
enriched with load balancing (Kumar, Grama and Rao

199) and operator reordering methods (Cook, Hall and
Thomas 1993 Powley and Korf 1991), produce quite
efficient paralel agorithms. However the efficiency of
these methods depends on the amount of redundant search
that will be inevitably performed and therefore ae not
suited for heuristic planning.

This paper presents the Operator Distribution Method
for Parallel Planning (ODMP), a paral€lizaion method
espedally suitable for efficient heuristic planners in the
STRIPS framework (Fikes and Nilson 1971). In ODMP,
which is based on our previous work on the parall elization
of GRT (Vrakas et a. 1999, the task of finding and
applying the gplicable ground adions to the airrent state
isdone in parallel. Furthermore, in order to utili ze alarger
number of processors and to achieve better load balancing,
the set of operatorsisinitially expanded by considering all
the semi-grounded operators that can be generated by the
possble instantiations of the operators' first arguments.
The expanded set is then distributed, in a dynamic manner,
to the avail able processors.

ODMP is an effedive paralelizaion method for
heuristic planning, since any other parallelization method
introduces redundant seach, which is © more severe, as
the heuristic beaomes more predse. However it can co-
operate with other optimization techniques and it can offer
additional speedup to ather kinds of planning.

In order to measure the dficiency of ODMP, we
developed a simple best-first planner with a domain-
dependent heuristic for the logistics world (Veloso 1993.
We measured the performance of a sequential version of
the planner against a paralel version that uses the ODMP
approad, obtaining very promising results.

The rest of the paper is organized as follows: Sedion 2
gives a brief synopsis of the work related to planning and
parale seach agorithms. Sedion 3 introduces a method
that expands the operator set by considering the semi-
grounded operators. This approach enables our
paralelizaion method to utilize a large number of
procesors. Sedion 4 describes ODMP, our proposed
paralelization method, while sedion 5 describes the
heuristic for logistic problems we implemented for our
experiments. Sedion 6 presents me experimental results
on a variety of logistics problems and finally sedion 7
concludes the paper and pases future diredions.

2 Related Work

In (Kumar, Rao and Ramesh 1989, the aithors review a
set of strategies for parallel best-first seach of state-space
graphs. The strategies they present are dasdfied to be

either distributed or centralized, based on the existence or
not of locd agendas. In both cases the heuristic function is
used to order the states in the agenda, i.e. the first state in
the ggenda is the one with the smallest estimated distance
fromagoal state.

In the centralized model, ead one of the N processors
undertakes the best state of the global agenda, which has
not yet been assgned to any other procesor. At the end of
eadt expansion the successor states are placed bad to the
global agenda. The main advantage of this approach, as
discussed in (Irani and Shih 1986), is that it does not result
in much redundant search. However, the global agenda is
accesxd by all the procesoors very frequently causing the
procesors to remain idle for quite along time, due to
contention.

On the other hand, in the distributed model ead
procesr maintains its own locd agenda and thus there is
no neel for semaphores. This model usualy usesthe IDA*
seach algorithm initially presented by Powley and Korf
(Powley, Ferguson and Korf 1991). IDA* is a version of
Iterative Degpening search, where the next level of search
is determined by the heuristic function in use. The state-
space is initially divided and dstributed to the existing
procesrs. The segmentation of the initial state-space ca
be done in severa ways. Powley and Korf (Powley and
Korf 1997 introduced PWS, a treedistribution method in
which eat procesor seachesin a unique depth. Kumar et
al. (Kumar and Rao 199Q Rao, Kumar and Ramesh 1987
describe a different approach where the seach tree is
segmented verticdly. To be more spedfic, after a
sufficient number of states has been generated, eadh
processor undertakes one of them, considering it to be the
root and seaches the generated subtree A large number of
variations of these techniques have been proposed over
time. Moreover, Diane Cook proposed a hybrid approach
(Cook and Varnell 1999 Cook 1997), which combines
IDA* with verticd segmentation techniques and seems to
outperform all the other methods.

In the &ove method, after the initial distribution of the
State-space some intercommunication is necessary, since
some of the processors may be working on promising parts
of the seach tree while the others contribute little or
nothing to the processof finding a solution. Moreover, the
communicdion is neeessry for load balancing, since the
locd agenda of a procesor may become empty if many
nonexpandable states have been examined (Kumar,
Grama axd Rao 1999. Load halancing includes the
transfer of states from one locd agenda to another, in order
to equalize the workload in all processors. This transfer
can be performed dredly or via a global memory
structure, cdled bladkboard.

There ae two main problems related with the kind of
paralelizaion based on the distribution of the seach
space a) a gred number of states is examined more than
once, since the state-spaceis not aways lit in disjoined
parts and b) these techniques result in the expansion of
more states than necessary. The first argument does not
apply to IDA* since the seach tree is 9lit in amost

digoined parts, except for the states that can be
approached by various ways of different length. However,
IDA* examines al the states at a given level before
procedaling to the next one (argument b). The dternative
approach (verticd segmentation) suffers from both
problems. The subtrees can not be digoined, since astate
can usualy be gproached by different ways. Furthermore,
a subtree might be promising (i.e. it contains a short
solution), while the others are not and yet the dgorithm
will examine dl of them.

The latter problem bewmmes more severe & the
heuristic function produces better estimates, since the set
of promising states will becme narrower and narrower.
For example, if the heuristic function is perfed, a simple
hill climbing technique will examine only | states, where |
is the length of the optima solution. Any one of the
parall elization methods described previously will work N
(number of processors) times more, since while one of the
procesors will be examining the solution's dates the
others will be wasted at useless parts of the seach space
Even if the acarracy of the heuristic estimate is less than
100%, but still acceptable, the overhead imposed by the
examination of redundant states would not alow the
parall el algorithm to perform well.

These inefficiencies were partly tadkled by PGRT
(Vrakas et a. 1999, a parall €lizaion method for planning
espedally crafted for Greedy Regression Tables (Refanidis
and Vlahavas 1999 Refanidis and Vlahavas 2000, a
domain independent heuristic for planning. In PGRT the
operators are dynamically distributed to the available
procesors and the task of formatting the successor statesis
done in paralel. PGRT manages to achieve significant
speadup for a small number of processors (3 o 4 for the
logistics domain) while preserving the quality of the
resulting plans. The main disadvantage of PGRT concerns
its <dability, since the number of operators in most
domainsisrelatively small.

3 Expanding the Operator Set

ODMP distributes the task of finding and applying the
applicable grounded adions to a given state. It is therefore
obvious that the number of operators limits its scadabili ty.
Furthermore, there ae grea differences among the amount
of work needed to examine these operators and inevitably
the workload among the processors will not be balanced.
PGRT managed to cope, partially, with the latter problem
through the use of an Operator Reordering method as a
means of load-balancing. ODMP has adopted a more
sophisticated method, which can cope dficiently with both
of the problems dated above.

The set of operators is initially expanded through the
consideration of all the posdble instantiations of the
operators first argument. We cdl the resultant operators
semi-grounded operators and the epanded set semi-
grounded operator set.

Consider for example, a logistics domain with 3 cities
(cityl,city2 andcity3), 1 pane (A321), 2 paces per
city (center, airport), 3 trucks (t ruckl, truck2 and

truck3) and 4 cagoes (car gol, cargo2, cargo3 and
car go4). The initial operator set includes the following
Six operators:

[FIy(A,SD), Drive(T,SD), Load_plane(C,A,L),
Unload_plane(C,A,L), Load_truck(C,T,L), Unload_truck(C,T,L)]
where A,CD,L,S and T are variable names representing
airplanes, cargoes et.c. The semi-grounded operator set
will contain one instantiation of the fly operator, three of
the drive operator and four of ead one of the other
operators. So the size of the expanded set will be twenty.
For example, the three semi-grounded Drive operators will
be the following:

[Drive(truck1,S,D), Drive(truck2,S,D), Drive(truck3,5D)]

The semi-grounded operator set contains a larger
number of operators than the initial set, but the amount of
work needed to process these sets is the same, since the
number of adions that will eventualy be generated by
these sets will be eual. So, the method is cgpable of
generating a relatively large number of digoined segments
of operators, which is equivalent to the initial operator set.

The dficiency of the paralel agorithm can benefit
from this method in severa ways:
a) The dgorithm can utili ze the cmputational power of
more procesors (the bound in the scdability islifted).
b) Since the workload is Plit into a larger number of
portions, it’s distribution will be more balanced.

The doice of the agument, which will be used to
generate the semi-grounded operators can significantly
affect the efficiency of ODMP. In the aiurrent
implementation we dways choose the first argument
appeaingin the definition of the operator.

4 Overview of ODMP

ODMP is a method for parallel planning, in which the task
of finding and applying the gplicable adions to a given
state is done in paralel. To be more spedfic, suppose that
we have M operators and N procesors. We distribute the
operators to the avalable processors and then eech
procesr is responsible of finding the goplicable ground
adions originating from the operators assgned to it and
applying them to the current state to produce the successor
states. At the beginning of the planning process ODMP
expands the operator set using the method described in
sedion 3. The rest of the planning process uses the set of
the semi-grounded operatorsinstea.

The distribution could be done dtaticdly at the
beginning; i.e. the first gy /N operators will be assgned

to the first processor, the next /N[operators to the

seoond procesor and so on. This approach is easy to
implement and the overhead due to the communication
among procesors is kept quite low. However, the number
of ground adions originating from different operators can
vary from O to several hundreds (for a typicd logistics
problem) resulting in unbalanced workload among the
different procesors.

In the dynamic distribution method the unexamined
operators are kept all together in a global data structure,
denoted as operator pool. Initially each processor is
asdgned one operator and the rest of the operators are
distributed on demand. This method succeels to balance
the workload among processors, but imposes me
overhead due to contention. However, this overhea is
negligible cmpared to the speadup due to the balanced
workload.

As it was previoudy stated, ODMP is a parall elization
method that can be adopted by any state-space planner.
However, it was motivated by the neal for an effedive
paralelizaion method for heuristic planning. Figure 1
presents the dgorithm of ODMP for best-first planning. It
is obvious that the steps presented in Figure 1 donot form
a aomplete description of the dgorithm. This is just the
part of the paralel algorithm running on the different
threads, which will generate axd apply the aplicable
adions to the current best state Sg. There must also exist a
controlling process that will be responsible for
starting/stoppng the threads and for asdgning Sz to the
current most promising state.

1. While Sshas not been defined, do nothing.
2. While operator pool isnot empty:
2a Request an operator
2b. Find al the grounded adions that can be
applied to Ss.
2c. Sendthe list of grounded adions to the adion
pool.
3. While adion pool is not empty or there is at least one
processor at step 2
3a Request new adion.
3hb. Apply it to S to produce S.
3c. Evaluate the distance of S' from the goal state
using the heuristic function.
3d. Send (S,dist(S)) to the global agenda.
4. Returnto 1
Figure 1. ODMP for heuristic planning

The first step of the paralel algorithm is used for
synchronizaion between the various processors. The value
of S will be updated only when al the processors have
finished with the previous iteration. This part is crucia,
since if a processor was allowed to start a new iteration
whil e the others are still working with the previous one, S
would belinked to alocd best state that probably wouldn’t
be the globally best one acording to the heuristic in use.
The last one would have resulted in greader CPU usage, but
also in larger number of examined states and consequently
larger exeaution time.

In order to achieve further increase in the dficiency of
the parallelization, the grounded applicable operators are
temporarily stored in another pod, denoted as action pool
and the remaining tasks, i.e. creaion of successor states
and evaluation using the heuristic function, are done in an
independent phase (step 3). This technique can offer
further increase in CPU usage, sinceit contributes to better
load balancing.

In order to apply ODMP to a non-heuristic planner, the
algorithm in Figure 1 has to be modified. Step 3c is
unnecessary since there is no heuristic dgorithm in use.
Furthermore, the global agenda will not contain tuples of
the form (S,dist(S)), since the estimated distances are not
available. Finaly, there is no neal to have aseparate step
for the aedion of succesr states, since without the use of
aheuristic dgorithm thistask istrivial.

5 The Cargo L ocation Heuristic

In order to test the dficiency of ODMP, we emboded it in
a simple best-first planner that uses a domain-dependent
heuristic dgorithm for Logistics worlds. We cdl this
heuristic the Cargo Location (CL) heuristic. CL estimates
the distances between ead intermediate state and the
goals, taking into consideration the airrent locaions and
the destinations of the cagoes that have to be transferred.

To be more spedfic, for eat cargo ¢, CL assgns an
integer varying from 0 to 12 which represents the
estimated number of steps for this cargo to read its
destination (d;). Then, the sum of these distances is the
estimate for the distance of each intermediate state from
the goals. Initially each d. is %t to 0. Then the d.s are
computed by repeaedly applying for eah cago the
following rules:

1. If cisnotinitsdestination city, increase d. by 4.

2. If cisnot in its destination city and it is not in an
airport, increase d; by 4.

3. If cis not in its destination city and its destination
placeis not an airport, increase d. by 4.

4. If c is in its dedtination city but it is not in the
destination place increase d. by 4.

Consider, for example, the following case:

Goal s= [at(cl,dc-ctr), at(c2,la-air),
at(c3,la-ctr)]

StateA= [at(cl,dc-air), at(c2,dc-air),
at(c3,dc-ctr)]

The distance between StateA and the Goal s is

estimated as foll ows:

Estimated distance between St at eA and Goal s
car gol: 4 (4" rule)

cargo2: 4 (1% rule)

car go3: 12 (1%, 2" and 3%rule)

Total =20

6 Performance Results

For evaluation reasons, we developed a planning system
that embodes ODMP. Our planner seaches the state-
spacein a best-first manner and uses the CL heuristic to
guide its ®ach. The implementation language was C++
with multithreading capabilities (we used the POSIX
threads library). The platform used for the tests was a SGI
Power Challenge XL parale machine with 14 R8000
CPUs (75 MHz) and 16 GB of shared memory. The
underlying operating system was IRIX 6.2.

We tested the dficiency of ODMP on the thirty
Logistics problems used in the AIPS-98 panning
competition (prob01 —prob30). However in the following
Tableswe only consider a subset of them, which required a
reassonable amount of processng time. The ten seleced
logistics problems were thoroughly used as inputs for
various versions of our planner, utilizing each time a
different number of procesrs in the range between 1 and
12

Table 1 presents the time needed by our planer to solve
avariety of hard logistics problems for different values of
N (the number of utilized processors). The time was
measured using the Unix’'s time command (User time +
Systime) and it is presented in seconds.

Problem N=1 N=2 N=3 N=5 N=8 N=12
Prob09 254 144 110 70 52 55
Prob10 512 275 207 150 | 1205 108
Prob12 2100 [1200 900 600 450 370
Prob13 2660 | 1385 946 630 420 320
Prob14 265 152 120 80 57 49
Prob16 224 128 101 67 49 44.2
Prob17 118 72 50 33 28.1 33.7
Prob18 3900 | 2046 1415 855 570 450
Prob19 1350 800 523 366 270 220
Prob23 55 33 24 20 17 18

Table 1. Time neaded by ODMP for different values of N

In order to ill ustrate the dficiency and the scdability of
our method in more darity, we computed the speedup
(T sequential/ T parata) Of ODMP from the values of Table 1.
The, quite interesting, results are presented in Table 2.

Problem N=1 N=2 N=3 N=5 N=8 N=12
Prob09 1 176 | 231 | 3.63| 488 4.62
Prob10 1 186 | 247 | 341 | 449 4.74
Prob12 1 175 | 233 3.5 4.67 5.68
Prob13 1 192 281 422 | 633 8.31
Prob14 1 174 221 | 331] 465 541
Prob16 1 175 222 | 334| 457 5.07
Prob17 1 164 | 236 358 4.2 35
Prob18 1 191) 276 | 456 | 684 8.67
Prob19 1 169 | 258 3.69 5 6.14
Prob23 1 167 | 229 275| 324 3.06

Table 2. Speedup of ODMP

By analyzing the results presented in the precaling Tables

we @an draw certain important conclusions:

* Under certain circumstances ODMP can achieve
amost-linea speedup (e.g. speedup for Probl3 and
N=3is2.81)

e |t can effedively scde up to a significant number of
processors (approximately 10in the case of Probl8).

« The dficiency of our method seems to depend
strongly on the nature of the problem, since for certain
problems (Prob17 and Prob23) the speedup and the
scdability of ODMP are moderate.

In order to justify the behavior of our method, we
performed an analysis on the set of the logistics problems
regarding their inner structure ad its impad on our
method. For ead problem we computed the size of the
semi-grounded operator set (denoted as SGOS) and the
upper limit of the number of grounded adions that can be
applied to a given state (Ansy). Table 3 presents the results
of our analysis.

Problem SGOS | Amax_|
Prob09 80 204
Prob10 95 145
Prob12 84 409
Prob13 130 385
Prob14 171 185
Prob16 93 248
Prob17 110 135
Prob18 120 390
Prob19 117 318
Prob23 116 98
Table 3. Number of semi-grounced operators and applicable
adions

Comparing the values of A, (Table 3) and the
speedup (Table 2), we can conclude that the efficiency of
ODMP depends dgrongly on A This unds quite
reasonable, since the most resource-consuming part of the
planning processis the detedion of the gplicable adions
and the formation of the successor states. The scdabili ty of
ODMP and therefore its overall efficiency, is also affeded
by the number of semi grounded operators (SGOS), since a
low value for SGOS, means that there ae not many work
padkages and the workload is not equally distributed. For
example, althougch A for Prob12 is very high (409, the
quite low value of SGOS (84), prevents ODMP from
performing well.

7 Conclusion and Future Work

This paper reported on work performed to find an adaptive
paralelizaion method for planning. We proposed a
method that distributes the processof finding and applying
the grounded applicable adions to a given state. The
Operator Distribution Method for paralel Planning
(ODMP) was inspired by the paraléelizaion method o
PGRT [15]. The main disadvantage of PGRT was the
limitation in its sdabili ty, which was tackled successfully
by ODMP, through the aedion of the Semi-Grounded
Operator Set. This expanded set is creaed through the
consideration of al the grounded instantiations of the
operators first argument.

ODMP is a parall elization method that can be alopted
by any planner, whether it embodes a heuristic function or
not. For the purpose of this reseach we implemented a
best first planner using a simple heuristic for logistics
problems (CL). We tested this program thoroughly on a
large variety of logistics problems and the results
presented in this paper ill ustrate the efficiency of ODMP.

In the future we plan to apply ODMP to ather heuristic
planners and test the dficiency of our approach,
thoroughly, on other, probably more complicaed domains.

We dso pan to study the paossbility of applying
ODMP to paralel machines with distributed memory and
afterwards in a network of computers. This will require a
static work distribution method in order to minimize the
intercommunicaion, which could be probably done
through a heuristic function capable of estimating, a priori,
the workload impaosed by an operator.

8 References

Cook, D. J. and Varnell, R. C. 1999. Adaptive Parald Iterative
Degoening Seach. Journal of Artificia Intelligence Research 9
167-194.

Cook, D. J. eds. 1997. A Hybrid Approach to Improving the
Performance of Parallel Seach. Paralel Processng for Artificia
Intelligence: Elsevier Science Publi shers.

Cook, D. J,, Hdll, L. and Thomas, W. 199. Parallel seach using
transformation-ordering iterative-deegpening A*. The Int. Journal
of Intelli gent Systems. 8(8).

Fikes, R. E. and Nilsson, N. J 1971. Strips: A new approach to
the gplicaion of theorem proving to problem solving. Artificial
Intelligence2.: 189-208

Irani, K. B. and Shih, Y. F. 1986. Pardlel a and ao* agorithms:
An opimadity criterion and performance evaluation. In
Procealings of the International Conference on Parale
Procesdng, 274-277.

Kumar, V., Rao, V. N. and Ramesh, K. 1988. Parallel Best-First
Seach o State-Space Graphs: A Summary of Results. In
Procealings of the 1988 National Conf. on Artificial Intelligence

Kumar, V., Grama, A. Y. and Rao, V. N. 1994. Scdable Load
Balancing Tedniques for Parallel Computers. Journal of Parallel
and Distributed Computing 22: 60-79.

Kumar, V. and Reo, V. N. eds. 1990. Scdable pardle
formulations of depth-first seach. Paralel Algorithms for
Maadine Intelli gence and Vision.: Springer-Verlag.

Powley, C., Ferguson. C. and Korf, R. E. 1991. Pardld tree
seach on a smd machine. In Procealings of the Third IEEE
Sympaosium on Parall el and Distributed Processng, 249-256.

Powley, C. and Korf, R. E. 1991. Single-agent parallel window
seach, |IEEE Transadions on Pattern Anaysis and Madine
Intelligence 13(5).

Rao, V. N., Kumar, V. and Ramesh, K. 1987. A pardl€
implementation d iterative degoening-A*. In Procealings of the
National Conference on Artificial Intelligence, 178-182.
Refanidis, I. and Vlahavas, |. 1999. GRT: A Domain Independent
Heurigtic for STRIPS Worlds based on Greedy Regression
Tables. In Procealings of the 5th European Conference on
Planning. Durham, UK.

Refanidis, 1. and Vlahavas, 1. 2000. Exploiting State Constraints
in Heuristic State-SpacePlanning. Forthcoming.

Veloso, M. 1992. Leaning by Analogicd Reasoning in General
Problem Solving. Ph.D. diss, Dept. of Computer Science
Carnegie Mélon Univ.

Vrakas, D. Refanidis, I., Milcent, F. and Vlahavas, |. 1999. On
the Parall elization of Greedy Regression Tables. In Procealings
of the 18" Workshop of the UK Planning and Scheduling Spedal
Interest Group, 180-189. Manchester UK.

