
DLEJena: A Practical Forward-Chaining OWL

2 RL Reasoner Combining Jena and Pellet

Georgios Meditskos ∗, Nick Bassiliades

Department of Computer Science, Aristotle University of Thessaloniki, 54124,
Thessaloniki, Greece

Abstract

This paper describes DLEJena, a practical reasoner for the OWL 2 RL profile that
combines the forward-chaining rule engine of Jena and the Pellet DL reasoner. This
combination is based on rule templates, instantiating at run-time a set of ABox
OWL 2 RL/RDF Jena rules dedicated to a particular TBox that is handled by Pellet.
The goal of DLEJena is to handle efficiently, through instantiated rules, the OWL 2
RL ontologies under direct semantics, where classes and properties cannot be at the
same time individuals. The TBox semantics are treated by Pellet, reusing in that
way efficient and sophisticated TBox DL reasoning algorithms. The experimental
evaluation shows that DLEJena achieves more scalable ABox reasoning than the
direct implementation of the OWL 2 RL/RDF rule set in the Jena’s production
rule engine, which is the main target of the system. DLEJena can be also used as
a generic framework for applying an arbitrary number of entailments beyond the
OWL 2 RL profile.

Key words: OWL 2 RL, DL reasoner, rule templates, forward-chaining rules

1 Introduction

The OWL 2 language [2] is an extension and revision of OWL that addresses
several problems and drawbacks that have been identified throughout the years
of the extensive application of OWL in numerous contexts. It provides three
profiles with different expressivity, namely OWL 2 EL, OWL 2 QL and OWL
2 RL, each of which targeting at different application scenarios.

∗ Corresponding author.
Email addresses: gmeditsk@csd.auth.gr (Georgios Meditskos),

nbassili@csd.auth.gr (Nick Bassiliades).

Preprint submitted to Elsevier 17 October 2009



The OWL 2 RL profile imposes some restrictions on the use of OWL 2 con-
structs in order for several reasoning tasks to be implemented as a set of rules
in a forward-chaining rule engine. It is realized as a partial axiomatization of
the OWL 2 semantics in the form of first-order implications inspired by the
pD∗ semantics [13], called OWL 2 RL/RDF rules [1]. This partial axioma-
tization mainly ensures that only the explicitly stated individuals would be
considered by the reasoning procedure, in a way similar to DLP [3]. For ex-
ample, the someValuesFrom restriction is not allowed to be used on the right
side of subclass axioms, since it refers to not explicitly stated individuals.

In this paper we describe DLEJena, a reasoning engine for OWL 2 RL ontolo-
gies that combines the inference capabilities of the production rule engine of
Jena 1 and the Pellet DL reasoner [12], following the DLE framework [9]. The
production rule engine is used in order to execute an instantiated version of
the individual-related (ABox) OWL 2 RL/RDF rules that are generated for
a particular ontology schema (TBox) after performing TBox reasoning with
Pellet. The instantiation of the ABox OWL 2 RL/RDF rules targets at their
efficient execution by the Jena’s rule engine and it is defined through template
rules that regulate the number and the type of the rules that are generated
based on the TBox. In that way, DLEJena results in more scalable ABox rea-
soning than the direct implementation of the OWL 2 RL/RDF rule set in the
production rule engine of Jena.

The approach of DLEJena to separate the TBox from the ABox reasoning
procedure restricts the input graph in order to handle OWL 2 RL ontologies
under direct semantics and therefore, the RDF graphs should satisfy the pre-
conditions of Theorem PR1 in [1]. This fact, together with the utilization of
a DL reasoner, gives the following characteristics to DLEJena.

(1) DLEJena is not an OWL 2 RL conformant implementation 2 , since it can-
not handle any RDF graph. Instead, it conforms to the practical subset
of OWL 2 RL that separates the schema from the individual vocabulary.

(2) Since DLEJena uses a DL reasoner for TBox reasoning, it may derive
more entailments than the ones that follow from the OWL 2 RL/RDF
rule set. This depends on the expressivity of the loaded ontologies and it
does not invalidate the conformance requirements.

The rest of the paper is structured as follows: in section 2 we present the
concept and the application context of the DLE framework which DLEJena is
based on. In section 3 we categorize the OWL 2 RL/RDF rules, according to
the entailments that derive. In section 4 we describe the architecture of DLE-
Jena, whereas in section 5, we present experimental results. Finally, in section
6, we conclude our work and we present possible extensions to DLEJena.

1 http://jena.sourceforge.net
2 http://www.w3.org/TR/owl2-test

2



2 The DLE Framework

In many practical applications, there is usually a shared terminological (TBox)
vocabulary on which the ontology individuals (ABox) are defined. The TBox
is not (or rarely) modified by applications at run-time, whereas the exten-
sional part is continuously modified or enriched with new individual assertions.
For example, the European and the International Semantic Web conferences
publish metadata 3 that cover information relevant to papers, schedules, atten-
dees, etc. These metadata are defined upon shared terminological vocabularies,
such as the SWRC 4 ontology, and every year new individuals are added.

In such scenarios, the ontology vocabulary is partitioned, that is, the vocab-
ulary of classes and properties is separated from the individuals vocabulary,
since the classes and properties are not used at the same time as individuals.
Furthermore, the extensional knowledge usually involves large number of indi-
vidual assertions and therefore, there is a need for scalable implementations.
The DLE framework targets at the efficient execution of the individual-related
RDF triple-based inference rules in such application domains by defining a
framework for the combination of a DL reasoner and a production rule en-
gine. The motivation of such a combination is summarized in the following.

• Degree of TBox completeness. Many practical ontology reasoners [4],[5],
[8], [6] implement forward-chaining inference rules in the form of RDF triple-
based rules [13] for TBox and ABox reasoning, following the RDF Model
Theory [11]. These approaches, like DLP, have limited TBox reasoning ca-
pabilities, since they are based on rules. For example, we have observed that
they are unable to derive that two properties p and q are equivalent if p and
q are both the inverse properties of g, because they do not implement the
corresponding entailment rule 5 . The DLE framework, instead of using rules
for TBox reasoning, it uses a DL reasoner for TBox reasoning completeness.

• ABox reasoning performance. The ABox reasoning procedure in DLE
is based on instantiated individual-related inference rules. The experimen-
tal evaluation of DLE with a number of rule engines [9] has shown that the
instantiated rules are executed faster with less memory requirements, com-
pared to the execution of predefined, generic rules in the same rule engine.

The present paper describes the implementation of the DLE framework for the
OWL 2 RL profile, using the Pellet DL reasoner and the forward-chaining rule
engine of Jena. The choice of these two systems is justified by the convenient
API that exists for their integration that provides the necessary communica-
tion infrastructure between the two systems.

3 http://data.semanticweb.org/
4 http://ontoware.org/projects/swrc/
5 This entailment is neither supported by the OWL 2 RL/RDF rule set

3



DLEJena combines the reasoning paradigm that is based on the execution of
RDF triple-based entailment rules in a forward-chaining rule engine [10] and
the transformation paradigm of an ontology into a set of instantiated instance-
related entailment rules. It should be noticed that the instantiation of these
rules is based on TBox reasoning in order to allow DJEJena to handle an
arbitrary number of entailments beyond the OWL 2 RL profile.

3 OWL 2 RL/RDF Rule Classification

DLEJena is based on the classification of the OWL 2 RL/RDF rules in three
categories, according to the semantic conditions that are involved in each rule.
This classification targets at the identification of the schema-related rules,
whose semantics are implemented by Pellet, and the individual-related rules
that are implemented as templates or ordinary Jena rules. In this section, we
elaborate briefly on the characteristics of each category.

• Terminological Rules. The rules that deduce class and property rela-
tionships are referred to as terminological. These rules are not implemented
in DLEJena and their semantics are handled by Pellet instead. For exam-
ple, the rule that handles the subclass transitivity is a terminological rule,
referred to as scm-sco in [1], which is expressed in Jena’s rule syntax as:

[scm-sco: (?c1 rdfs:subClassOf ?c2)

(?c2 rdfs:subClassOf ?c3)

-> (?c1 rdfs:subClassOf ?c3)]

• Hybrid Rules. These rules deduce individual relationships by matching
both TBox and ABox information in their body. As we explain in section
4.3.1, these rules are defined through templates in DLEJena that gener-
ate instantiated ABox rules. For example, the rule that defines the inverse
property relationship, which is depicted below, is a hybrid rule.

[prp-inv1: (?p owl:inverseOf ?q)

(?x ?p ?y)

-> (?y ?q ?x)]

• Exceptional Rules. Finally, the rules that deduce ABox relationships by
matching only ABox information in their body are referred to as exceptional.
These rules are expressed in DLEJena directly as Jena rules, since they
cannot be further instantiated, such as the eq-sym rule:

[eq-sym: (?x owl:sameAs ?y)

-> (?y owl:sameAs ?x)]

4



The terminological rules are also referred as TBox rules, whereas the other
two types constitute the ABox rules of DLEJena.

4 The DLEJena Architecture

The architecture of DLEJena is depicted in Fig. 1 and comprises four modules:
the Ontology Loader, the TBox Reasoner, the Template Processor and the
ABox Reasoner. DLEJena makes use of the Jena API and therefore, it supports
all the Jena-specific interfaces for conducting queries, e.g. SPARQL queries.

OWLAPI

OWL 2

Ontology

Production Rule 
Engine

Instantiated

OWL 2 RL/RDF

ABox rules

Template
Processor

Pellet DL 
Reasoner

Jena Framework

TBox KB

ABox KB

Template Rules

DLEJena

TBox query ABox query

Fig. 1. The DLEJena architecture.

4.1 The Ontology Loader

The Ontology Loader is the module responsible for the separation of the TBox
from the ABox axioms of the loaded ontology, since DLEJena applies different
TBox and ABox ontology reasoning procedures. To achieve this, the Ontology
Loader makes use of the OWLAPI 6 , creating two Jena models for the asserted
TBox and ABox triples, respectively. These two models serve as the base
assertions for the two separated ontology reasoning procedures.

4.2 The TBox Reasoner

In contrast to existing rule-based implementations that use inference rules for
TBox reasoning, such as the systems mentioned in section 2, the TBox reason-
ing in DLEJena is performed by the Pellet DL reasoner, without implementing
any terminological OWL 2 RL/RDF rule (see section 3). The intuition behind

6 http://owlapi.sourceforge.net/

5



this approach is that the TBox reasoning can be done efficiently, seamlessly
and with greater degree of completeness by DL reasoners than by rules. In that
way, Pellet reasons over the asserted TBox model of the imported ontologies
that is created by the Ontology Loader, performing TBox consistency check-
ing, computing the subsumption hierarchy and the property-related semantics.
Note that the use of a DL reasoner may produce more entailments than the
OWL 2 RL/RDF rules impose, as we have mentioned in the introduction.

4.3 The ABox Reasoner

The ABox reasoning procedure of DLEJena is defined upon the Jena’s RETE-
based rule engine and it is based on the hybrid and exceptional ABox rules
mentioned in section 3 in order to achieve the scalability where the OWL 2
RL profile aims at. In the following, we describe the approach that DLEJena
follows in order to implement the rules of each category.

4.3.1 Hybrid rules

DLEJena implements the hybrid rules following an approach based on tem-
plate rules. Each hybrid rule is expressed as a template rule that generates
instantiated rules by removing all the TBox references from the condition of
the hybrid rule and grounding the remaining unbound variables with actual
TBox values. In that way, (a) more than one rule may be generated for a
particular hybrid rule, and (b) the rule base of DLEJena is not predefined
and it is formed at run-time, according to the schema constructs of the loaded
ontology. A template rule is of the form (using the rule syntax of Jena):

[name: (s1 p1 o1)T1 ... (sn pn on)Tn

-> [name′: (s′1 p′1 o′1)A1 ... (s′m p′m o′m)Am

-> (s′′1 p′′1 o′′1)A1 ... (s′′k p′′k o′′k)Ak
]],

where (s p o)Ti
is a triple that matches TBox information, (s p o)Ai

is a
triple that matches ABox information and the si, s′i and s′′i elements can be
rule variables, nodes or blank nodes. In that way, the rule variables of the
body range over TBox information and they are used in order to ground the
corresponding rule variables of the head. Intuitively, a template rule can be
viewed as a production rule that asserts dynamically other production rules.
It is worth mentioning that the instantiated rules are in fact exceptional rules,
since they do not refer to TBox information in their body. Therefore, a hybrid
rule is substituted by one or more exceptional rules.

The Template Processor is responsible for executing the template rules against
the TBox that is obtained from Pellet after reasoning and for collecting the

6



instantiated ABox rules of their head. To achieve this, it makes use of the
hybrid rule engine of Jena. The default reasoning capability of Jena involves
backward-chaining execution of entailment rules in the hybrid rule engine that
actually combines a RETE and an LP engine. The RETE engine can be used in
order to instantiate only backward-chaining rules in the LP engine. DLEJena
is based on the hybrid rule engine of Jena and extends it, allowing the RETE
engine to derive also forward-chaining rules. The functionality of the Template
Processor involves the following steps:

• The TBox is loaded in DLEJena in order to generate the Jena ontology
model that has the Pellet as the underlying reasoner.

• Based on Pellet, DLEJena performs TBox reasoning and the ontology model
is checked for TBox inconsistencies.

• The template rules are applied over the Jena ontology model, incorporating
seamlessly any additional inferences that are computed by Pellet.

Example. Consider the following ontology in the OWL Functional Syntax that
defines the inverse hasParent and hasChild object properties.

Declaration(ObjectProperty(hasParent))

Declaration(ObjectProperty(hasChild))

InverseObjectProperties(hasParent hasChild)

These are all TBox axioms and therefore, they will be handled by Pellet that
applies the symmetry in the inverseOf axiom. In order to enable the pro-
cessing of the inverse property semantics at the individual level, the prp-inv1
hybrid rule of section 3 should be defined in the form of a template rule as:

[prp-inv1: (?p owl:inverseOf ?q)

-> [D_prp-inv1:(?x ?p ?y)

-> (?y ?q ?x)]]

More specifically, the template rule matches the inverseOf property relation-
ship in its body, generating the instantiated rules in its head. By executing
the template rule in DLEJena, the Template Processor retrieves the following
two (exceptional) forward-chaining ABox rules:

[D_prp-inv1:(?x hasParent ?y)

-> (?y hasChild ?x)]

[D_prp-inv1:(?x hasChild ?y)

-> (?y hasParent ?x)]

7



4.3.2 Exceptional Rules

The exceptional rules are the actual ABox inference rules that are executed
by the forward-chaining rule engine of DLEJena. These are the rules that
have been generated by the Template Processor after the rule instantiation
procedure, together with the set of the native exceptional OWL 2 RL/RDF
rules that we have described in section 3. Note that an exceptional rule is
actually a template rule with an empty body, since none of its rule variables
range over TBox information. In that way, the exceptional rules can be also
represented as templates. For example, the exceptional eq-sym rule of section
3 can be defined in the form of a template rule as:

[eq-sym:

->[eq-sym:(?x owl:sameAs ?y)

->(?y owl:sameAs ?x)]]

5 Experiments

The intention of DLEJena is to be used as an alternative reasoning module
inside the Jena framework in order to provide efficient memory-based forward-
chaining implementation of the OWL 2 RL semantics through instantiated en-
tailment rules. To this end, we performed a number of experiments with differ-
ent ontologies, comparing DLEJena to the direct implementation of the OWL
2 RL/RDF rule set in the forward-chaining rule engine of Jena (Jenafc rules).
We used synthetically generated extensional datasets of the UOBM [7], Vi-
codi 7 , Wine 8 and Semintec 9 ontologies. The experiments ran on a Linux
machine with a Core 2 Quad processor at 2.50 GHz and 2 GB main memory.

Table 1 depicts the TBox reasoning time, that is, the time needed to derive all
the schema-related inferences. In the case of DLEJena, this time involves the
application of Pellet for TBox reasoning, whereas in the case of Jenafc rules,
this time involves the execution of the schema-related OWL 2 RL/RDF rules.
Furthermore, Table 1 depicts the time that DLEJena needs to apply the tem-
plate rules. As far as TBox reasoning is concerned, the two systems have
similar performance, except for the Wine ontology where DLEJena terminates
the TBox reasoning procedure considerably faster than Jenafc rules. It is worth
mentioning that DLEJena employs complete TBox reasoning, through the use
of Pellet, whereas Jenafc rules applies only the schema-related semantics that
follow from the OWL 2 RL/RDF rule set.

7 http://www.vicodi.org
8 http://www.w3.org/TR/owl-guide/wine.rdf
9 http://www.cs.put.poznan.pl/alawrynowicz/semintec.htm

8



Table 1
The TBox reasoning times of the two implementations (in seconds)

UOBM Vicodi Wine Semintec

DLEJena
TBox 0.22 0.15 0.86 0.1

Templates 0.81 0.67 1.9 0.5

Total 1.03 0.82 2.8 0.6

Jenafc rules TBox 0.15 0.38 8.2 0.05

As far as the execution of the template rules is concerned, it introduces
an extra overhead to the performance of DLEJena, which is not present in
Jenafc rules. However, this is an insignificant overhead compared to the dif-
ference in the ABox reasoning performance between the two implementations
that we analyze in the following.

Fig. 2 depicts the ABox reasoning time of the two implementations, that is,
the time needed to derive all the ABox inferences. In the case of DLEJena,
this time involves the execution of the instantiated entailments, whereas in the
case of Jenafc rules, this time involves the execution of the predefined ABox
OWL 2 RL/RDF rules. Note that both implementations use forward-chaining
rules, following a complete materialization approach of the semantics.

DLEJena achieves a considerably faster ABox reasoning performance in all on-
tologies. For the UOBM ontology, DLEJena managed to reason on ∼993,000
triples using all the available main memory, whereas Jenafc rules reasoned on
∼200,000 with the same memory utilization. For the Wine ontology, Jenafc rules

reasoned on ∼25,000 triples before reaching the memory limit, whereas DLE-
Jena managed to reason on a dataset of ∼138,000 triples using 1 GB of main
memory. For the Vicodi ontology, DLEJena managed to reason on ∼161,000
triples before reaching the memory limit while processing a dataset of∼215,000
triples, whereas Jenafc rules was able to reason only on the dataset of ∼54,000
triples. Finally, for the Semintec ontology, DLEJena managed to reason on a
dataset twice the size of the one processed by Jenafc rules. To conclude, the
same datasets were processed faster by DLEJena than by Jenafc rules with
less memory requirements, enabling DLEJena to reason on more triples than
Jenafc rules before reaching the memory limit.

For the completeness of the presentation, we present also in Figure 3 the ABox
reasoning times of Bossam [4], OWLIM [5] and BaseVisor [8] that are based
totally on rules. OWLIM is the fastest RDF triple-based rule reasoner using
the highly scalable TRREE engine, whereas Bossam presents the worst perfor-
mance. For the UOBM ontology, BaseVisor requires more time to reason than
Jenafc rules, in contrast to the Vicodi and Semintec ontologies, showing that

9



UOBM

1

10

100

1000

0 200 400 600 800 1000

Triples (thousands)

A
B

o
x
 r

e
a
s
o

n
in

g
 t

im
e
 (

s
e
c
)

DLEJena

ssssJenafc_rules

Wine

1

10

100

1000

10000

0 50 100 150
#Triples (thousands)

A
B

o
x
 r

e
a
s
o

n
in

g
 t

im
e
 (

s
e
c
)

DLEJena

ssssJenafc_rules

Vicodi

1,148 1,552

5,901

12,384

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

DLEJena ssss

A
B

o
x
 r

e
a
s
o

n
in

g
 t

im
e
 (

s
e
c
)

54,079 triples

107,730 triples

161,381 triples

Jenafc_rules

Semintec

1,172

2,115

4,301

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

DLEJena ssss
A

B
o

x
 r

e
a
s
o

n
in

g
 t

im
e
 (

s
e
c
)

65,560 triples

130,828 triples

Jenafc_rules

Fig. 2. ABox reasoning times (complete materialization of semantics).

UOBM

1

10

100

DLEJena Jenafc_rules Bossam BaseVisor OWLIM

A
B

o
x
 r

e
a
s
o

n
in

g
 t

im
e
 (

s
e
c
) 65,332 triples

129,886 triples

194,503 triples

Jenafc_rules

Wine

1

10

100

1000

DLEJena Jenafc_rules Bossam BaseVisor OWLIM

A
B

o
x
 r

e
a
s
o

n
in

g
 t

im
e
 (

s
e
c
)

1,936 triples

4,444 triples

7,184 triples

out of 

memory

Error:

owl:intersectionOf

can only be used 

on two classes at 

a time

Jenafc_rules

Vicodi

1

10

100

1,000

10,000

100,000

DLEJena Jenafc_rules Bossam BaseVisor OWLIM

A
B

o
x
 r

e
a
s
o

n
in

g
 t

im
e
 (

s
e
c
)

54,079 triples

107,730 triples

161,381 triples

out of 

memory

out of 

memory

Jenafc_rules

Semintec

1

10

100

1,000

10,000

DLEJena Jenafc_rules Bossam BaseVisor OWLIM

A
B

o
x
 r

e
a
s
o

n
in

g
 t

im
e
 (

s
e
c
)

65,560 triples

130,828 triples

out of 

memory
out of 

memory

Jenafc_rules

Fig. 3. Short comparison of the Jena-based systems to other implementations.

the rule engine of BaseVisor can handle more efficiently ontologies with sim-
ple TBox and large ABox than the rule engine of Jena, such as the Semintec
and Vicodi ontologies. This behavior of the rule engine of Jena is inherited
to DLEJena and therefore, the performance of DLEJena is bounded by the
performance of Jena’s rule engine. However, DLEJena has better performance
than Jenafc rules, which is the actual goal of DLEJena. It should be noted
that our intention is not to compare the efficiency of different production rule
engines, for example, to compare the Jena’s rule engine against the BaseVi-
sor’s rule engine or the rule engine of OWLIM, since each implementation has
different capabilities and features. To conclude, the idea behind DLEJena is
to propose a practical framework in order to increase the reasoning perfor-

10



mance of the typical implementation of the OWL 2 RL/RDF rules in Jena
(Jenafc rules) that DLEJena achieves for all the ontologies. Similar improve-
ments were also observed for other implementations of the DLE framework in
different rule engines (e.g. in Bossam) [9].

6 Discussion

In this paper we presented DLEJena, a proof of concept implementation of the
DLE framework for the OWL 2 RL profile, using the Pellet DL reasoner and
the production rule engine of Jena. The goal is to exploit the TBox reasoning
capabilities of Pellet and to instantiate at run-time the ABox-related OWL
2 RL/RDF rules in order to result in a more scalable implementation in the
Jena’s production rule engine, than of applying directly the entailment rules.

Regarding the rule instantiation procedure of DLEJena, we have mentioned
that it is defined upon the TBox model that is inferred by Pellet and not
directly on the asserted knowledge. In that way, DLEJena can be used as
a generic reasoning framework able to implement any type of entailments
beyond the OWL 2 RL profile. However, the approach of DLEJena to apply
the template rules after TBox reasoning, results in some redundant instance-
related rules, which may affect the performance (not the correctness), but it
still results in considerably better performance than the direct application of
predefined entailments, as the experimental evaluation shows.

DLEJena is available 10 with a set of 36 preregistered template rules as a use-
ful starting point for practical implementations. This set can be extended with
more rules beyond the OWL 2 RL profile, such as with rules that infer the
existence of individuals not present in the KB. We plan also to develop a ver-
sion of DLEJena that would use a database for handling very large ontologies,
similar to the approach of [14].

Acknowledgements

This work was partially supported by a PENED program (EPAN M.8.3.1, No.
03E∆73), jointly funded by EU and the Greek Ministry of Development-GSRT

10 http://lpis.csd.auth.gr/systems/DLEJena/

11



References

[1] OWL 2: Profiles, http://www.w3.org/TR/owl2-profiles (2009).

[2] B. Grau, I. Horrocks, B. Motik, B. Parsia, P. Patel-Schneider, U. Sattler, OWL
2: The Next Step for OWL, Web Semantics: Science, Services and Agents on
the World Wide Web 6 (4) (2008) 309–322.

[3] B. N. Grosof, I. Horrocks, R. Volz, S. Decker, Description Logic Programs:
Combining Logic Programs with Description Logic, in: Proceedings of the 12th
International Conference on World Wide Web, ACM, 2003.

[4] M. Jang, J.-C. Sohn, Bossam: An Extended Rule Engine for OWL Inferencing,
in: G. Antoniou, H. Boley (eds.), RuleML, 2004.

[5] A. Kiryakov, D. Ognyanov, D. Manov, OWLIM - A Pragmatic Semantic
Repository for OWL, in: WISE Workshops, 2005.

[6] J. Kopena, W. C. Regli, DAMLJessKB: A Tool for Reasoning with the Semantic
Web, IEEE Intelligent Systems 18 (3) (2003) 74–77.

[7] L. Ma, Y. Yang, Z. Qiu, G. Xie, Y. Pan, S. Liu, Towards a Complete OWL
Ontology Benchmark, in: European Semantic Web Conference, 2006.

[8] C. J. Matheus, K. Baclawski, M. M. Kokar, BaseVISor: A Triples-Based
Inference Engine Outfitted to Process RuleML and R-Entailment Rules, in:
RuleML, 2006.

[9] G. Meditskos, N. Bassiliades, Combining a DL Reasoner and a Rule Engine for
Improving Entailment-Based OWL Reasoning, in: 7th International Semantic
Web Conference (ISWC 2008), Karlsruhe, Germany, 2008.

[10] G. Meditskos, N. Bassiliades, Rule-based OWL Reasoning Systems:
Implementations, Strengths and Weaknesses, Handbook of Research on
Emerging Rule-Based Languages and Technologies: Open Solutions and
Approaches, IGI Global, ISBN Number 978-1-60566-402-6, 2009.

[11] J. Z. Pan, I. Horrocks, RDFS(FA): Connecting RDF(S) and OWL DL, IEEE
Trans. on Knowl. and Data Eng. 19 (2) (2007) 192–206.

[12] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, Y. Katz, Pellet: A Practical
OWL-DL Reasoner, Web Semantics: Science, Services and Agents on the World
Wide Web 5 (2) (2007) 51–53.

[13] H. J. ter Horst, Completeness, Decidability and Complexity of Entailment for
RDFSchema and a Semantic Extension Involving the OWL Vocabulary, Web
Semantics: Science, Services and Agents on the World Wide Web 3 (2-3) (2005)
79–115.

[14] Z. Wu, G. Eadon, S. Das, E. I. Chong, V. Kolovski, M. Annamalai, J. Srinivasan,
Implementing an Inference Engine for RDFS/OWL Constructs and User-
Defined Rules in ORACLE, in: 24th International Conference on Data
Engineering (ICDE 2008), IEEE, 2008.

12


